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SOLUTION I1

Another method makes use of the result obtained previously in Eq. 10.2-13. Although Ty, is
not known in the present problem, we can nonetheless use the result. From Egs. 10.1-2 and
10.2-16 we can get the temperature difference

7RLS, SR ,
To— Ty = WeaRL - 2h (10.2-24)

Substraction of Eq. 10.2-24 from Eq. 10.2-13 enables us to eliminate the unknown T, and gives
Eg. 10.2-23.

§10.3 HEAT CONDUCTION WITH A NUCLEAR HEAT SOURCE
- Tronspnt
I D menet

Eﬂd Zc)i.

We consider a spherical nuclear fuel element as shown in Fig. 10.3-1. It consists of a
sphere of fissionable material with radius R, surrounded by a spherical shell of alu-

minum “cladding” with outer radius R®. Inside the fuel element, fission fragments are
- produced that have very high kinetic energies. Collisions between these fragments and

the atoms of the fissionable material provide the major source of thermal energy in the
reactor. Such a volume source of thermal energy resulting from nuclear fission we call S,
(cal/cm® - s). This source will not be uniform throughout the sphere of fissionable mater-
ial; it will be the smallest at the center of the sphere. For the purpose of this problem, we
assume that the source can be approximated by a simple parabolic function

2
S, = s,,o[1 + b(ﬁ)] (10.3-1)

Here S, is the volume rate of heat production at the center of the sphere, and b is a di-
mensionless positive constant.

We select as the system a spherical shell of thickness Ar within the sphere of fission-
able material. Since the system is not in motion, the energy balance will consist only of
heat conduction terms and a source term. The various contributions to the energy bal-
ance are: :

Rate of heat in
by conduction 4P, - 4m® = @ar’g®)|, (10.3-2)
atr

Coolant
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fissionable
material

Fig. 10.3-1. A spherical nuclear fuel assembly, showing
RO — the temperature distribution within the system.
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Rate of heat out

by conduction D) epr - darlr + AP? = @) s (10.3-3)
atr + Ar

Rate of thermal

energy produced S, * 4ar* Ar (10.3-4)

by nuclear fission

Substitution of these terms into the energy balance of Eq. 10.1-1 gives, after dividing by
47 Ar and taking the limit as Ar — 0

11 (7'2‘] )| r+Ar (7’2‘]@) Ir

Ar—0 Ar

=57 (10.3-5)
Taking the limit and introducing the expression in Eq. 10.3-1 leads to

2
(rzq“”)) = n0[1 + b(R(P)> ]rz (10.3-6)

The differential equation for the heat flux g{9 in the cladding is of the sarhe form as Eq.
10.3-6, except that there is no s1gmf1cant source term:

(rzq(c’) = (10.3-7)
Integration of these two equations gives
E = r b 7 ' )
qr n0<3 t < RE2 5) = rz , (10.3-8)
c©
0=+ (103-9)

in which C’ and C{© are integration constants. These are evaluated by means of the
boundary conditions:

B.C. 1: . atr=0, q‘F ) is not infinite (10.3-10)
B.C.2: ~ atr=R®, =g\ (10.3-11)

Evaluation of the constants then leads to

49 = o<§ + R%z’?) (10.3-12)
(F)3
4 = no<3 g) K = (10.3-13)

These are the heat flux distributions in the fissionable sphere and in the spherical-shell
cladding.
Into these distributions we now substitute Fourier’s law of heat conduction (Eq.

B.2-7):

__14P) dT( T b 7’3
ke - =Sd3* a5 (103-14)

_0dT© _ o (1, b\RP )
KOE—=Sd5+5) = (10.3-15)
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These equations may be integrated for constant k¥ and k¥© to give

Sw(P, b
B D(r, b 1 ) .
T = e (6 + R2 20 + (10.3-16)
Sw (1, b\RD® ‘
0 = 4 om0l  O)R"T (C) -
TO = o <3 + 5) —+ G} (10.3-17)
The integration constants can be determined from the boundary conditions
B.C.3: atr = RP, TP = T© (10.3-18)
B.C. 4 atr = RO, TO =T, (10.3-19)

where T is the known temperature at the outside of the cladding. The final expressions
for the temperature profiles are

SnOR(F)Z 2 3 4
=S -Gl ] - G )

S RP2( 3 R®
+ 3k<C) (1 + g bil1- F : (103—20)
S RE? 3. \(R® R®
©) . “nb =} KR R77 .]
™= 3% © <1 + 5 b)( r RO ‘ (10.3-21) ]

To find the maximum temperature in the sphere of fissionable material, all we have to
do is set r equal to zero in Eq. 10.3-20. This is a quantity one might well want to know
when making estimates of thermal deterioration.

This problem has illustrated two points: (i) how to handle a position-dependent
source term, and (ii) the application of the continuity of temperature and normal heat
flux at the boundary between two solid materials.

§10.4 HEAT CONDUCTION WITH A VISCOUS HEAT SOURCE

Next we consider the flow of an incompressible Newtonian fluid between two coaxial
cylinders as shown in Fig. 10.4-1. The surfaces of the inner and outer cylinders are main-
tained at T = Ty and T = T, respectively. We can expect that T will be a function of r
alone.

Outer cylinder moves with
angular velocity Q

Inner cylinder
is stationary

Fig. 10.4-1. Flow between cylinders with viscous
heat generation. That part of the system enclosed
within the dotted lines is shown in modified form
in Fig. 10.4-2. ’
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