

PRACTICAL METHODOLOGY FOR MODELING WIRELESS ROUTING

PROTOCOLS USING OPNET MODELER

Vasil Hnatyshin, Hristo Asenov, and John Robinson

Department of Computer Science

Rowan University

201 Mullica Hill Rd.

Glassboro, NJ 08062

USA

hnatyshin@rowan.edu, hristo.s.asenov@gmail.com, robinsonj@rowan.edu

ABSTRACT

OPNET Modeler is one of the most popular commercial

products for simulating and modeling of computer

networks and related technologies. While creating a new

simulation study using standard models is a fairly

straight-forward task, developing new models or

modifying existing ones could become a challenging and

often frustrating undertaking. This paper provides an

overview of OPNET Modeler’s software architecture for

modeling wireless networks and MANET routing

protocols. In particular, this paper concentrates on the

modeling and simulation portion of the research project

that studies improvement of Ad-Hoc On-Demand

Distance Vector (AODV) routing protocol through the

use of GPS coordinates. Using AODV modifications as

an example, this paper introduces practical methodology

for changing existing simulation models of MANET

routing protocols and seamlessly integrating them within

OPNET Modeler. In addition this paper introduces

GeoAODV protocol which reduces the route discovery

overhead through the use of GPS coordinates.

KEYWORDS

Modeling, simulation, MANET routing, AODV, OPNET

Modeler

1. Introduction

Using modeling and simulation methodologies in the

performance evaluation of computer and communication

systems is one of the most active fields of research. While

measurement- and formula-based approaches are still

frequently used to study system performance, they have

numerous disadvantages which often force researchers to

choose the simulation approach. The measurement of

system performance using hardware prototypes is a very

accurate approach but it is also inflexible, expensive,

time-consuming, and not appropriate for large systems.

On the other hand, a formula-based approach, which is

often based on simplified models, may provide insight

into system operation, but it is not very accurate and is

difficult to use for evaluation of the complex systems. A

simulation-based approach allows for system modeling

with some defined level of detail. With a simulation-

based approach one can easily integrate mathematical and

empirical models, using a formula-based approach for the

portions of simulation where the accuracy is not of the

highest importance, and incorporating measured device

characteristics to provide precision to vital portions of the

simulation model [1].

OPNET Modeler [2] is the leading commercial software

for simulation and modeling of computer networks and

related technologies. OPNET software contains a wide

range of simulation models of various computer devices,

communication mediums, and network protocols and

technologies. OPNET Modeler relies on combination of

the C programming language and state transition

diagrams to implement simulation models and supporting

technologies. While creating a new simulation study using

standard models is a fairly straight-forward task,

developing new models or modifying existing ones could

become a challenging and often frustrating undertaking.

OPNET products model performance of simulated

systems with the high degree of accuracy, which results in

huge amounts of code. Despite extensive documentation

and good naming conventions, it is often difficult to

identify the process models, external files, and portions of

code which are responsible for simulating specific aspects

of the system’s performance. That is why modifying and

extending OPNET’s simulation models can become a

very challenging and time consuming task.

Routing and route discovery in mobile ad hoc networks

(MANETs) are among the most actively researched issues

in the area of wireless communication. Our research

efforts concentrate on improving efficiency of the route

discovery in MANETs through the use of the Global

Positioning System (GPS). We developed, implemented,

and tested a new protocol called GeoAODV which uses

GPS coordinates to improve the route discovery process

of AODV protocol by reducing the amount of control

packets traveling throughout the network. Other

approaches that study influence of GPS on MANET

routing have been examined in [3 - 6].

This paper, however, focuses on the portion of our

research project that deals with modeling of the routing

protocols using OPNET Modeler software package. Using

mailto:hnatyshin@rowan.edu
mailto:hristo.s.asenov@gmail.com
mailto:robinsonj@rowan.edu

GeoAODV as an example, this paper describes in detail

the key steps for successful integration of desired changes

with existing MANET routing protocol implementations

in OPNET Modeler. Specifically, the main contributions

of this paper are detailed description of OPNET modeling

framework for MANET routing protocols, a practical

methodology for introducing changes to existing OPNET

Modeler protocol implementations and creating new

protocol models, as well as account of the author’s

endeavors to develop and implement GeoAODV MANET

routing protocol and integrate it within OPNET network

simulation software. This work could be of great value to

other researchers who use OPNET Modeler in their

studies of wireless mobile ad hoc networks.

The rest of the paper is organized as follows. Section 2

provides a brief overview of MANET route discovery

process and introduces GeoAODV protocol. The OPNET

Modeler architecture, an overview of OPNET’s

framework for modeling MANET routing protocols, and a

detailed description of AODV simulation model are

introduced in Section 3. Implementation details of

GeoAODV protocol are presented in Section 4, followed

by a generalized methodology for development and

deployment of MANET routing protocols in OPNET

Modeler in Section 5. Simulation study of GeoAODV

protocol and a summary of collected results are presented

in Section 6. The paper concludes in Section 7.

2. MANET routing and GeoAODV

Route discovery in MANET often relies on some form of

network flooding where each node in the network

forwards a route request message to all of its neighbours.

This process is inefficient because it results in control

messages visiting the network nodes even if the path to

destination is located in a different portion of the network.

To improve network utilization of the flooding-based

route discovery protocols, it has been proposed to employ

node’s geographical position and limit route-discovery

process only to the area that is likely to contain the path to

destination.

GeoAODV is based on Ad-Hoc On-Demand Distance

Vector (AODV) routing protocol [7-9] and it tries to take

advantage of GPS coordinates to reduce the overall

number of control messages traversing the network during

route discovery. Unlike AODV, GeoAODV does not

flood the whole network with control messages to

discover the route to destination. Instead, GeoAODV uses

the last known GPS coordinates of destination node to

limit the route discovery flooding area to a region that is

likely to contain a path to destination.

When the path to destination is unknown, the originating

node (i.e. source) initiates the route discovery phase by

broadcasting a route request (RREQ) message. In

GeoAODV, a node forwards RREQ messages only if it

belongs to the forwarding area, a region which is likely to

contain the route to destination. Specifically, if an

intermediate node that receives an RREQ message

belongs to the forwarding area then it forwards the RREQ

message further, otherwise the message is discarded, thus

limiting the scope of the route discovery process.

GeoAODV defines the forwarding area as an area formed

by two lines originating from the source node and

extending towards the destination node at a certain angle.

We refer to the angle between these lines as flooding

angle. Notice that the line formed by source and

destination nodes divides the flooding angle evenly. A

flooding angle is computed based on the freshness of the

last known location of destination node. If the destination

coordinates are unknown then the flooding angle is set to

a maximum value (i.e. 360 degrees), indicating that the

search region is the whole network. In such a situation,

GeoAODV operates the same way as AODV.

GeoAODV starts the route discovery process by sending

RREQ message with the initial flooding angle value. If

the route discovery process does not succeed then the

originating node increases the value of the flooding angle

and repeats the route discovery process. Eventually, the

route to destination is found or the value of the flooding

angle reaches its maximum of 360 degrees in which case

GeoAODV operates the same way as AODV. GeoAODV

gives up the search if the route to destination is not found

with the flooding angle value of 360 degrees.

Figure 1. Example of GeoAODV operation

Figure 1 illustrates an example of GeoAODV route

discovery process which starts when Source sends a

RREQ message in an attempt to discover a path to

Destination. A RREQ message carries the value of the

flooding angle A1 which indicates that only node N1 will

re-broadcast the initial route request. If the first route

discovery attempt fails, then Source restarts the process

again with a new larger value of flooding angle (i.e. A2).

Since node N3 is outside of the forwarding area defined

by flooding angle A2, only nodes N1 and N2 will re-

broadcast RREQ message.

3. OPNET’s modeling of MANET routing

3.1. Overview of OPNET Modeler architecture

Creating a simulation model of a communicating system

could become a time-consuming and often error-prone

task. OPNET Modeler provides a flexible and highly

Source

N1

N2

Destination

N3

A1

A2

cohesive architecture which allows for reusability and

extensibility of existing models. OPNET Modeler is

structured in a hierarchical fashion and consists of three

distinct layers: the network, the node, and the process

domain levels.

Figure 2. Node model of MANET station

The network topology of a modeled system together with

the attribute values are specified at the network domain

level which is the top-level view of the simulation study.

The attribute values (i.e. protocol parameters, device

configuration values, simulation statistics, etc.) that are

specified at this level propagate down to the lower

hierarchical levels (i.e. node and process). Various

network devices, such as routers, servers, switches, etc are

modeled at the node domain level. A network device

model usually consists of one or more interconnected

modules, each of which is defined either via one or more

process models or a set of configuration values and

associated external files. Figure 2 illustrates a node level

model of a MANET station, where individual modules are

depicted as gray squares and the arrows represent the flow

of information between them.

A process domain level models operation of a particular

networking process or technology, such as a routing

protocol, an upper-layer application, load-balancing

discipline, etc. Each process model consists of the finite

state machine and a set of Proto-C instructions that

specify conditions for transitioning from one state into

another and a set of actions to be performed in each state.

The process models often rely on external files which

contain a set of supporting functions or data structures.

3.2. Modeling AODV in OPNET

The node model of MANET station contains two IP-

related modules: ip_encap which models packet

(de)encapsulation within the IP header and ip which

simulates various IP operations. The latter module uses

ip_dispatch as its root process model. One of the main

responsibilities of ip_dispatch process model is to

implement IP-level packet forwarding. During process

initialization ip_dispatch identifies the routing protocol(s)

employed at the interfaces of the current device and then

creates and invokes the corresponding routing processes.

Even though ip_dispatch is responsible for IP forwarding,

it does not handle MANET routing protocols directly. If

ip_dispatch discovers that an interface is configured to

run MANET protocol then it invokes manet_mgr process

model, which is responsible for identifying and then

invoking a specific MANET routing protocol such as:

AODV, DSR, GRP, or TORA
1
.

OPNET implements AODV protocol [7-9] via aodv_rte

process model and the following external files:

o aodv_packet_queue – contains functions for managing

hash table which buffers data packets.

o aodv_route_table – contains functions for managing

AODV routing table.

o aodv_support – contains various supporting functions

for updating collected statistic values and printing

debugging information.

o aodv_pkt_support – contains function for creating

AODV data and control packets and headers.

o aodv_request_table – contains functions for managing

AODV’s request table.

o manet_support – contains functions that provide an

interface between MANET protocols and neighboring

layers.

As shown in Figure 3, the aodv_rte process mode consists

of two states: init and wait. The init state is responsible

for initialization of various data structures including state

variables, local statistics, buffers, protocol parameters,

and others. Once initialization is complete, the process

model moves into wait state which models operation of

AODV protocol. The aodv_rte process idles in the wait

state until packet arrival or expiry of a timer occurs.

Based on the event type the process performs the

necessary actions by calling one or more of its functions.

Figure 3. OPNET’s aodv_rte process model

Function aodv_rte_pkt_arrival_handle
2
 is called upon a

packet arrival into AODV process model. Based on the

packet type, aodv_rte initiates the packet processing by

1
 Optimized Link State Routing (OLSR) protocol is handled via

manet_rte_mgr process model.
2
 For readability, we omit aodv_rte prefix from function names defined

in aodv_rte process model. We mark modified names by using italics.

calling their corresponding functions. Upon data packet

arrival aodv_rte calls app_pkt_arrival_handle function

which examines the packet’s header and determines if the

route to the packet’s destination is known. If there is no

route to destination, then the process model initiates route

discovery by generating a new RREQ message. Function

aodv_pkt_support_rreq_option_create, defined in

aodv_pkt_support file, is responsible for creating RREQ

packet header while function route_request_send in

aodv_rte forwards created RREQ to IP layer.

Upon control packet arrival aodv_rte calls the function

that handles the corresponding control packet. For

example, function rreq_pkt_arrival_handle processes

arrival of RREQ packets, while rrep_pkt_arrival_handle

function deals with route reply (RREP) messages. Other

key functions of aodv_rte process model include

route_request_send and route_reply_send which are

responsible for generating and forwarding RREQ and

RREP messages.

OPNET provides set of standard functions which allow

the processing of incoming packets. Specifically,

aodv_rte extracts the options field from the incoming IP

packet by calling function op_pk_nfd_access. This

function call returns a pointer to AodvT_Packet_Option

structure which consists of two fields: the packet type and

a void pointer to the structure that contains AODV packet

header. RREQ and RREP message headers are modeled

via AodvT_Rreq and AodvT_Rrep C structures which are

defined in an external header file aodv_pkt_support.ex.h.

External header file aodv.ex.h contains various supporting

data types for maintaining such information as routing

table, request table, connectivity table, AODV statistics,

and others. Specifically, AODV routing table is defined

via C structure called AodvT_Route_Table, while the

routing table entry is defined via AodvT_Route_Entry.

AODV routing table keeps track of valid routes to

destination nodes. OPNET Modeler implements AODV

routing table in a form of a hash table indexed by the

destination’s IP address. AODV routing table is populated

and updated using route request and route reply messages.

As expected, OPNET implements packet forwarding

within the IP module which relies on the common IP

routing table. The common IP routing table is updated by

the routing protocols used in the simulation study. Thus,

AODV and other routing protocols, in addition to

maintaining their own internal routing tables, also update

common IP routing table each time a new route is

discovered.

The request table is implemented via C structure called

AodvT_Request_Table, which keeps track of RREQ

messages generated from and forwarded by this node.

RREQs generated by this node (e.g. originating RREQs)

are stored in a separate hash table indexed by the

destination node’s IP address. The entries of this hash

table are defined in AodvT_Orig_Request_Entry C

structure which stores such information as request id,

insertion time, current TTL value, number of retries, etc.

Originating RREQs allow the node to keep track of

already initiated route discovery procedures. If a data

packet arrives and the path to destination is unknown then

the node consults the request table to determine if the

route discovery procedure for packet’s destination has

been initiated already. Additionally, originating RREQs

allow for implementation of AODV’s expanding ring

search technique [7-9].

Forwarded RREQs are defined as a separate hash table

with the AodvT_Request_Table structure. This hash table

is indexed by IP address of originating node and contains

such information as RREQ request id, and insertion time.

Forwarded RREQs helps the AODV process to identify

and discard duplicate RREQ messages.

Connectivity table keeps track of the neighboring nodes,

i.e. the nodes that are only one hop away from the current

node. Connectivity table is populated with the help of

AODV HELLO messages which are periodically

exchanged among neighboring nodes. Connectivity table

is implemented using AodvT_Conn_Info structure, which

is also a hash table. Connectivity table is indexed by the

IP address of a neighboring node and contains the last

time HELLO message from the neighbor has been

received.

4. GeoAODV implementation

Instead of creating a new process model which would

result in significant amount of duplicate code, we

implemented GeoAODV by extending aodv_rte process

model. Specifically, we introduced the following changes:

(1) Added new protocol configuration parameters

(2) Modified the AODV control packet headers

(3) Modified AODV control packet managing routines

(4) Implemented GeoAODV protocol functionality

OPNET defines configuration parameters of MANET

routing protocols as Model Attributes in manet_mgr

process model. However, parameter parsing and

processing is performed in the init state of the

corresponding process model (i.e. dsr_rte, aodv_rte, etc).

To implement GeoAODV protocol we added several

model attributes including protocol type, an attribute that

specifies version of AODV protocol configured on the

node (i.e. AODV, GeoAODV, etc), and several

GeoAODV configuration parameters (e.g. initial flooding

angle, etc). All of the added protocol configuration

parameters were specified as Model Attributes of

manet_mgr process model. These attributes were parsed

in the attributes_parse_buffers_create function of the

aodv_rte process model.

Since GeoAODV control packets carry additional data,

we modified AodvT_Rreq and AodvT_Rrep C structures,

which represent RREQ and RREP packet headers

respectively, to store such additional fields as flooding

angle and coordinates of originating and destination

nodes. To handle modified control packet headers we

added two functions that create GeoAODV RREQ and

RREP messages. These functions were inserted into

aodv_pkt_support.ex.c, an external C file that contains all

functions related to AODV packet managing. In addition,

we modified functions rreq_pkt_arrival_handle and

rrep_pkt_arrival_handle, in aodv_rte process model, to

properly parse new packet headers.

GeoAODV protocol has been implemented by adding the

following modifications:

(1) GeoAODV nodes maintain GPS coordinates of

other nodes in the network in their internal tables

(2) GeoAODV nodes update their internal tables with

location information carried in control messages

(3) Decision about re-broadcasting arriving RREQ

messages is made based on GeoAODV algorithms

GeoAODV maintains a separate hash table which stores

node locations and is indexed via the node’s IP address.

This table is called geo-table and is populated via RREQ

and RREP messages which carry node coordinates. Upon

RREQ arrival, in addition to regular AODV validation

procedures, an intermediate node calls GeoAODV

functions to determine if RREQ should be re-broadcast or

not. Specifically, GeoAODV uses source and destination

coordinates and the flooding angle carried in the RREQ

message to determine if it is located within the route

discovery search area. Only those RREQs that satisfy

both validation conditions are re-broadcast farther.

To provide clear separation between the original

implementation of AODV and introduced changes, all

algorithms for managing geo-table and limiting the route

discovery search area were placed into external files. Note

that all external files used by the process model must be

explicitly declared via Declare External Files... drop-

down option of the Process Model Editor.

Finally, we modified AODV’s route request table to store

the flooding angle value used in the last round of route

discovery process. Using this information we modified

the route discovery process in the originating node as

follows. If the latest round of route discovery fails to find

the route to destination then the value of the flooding

angle is increased, expanding the route discovery search

area, and the process is repeated again. This procedure

continues until the route to destination is found or the

route discovery process that uses a flooding angle value

of 360 degrees (i.e. regular broadcast) fails to find the

route to destination.

We validated correctness of our model by performing

several simple simulation studies (i.e. small size

networks) of GeoAODV protocol. In each study we

carefully traced execution of GeoAODV model and

verified correctness of intermediate and final results.

5. Generalized methodology

This section summarizes methodology for modifying

existing implementation of MANET routing protocols or

developing new models using OPNET Modeler network

simulation tool.

Generally, to extend an existing OPNET model or to

create a new one, the developer may need to perform the

following steps:

 add configuration parameters, if needed,

 implement desired modification by changing the

existing model or adding a new one,

 define and collect additional statistics as needed,

 declare all external files and child processes that

have been added, and

 verify correctness of implementation.

In OPNET Modeler, MANET routing protocols are

managed by manet_rte_mgr and manet_mgr. All

introduced configuration parameters must be added as

model attributes in one of the above process models.

These model attributes are user configurable at the node

and network domain levels. Any process can access

model attributes by using standard OPNET function

op_ima_obj_attr_get. Note that the developer needs to

declare state variables (i.e. variables that are global to the

whole process model) to store the values of model

attributes. Each process model that implements MANET

routing protocols (i.e. olsr_rte, aodv_rte, dsr_rte, grp_rte,

manet_tora) contains code for parsing model attributes

which could be used as an example.

Implementation of desired changes is problem specific

and is different in each situation. However, developing a

new MANET routing protocol requires creation of new

process model(s). Integration of such new model(s) with

the rest of MANET routing protocols requires the

following changes in manet_mgr:

 modifying manet_mgr_routing_protocol_determine

function to identify new routing protocol type

 modifying manet_mgr_routing_process_create

function to create and invoke new process model

 declaring new process models as child process

models of manet_mgr

Modification of existing routing protocols should require

no changes to manet_rte or manet_rte_mgr process

models besides declaration of additional model attributes.

It should be noted, that the process model which uses

added external files or process models must explicitly

declare them via Process Editor’s drop-down menu.

Without such declarations modified process model will

not compile.

Introduced modification often results in the need for

collecting additional simulation statistics. Generally,

adding new statistics is a four-step process. First, the

developer needs to declare new statistics via drop-down

menu in Process Editor. All declared statistics are

configurable (i.e. can be selected for collection) at the

network domain level. After that, the developer should

define state variables for the declared statistics. These

variables will accumulate simulation statistic values.

Next step is to register declared statistics, which is done

by calling op_stat_reg function. Most of the process

models combine all the statistic registration calls in a

single function (i.e. dsr_rte_stats_reg in dsr_rte process

model, aodv_rte_local_stats_reg in aodv_rte, etc).

Finally, the statistic values should be periodically updated

using op_stat_write function call, which stores the value

and the time when the value has been recorded.

Generally, simulation statistics are updated upon

occurrence of certain events, such as packet arrival,

packet departure, etc. The exact location where the call to

op_stat_write function is placed depends on the nature of

simulation statistics being collected.

When all desired changes have been implemented it is

prudent to verify correctness of new simulation model.

OPNET provides a powerful debugging tool which allows

line-by-line examination of the code, breaking at any

point of the simulation execution, examining in detail

current state and call hierarchy of all active process

models, tracing of packets passing through the network,

etc. Once the model appears to work correctly it is a good

idea to perform a small size simulation study and verify

the validity of obtained results.

6. Simulation study and results

This section provides a summary of a simulation study

that compares performance of route discovery processes

of AODV and GeoAODV routing protocols.

6.1. Simulation Set-Up

MANET network, examined in our simulation study,

consisted of 50 MANET nodes randomly placed within

the 1000 x 1000 meters area. Our simulation study was

divided into two scenario sets. In the first set of scenarios

MANET network was populated with stationary nodes

only. The second set of scenarios had all nodes moving

according to the random waypoint model. The average

node speed was uniformly distributed between 1 and 10

meters/second. The nodes did not pause between moves

and continued their movement until the end of simulation.

Figure 4. Summary of simulation results

Each scenario set was further divided into individual

scenarios, each configured with a different number of

communicating nodes. Each communicating node was

selected randomly and was configured to transmit over 11

Mbps channel with transmit power of 0.005 Watts and

received power threshold of -95dBm. Data transmission

to a random destination node was initiated at time 100

seconds and continued until the end of simulation. The

packet inter-arrival time was computed using exponential

distribution with mean outcome of 1 second, while the

packet size was computed using exponential distribution

with mean outcome of 1024 bits. We ran each simulation

scenario for 300 seconds.

6.2. Summary of collected results

Our simulation study confirmed that during the route

discovery process GeoAODV generates fewer control

messages than regular AODV. As expected, when the

number of communicating nodes increased, the number of

control messages generated by AODV and GeoAODV

increased as well. However, even when there were 30

communicating nodes, GeoAODV outperformed AODV

because it did not have to search the whole network.

GeoAODV performed better than AODV in mobile

scenarios as well. However the overall improvement was

lower than in stationary node scenarios because node

movement caused the destination coordinates stored

throughout network to be less accurate which may have

resulted in several rounds of GeoAODV route discovery.

Refer to [6] for a detailed description of GeoAODV

simulation study.

7. Conclusions

This paper introduced practical methodology for adding

new process models and modifying existing

implementations of MANET routing protocols using

OPNET Modeler network simulation software package.

Specifically, this paper describes AODV simulation

model and provides detailed account of the author’s

endeavours to implement GeoAODV routing protocol by

extending AODV process model. In addition, this paper

provides an overview of GeoAODV protocol and

summary of simulation results which show that with the

help of GPS coordinates, GeoAODV routing protocol

significantly reduces the control packet overhead during

the route discovery process by limiting the size of the

route discovery area. This paper could greatly benefit

other researchers who use OPNET tools to study and

evaluate performance of wireless mobile ad hoc networks.

References

[1] M. C. Jeruchim, P. Balaban, K. S. Shanmugan,

Simulation of communication systems: modeling,

methodology, and techniques. (Kluwer Academic

Publishers, 2000)

[2] OPNET Modeler ver. 14.5. OPNET Technologies,

Inc®, www.opnet.com last visited 2/09/10.

[3] D. Kadono, T. Izumi, F. Ooshita, An ant colony

optimization routing based on robustness for ad hoc

networks with GPSs, Ad Hoc Networks, 8(1), January

2010, 63-76.

[4] Y. Ko and N. H. Vaidya, Location-aided routing

(LAR) in mobile ad hoc networks, Wireless

Networks, 6(4), July 2000, 307-321.

[5] Y. Ko and N. H. Vaidya, Flooding-based geocasting

protocols for mobile ad hoc networks, Mobile

Networks and Applications, 7(6), 2002, 471-480.

[6] H. Asenov and V. Hnatyshin, GPS-Enhanced AODV

routing, Proc. 2009 International Conference on

Wireless Networks (ICWN'09), Las Vegas, NV, 2009.

[7] E. M. Royer and C. E. Perkins. An Implementation

Study of the AODV Routing Protocol, Proc. of the

IEEE Wireless Communications and Networking

Conference, Chicago, IL, September 2000.

[8] C. E. Perkins and E. M. Royer. Ad hoc On-Demand

Distance Vector Routing, Proc. of the 2nd IEEE

Workshop on Mobile Computing Systems and

Applications, New Orleans, LA, February 1999.

[9] D. Espes, Z. Mammeri. Adaptive expanding search

methods to improve AODV Protocol, IST Mobile and

Wireless Communications Summit, July 2005.

http://www.irit.fr/publications.php3?code=3125&nom=Espes%20David
http://www.irit.fr/publications.php3?code=203&nom=Mammeri%20Zoubir

