Office: 315 Rowan Hall
Phone: (856) 256-5313
Education:
Honors and Awards:
Principles of Chemical Processes II
Process Fluid Transport
Chemical Reaction Engineering
Transport Phenomena
Freshman Engineering Clinic 1
Fluid Mechanics
Process Fluid Transport
Precious Metal Separations - Johnson Matthey – Adsorption, Ion-Exchange, precipitation, electrodialysis, ultrafiltration, electroplating, liquid-liquid extraction, waste heat recover, electrochemical processing of scrubber effluent
Catalyst Recovery – Novartis
Green Engineering – Johnson Matthey, Bristol-Myers Squibb, Valero
Nutraceutical Recovery & Novel Baking Technologies – Campbells Soup Co.
Wastewater Minimization – General Mills
Micromixing & Catalytic Reactors – NSF
Analysis of Control Valves – Durabla FT
Phase Transfer Catalysis – Value Recovery
Diesel Emission Reduction Techologies – NJDOT
Omega Engineering - Irreversible Temperature Sensors
Siemens Water Technologies: Flowmeter Software
Research and Consulting
Capabilities:
Reaction Engineering, Green Engineering, Diesel Emissions, Electrochemical Engineering, Process Engineering, Combustion Kinetics, and Finite Element Modeling.
Reaction Engineering: Microreactors, Fluidized bed systems, Combustion systems, Catalytic reactors, and Electrochemical reactors.
Novel Separations: Crystallization/Precipitation, Adsorption, Ion Exchange, Electrodialysis, Nano and Ultrafiltration,
Combustion Kinetics: prediction of reaction kinetics and pathways for nitrogen containing compounds
RESEARCH PROJECTS
Reduction of Diesel Emissions from Heavy Duty Diesel Vehicles This project is an experimental study aimed at evaluating emission reduction strategies for diesel powered school buses and heavy duty diesel vehicles (HDDV’s). A variety of fuel types, mixtures, additives and exhaust treatment systems will be tested to determine the optimum configuration for various school bus duty cycles (e.g. rural, urban, etc.). A team of Rowan University faculty with substantial research expertise in combustion, chemically reacting systems, membrane separations and air pollution will monitor the testing, analyze the data and report the results. In addition to the school bus testing, a parallel study will be conducted to review and compare idle reduction technologies for HDDV’s.
Precipitation/Crystallization – Using laser diagnostic equipment to examine chord length distributions in
stirred-tanks.
Membrane Separations – Application of ultrafiltration and
microfiltration to industrial fluids.
Supercritical Fluid Extraction – Examination of new applications of supercritical fluids to recovery of high value added materials
Selective Adsorption – Solid phase extraction is being applied to industrial fluids to recovery high value added materials. New and innovative solid phase and water soluble polymers are being employed.
Chemical Reaction Kinetics in Combustion.
In this research area, we are examining the chemistry of gaseous pollutant
formation and destruction related to combustion processes. Fuel nitrogen
compounds are of particular concern because they are the principal source of Nox in the exhaust gases from combustion devices. This
research is focused on obtaining reaction pathways for combustion of nitrogen
contained in fuel. Both theoretical and experimental work is being conducted.
For more detailed information and more pictures of the flow reactor facility click here
Fluidized Bed Incineration.
Research is being conducted to examine the use of fluidized bed technology to
incinerate liquid or solid wastes. In addition, ongoing research examines volatile
combustion in fluidized beds. The goal of this research is to incinerate waste
and burn coal in an environmentally acceptable manner. This includes maximizing
the destruction of the waste or fuel and recovering the heat from this process.
Currently the focus of the project is on the combustion reactions within the
fluidized bed. We have identified that sand, a typical bed material, can
inhibit the combustion reaction at low temperatures by a free radical
termination reaction. The effects of surface area, surface type and
concentration of chemical species on the inhibition of combustion are currently
being investigated.
For more detailed information and more pictures of the fluidized bed facility click here
Multiphase Flow Dispersion
systems are used to increase the interfacial area and improve the rates of mass
and/or heat transfer between one or more phases. The fundamental fluid
mechanics of dispersed phase systems are being investigated to determine the
rate of breakage and coalescence/agglomeration of bubbles drops and solid
particles.
Christian H Hornung, Bart Hallmark, Robert P Hesketh and Malcolm R Mackley, “The fluid flow and heat transfer performance of thermoplastic microcapillary films,” J. Micromech. Microeng. 16 pp434–447 (2006).
J. Ginn, A. Toback, J. Hearne, A. J. Marchese, R. P. Hesketh, and Cliff Amundsen, “Life Cycle Analysis of Heavy Duty Diesel Vehicle Idling Alternatives,” SAE 2004 Transactions, Vol.113-4, Journal of Fuels and Lubricants, pages 426-434.
Toback, A., Hearne, J., Kuritz, B., Marchese, A.J., Hesketh, R. P. The Effect of Ambient Temperature and Humidity on Idling Emissions from Diesel School Buses. SAE 2004 Transactions, Vol.113-4, Journal of Fuels and Lubricants, pages 530-538.
Featured Educator
in Chemical Engineering Education, 37(1) 8-13, Winter
2003
Stephanie Farrell, Robert P. Hesketh, Mariano J. Savelski, Kathryn Hollar, Kevin D. Dahm, and C. Stewart Slater, “Membrane Projects with an Industrial Focus in the Curriculum,” Chemical Engineering Education 37 (1) 2003.
Farrell, S., R.P. Hesketh, J.A. Newell and C.S. Slater- “Introducing Freshmen to Reverse Process Engineering And Design Through the Investigation of the Brewing Process,” International Journal of Engineering Education 17 (6) 2001.
Newell, J. A., S. H. Farrell, R. P. Hesketh, and C. Stewart Slater, Introducing Emerging Technologies into the Curriculum through a Multidisciplinary Research Experience,” Chemical Engineering Education 35(4) 296 Fall 2001.
R. P. Hesketh, Dianne Dorland, C.S. Slater, Stephanie Farrell, Mariano Savelski, Kathryn Hollar, Kevin Dahm, and James Newell “Applying Green Engineering Throughout the Curriculum,” Proc. Conf. Amer. Soc. Eng. Educ., Session 3651 (2001)
Hesketh,
R.P., Abraham, M.A. "Pollution Prevention Education in Chemical Reaction Engineering",
in Reaction Engineering in Pollution
Prevention, Martin A. Abraham and Robert P. Hesketh, eds., Elsevier
Science, (2000).
J.L.
Schmalzel, A. J. Marchese, R. P. Hesketh, “What’s
Brewing in the Clinic?” Engineering
Educator, 2 (1) 6 Winter 1998.
Kantak, M. V., K
S. de Manrique, R. H. Aglave, R. P. Hesketh, "Methylamine
Oxidation in Flow Reactors: Mechanism
and Modeling." Combustion and Flame, 108(3) 235 (1997).
Hesketh, R.P., "Wake-Up to
Engineering," Chem Eng Educ, 30 (3)
210 1996.
Kantak, M. V., R.
P. Hesketh, and B. G. Kelkar, "Effect of Gas and Liquid
Properties on Gas-Phase Dispersion in Bubble Columns, The Chemical Engineering Journal, 59
91-100 (1995).
Sublette,
K. L., R. P. Hesketh, and S. Hasan, "Microbial Oxidation of
Hydrogen Sulfide in a Pilot-Scale Bubble Column," Biotech. Progress, 10
611-14 (1994).
Search: Page Neighborhood Sun00 Archive |
Glimpse and WebGlimpse, Copyright © 1996, University of Arizona |