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6. Expressions for Describing Steady Shear Non-Newtonian
Flow

The expressions shown here are used to characterize the non-Newtonian behavior of fluids under
equilibrium, steady shear flow conditions. Many phenomenological and empirical models have
been reported in the literature. Only those having a direct and significant implication for
suspensions, gels and pastes have been included here. A brief description of each relationship is
given with examples of the types of materials to which they typically are applied. In defining the
number of parameters associated with a particular model, the term “parameter" in this case refers
to adjustable (arbitrary) constants, and therefore excludes measured quantities. Some of these
equations have alternative representations other than the one shown. More detailed descriptions
and alternative expressions can be found in the sources listed in the bibliography.

Bingham
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Where y is the shear rate (e.g. dv/dx). The Bingham relation is a two parameter model used

for describing viscoplastic fluids exhibiting a yield response. The ideal Bingham material is an
elastic solid at low shear stress values and a Newtonian fluid above a critical value called the
Bingham yield stress, cs. The plastic viscosity region exhibits a linear relationship between shear
stress and shear rate, with a constant differential viscosity equal to the plastic viscosity, *p.

Carreau-Yasuda (This is used in Comsol)
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A model that describes pseudoplastic flow with asymptotic viscosities at zero (7,) and infinite (7
o) shear rates, and with no yield stress. The parameter xis a constant with units of time, where
1/x is the critical shear rate at which viscosity begins to decrease. The power-law slope is (n-1)
and the parameter a represents the width of the transition region between 1, and the power-law
region. If 7, and Tiecare not known independently from experiment, these quantities may be
treated as additional adjustable parameters.

CARREAU MODEL: A mathematical expression describing the shear thinning behavior
of polymers. It is more realistic than the power-law model because it fits the data very
well at both high and low shear rates.
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where: no, A, n are curve fitting parameters and ¥ is the shear rate. Due to the
mathematical complexities it is not possible to obtain analytical solutions with this
model, but it is excellent for numerical simulations of flow processes.

Casson
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A two parameter model for describing flow behavior in viscoplastic fluids exhibiting a yield
response. The parameter oy is the yield stress and 1, is the differential high shear ( plastic)
viscosity. This equation is of the same form as the Bingham relation, such that the exponent is %2
for a Casson plastic and 1 for a Bingham plastic.
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Similar in form to the Carreau-Yasuda relation, this model describes pseudoplastic flow with
asymptotic viscosities at zero (M,) and infinite (T=c) shear rates, and no yield stress. The
parameter xis a constant with units of time, and m is a dimensionless constant with a typical
range from 2/3 to 1.
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A two parameter model, written in terms of shear stress, used to represent a pseudoplastic
material exhibiting a power-law relationship between shear stress and shear rate, with a low
shear rate asymptotic viscosity. The parameter =, can be roughly identified as the shear stress
value at which Thas fallen to half its final asymptotic value.
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Herschel-Bulkley
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A three parameter model used to describe viscoplastic materials exhibiting a yield response with
a power-law relationship between shear stress and shear rate above the yield stress, g,. A plot of

log (= - o,) versus log * gives a slope n that differs from unity. The Herschel-Bulkley relation
reduces to the equation for a Bingham plastic when n=1.

Krieger-Dougherty
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A model for describing the effect of particle self-crowding on suspension viscosity, where is
the particle volume fraction, &, is a parameter representing the maximum packing fraction and [
] is the intrinsic viscosity. For ideal spherical particles [1]=2.5 (i.e. the Einstein coefficient). Non-
spherical or highly charged particles will exhibit values for [ ] exceeding 2.5. The value of [ 7]
is also affected by the particle size distribution. The parameter &, is a function of particle shape,
particle size distribution and shear rate. Both [1] and &, may be treated as adjustable model
parameters.

The aggregate volume fraction (representing the effective volume occupied by particle
aggregates, including entrapped fluid) can be determined using this equation if &,, is fixed at a
reasonable value (e.g. 0.64 for random close packing or 0.74 for hexagonal close packing) and
[T]is set to 2.5. In this case, &is the adjustable parameter and is equivalent to the aggregate
volume fraction.



Meter
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Expressed in terms of shear stress, used to represent a pseudoplastic material exhibiting a
power-law relationship between shear stress and shear rate, with both high (Mac) and low (™)
shear rate asymptotic viscosity limits. The parameter «, can be roughly identified as the shear
stress value at which Thas fallen to half its final asymptotic value. The Meter and Carreau-
Yasuda models give equivalent representations in terms of shear stress and shear rate,
respectively. If T, and Tiacare not known independently from experiment, these quantities may be
treated as additional adjustable parameters.

Powell-Eyring
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Derived from the theory of rate processes, this relation is relevant primarily to molecular fluids,
but can be used in some cases to describe the viscous behavior of polymer solutions and
viscoelastic suspensions over a wide range of shear rates. Here, Txis the infinite shear viscosity
T, is the zero shear viscosity and the fitting parameter trepresents a characteristic time of the
measured system. If T, and Tacare not known independently from experiment, these quantities
may be treated as additional adjustable parameters.

Power-law [Ostwald-de Waele]
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A two parameter model for describing pseudoplastic or shear-thickening behavior in materials
that show a negligible yield response and a varying differential viscosity. A log-log plot of &

versus » gives a slope n (the power-law exponent), where n<1 indicates pseudoplastic behavior
and n>1 indicates shear-thickening behavior.
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parametric study of pressure to reproduce Figure 4-17.
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Hints for 5.4c for power law fluid with n>1 (n=2)

From COMSOL: The problem with power law models with an exponent
>1 is that the viscosity is zero at zero shear rate. In the
center of the channel where vr=0, the shear rate is zero. This
means that without artificial stabilization, there is no hope
for convergence.

After applying anisotropic diffusion, pressure stabilization and
also splitting the domain into two subdomain®s (this provides
access to the mesh parameters on the center line) and meshing a
bit more agressive toward the center of the channel we obtained
a maximum of 0.641 compared to the theoretical value of 0.644.

Create 2 domains and mesh as shown. Then select the refine mesh button once
Now create subdomain and boundary conditions appropriate to this problem.

Finally add the following Artificial Diffusion conditions recommended by COMSOL for
this problem:
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You should have 2 subdomains that you specify the Artificial Diffusion in both:

Subdomain Settings - Non-Newtonian Flow [(nn)

Equations
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The boundary 4 is the center line between the 2 subdomains.



Make sure you are using the stationary non-linear solver in the Solver Parameters dialog
box.

Submit at the end of the period (or unless otherwise instructed):

1. Figure 4-17: Parametric study of the process, sweeping the inlet pressure from 10 kPa to
210 kPa, while investigating a Cross-sectional viscosity plot. The greater the inlet
pressure (and pressure differential) the less the viscosity and more varied its distribution
through the cross-section.

2. Answer all questions for C&S 5.4 a, ¢ and d and submit appropriate plots.

3. Compare your COMSOL simulation results with those obtained in POLYMATH for C&S 5.4
for each of the 3 simulations.



