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Non-Newtonian Flows – Modified from the Comsol ChE Library module. 
Modified by Robert P. Hesketh, Chemical Engineering, Rowan University  Fall 2007 
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6. Expressions for Describing Steady Shear Non-Newtonian 
Flow 
The expressions shown here are used to characterize the non-Newtonian behavior of fluids under 
equilibrium, steady shear flow conditions. Many phenomenological and empirical models have 
been reported in the literature. Only those having a direct and significant implication for 
suspensions, gels and pastes have been included here. A brief description of each relationship is 
given with examples of the types of materials to which they typically are applied. In defining the 
number of parameters associated with a particular model, the term "parameter" in this case refers 
to adjustable (arbitrary) constants, and therefore excludes measured quantities. Some of these 
equations have alternative representations other than the one shown. More detailed descriptions 
and alternative expressions can be found in the sources listed in the bibliography. 

Bingham  

 

Where γ&  is the shear rate (e.g. dxdv ).  The Bingham relation is a two parameter model used 
for describing viscoplastic fluids exhibiting a yield response. The ideal Bingham material is an 
elastic solid at low shear stress values and a Newtonian fluid above a critical value called the 

Bingham yield stress, B. The plastic viscosity region exhibits a linear relationship between shear 
stress and shear rate, with a constant differential viscosity equal to the plastic viscosity, pl. 

Carreau-Yasuda (This is used in Comsol) 
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A model that describes pseudoplastic flow with asymptotic viscosities at zero (  0) and infinite (  
) shear rates, and with no yield stress. The parameter is a constant with units of time, where 

1/  is the critical shear rate at which viscosity begins to decrease. The power-law slope is (n-1) 
and the parameter a represents the width of the transition region between 0 and the power-law 
region. If 0 and are not known independently from experiment, these quantities may be 
treated as additional adjustable parameters. 

CARREAU MODEL: A mathematical expression describing the shear thinning behavior 
of polymers. It is more realistic than the power-law model because it fits the data very 
well at both high and low shear rates. 

 

where: η0, λ, n are curve fitting parameters and is the shear rate. Due to the 
mathematical complexities it is not possible to obtain analytical solutions with this 
model, but it is excellent for numerical simulations of flow processes.  

Casson 

 

A two parameter model for describing flow behavior in viscoplastic fluids exhibiting a yield 
response. The parameter y is the yield stress and pl is the differential high shear ( plastic) 
viscosity. This equation is of the same form as the Bingham relation, such that the exponent is ½ 
for a Casson plastic and 1 for a Bingham plastic. 

Cross 

 

Similar in form to the Carreau-Yasuda relation, this model describes pseudoplastic flow with 
asymptotic viscosities at zero (  0) and infinite ( ) shear rates, and no yield stress. The 
parameter is a constant with units of time, and m is a dimensionless constant with a typical 
range from 2/3 to 1. 
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Ellis 

 

A two parameter model, written in terms of shear stress, used to represent a pseudoplastic 
material exhibiting a power-law relationship between shear stress and shear rate, with a low 
shear rate asymptotic viscosity. The parameter 2 can be roughly identified as the shear stress 
value at which has fallen to half its final asymptotic value. 

Herschel-Bulkley 

 

A three parameter model used to describe viscoplastic materials exhibiting a yield response with 
a power-law relationship between shear stress and shear rate above the yield stress, y. A plot of 
log (  - y) versus log gives a slope n that differs from unity. The Herschel-Bulkley relation 
reduces to the equation for a Bingham plastic when n=1. 

Krieger-Dougherty 

 

A model for describing the effect of particle self-crowding on suspension viscosity, where is 
the particle volume fraction, m is a parameter representing the maximum packing fraction and [
] is the intrinsic viscosity. For ideal spherical particles [ ]=2.5 (i.e. the Einstein coefficient). Non-
spherical or highly charged particles will exhibit values for [ ] exceeding 2.5. The value of [ ] 
is also affected by the particle size distribution. The parameter m is a function of particle shape, 
particle size distribution and shear rate. Both [ ] and m may be treated as adjustable model 
parameters. 

The aggregate volume fraction (representing the effective volume occupied by particle 
aggregates, including entrapped fluid) can be determined using this equation if m is fixed at a 
reasonable value (e.g. 0.64 for random close packing or 0.74 for hexagonal close packing) and  
[ ] is set to 2.5. In this case, is the adjustable parameter and is equivalent to the aggregate 
volume fraction. 
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Meter 

 

Expressed in terms of shear stress, used to represent a pseudoplastic material exhibiting a 
power-law relationship between shear stress and shear rate, with both high (  ) and low ( 0) 
shear rate asymptotic viscosity limits. The parameter 2 can be roughly identified as the shear 
stress value at which has fallen to half its final asymptotic value. The Meter and Carreau-
Yasuda models give equivalent representations in terms of shear stress and shear rate, 
respectively. If 0 and are not known independently from experiment, these quantities may be 
treated as additional adjustable parameters. 

Powell-Eyring 

 

Derived from the theory of rate processes, this relation is relevant primarily to molecular fluids, 
but can be used in some cases to describe the viscous behavior of polymer solutions and 
viscoelastic suspensions over a wide range of shear rates. Here, is the infinite shear viscosity 

0 is the zero shear viscosity and the fitting parameter represents a characteristic time of the 
measured system. If 0 and are not known independently from experiment, these quantities 
may be treated as additional adjustable parameters. 

Power-law [Ostwald-de Waele] 

 
A two parameter model for describing pseudoplastic or shear-thickening behavior in materials 
that show a negligible yield response and a varying differential viscosity. A log-log plot of 

versus gives a slope n (the power-law exponent), where n<1 indicates pseudoplastic behavior 
and n>1 indicates shear-thickening behavior. 
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Computer Laboratory 
Exercises: 

1. Open the 
Documentation for the 
Non-Newtonian Fluids 
Module.  You must 
allow blocked content 
to see the 
documentation. 

2. Then select New from 
the Model Navigator 
window 

3. Select Axial Symmetry 
((2D), Non-Newtonian 
Flow Steady-state 
analysis 

4. Using the Graphical 
User Interface construct 
and complete this 
module.  Conduct a 
parametric study of pressure to reproduce Figure 4-17. 

 
2. Complete Cutlip & Shacham problem 5.4 a, 5.4 d and then see hints for 5.4c and complete this 
simulation.  Compare the COMSOL solutions with those generated by POLYMATH. 

Press the 
documentation 
button

Select Axial Symmetry ((2D), 
Non-Newtonian Flow Steady-
state analysis 

Select New,  
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Hints for 5.4c for power law fluid with n>1 (n=2) 
From COMSOL:  The problem with power law models with an exponent 
>1 is that the viscosity is zero at zero shear rate. In the 
center of the channel where vr=0, the shear rate is zero. This 
means that without artificial stabilization, there is no hope 
for convergence. 
 
After applying anisotropic diffusion, pressure stabilization and 
also splitting the domain into two subdomain's (this provides 
access to the mesh parameters on the center line) and meshing a 
bit more agressive toward the center of the channel we obtained 
a maximum of 0.641 compared to the theoretical value of 0.644. 
 
Create 2 domains and mesh as shown.  Then select the refine mesh button once 
 
Now create subdomain and boundary conditions appropriate to this problem.   
Finally add the following Artificial Diffusion conditions recommended by COMSOL for 
this problem: 
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You should have 2 subdomains that you specify the Artificial Diffusion in both: 

 

  
The boundary 4 is the center line between the 2 subdomains. 
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Make sure you are using the stationary non-linear solver in the Solver Parameters dialog 
box. 
 
 
Submit at the end of the period (or unless otherwise instructed): 
1. Figure 4-17: Parametric study of the process, sweeping the inlet pressure from 10 kPa to 

210 kPa, while investigating a Cross-sectional viscosity plot. The greater the inlet 
pressure (and pressure differential) the less the viscosity and more varied its distribution 
through the cross-section.  

2. Answer all questions for C&S 5.4 a, c and d and submit appropriate plots.   
3. Compare your COMSOL simulation results with those obtained in POLYMATH for C&S 5.4 

for each of the 3 simulations. 


