Practical Methodology for Development and Deployment of Standard Applications Process Models using OPNET Modeler
Vasil Hnatyshin and Michael Simmons
Department of Computer Science, Rowan University
Glassboro, NJ 08028

E-mail: hnatyshin@rowan.edu, simmon51@students.rowan.edu
Abstract

OPNET Modeler is a leading software product for simulation and modeling of network applications, protocols, and technologies. Despite its flexibility, precision, and terrific performance, the complexity and the sheer amount of OPNET Modeler’s code frequently is a strong deterrent to the researchers, who often chose less accurate but simpler network simulation software, such as ns-2, to study the performance of their network systems. This paper attempts to demystify the process of developing new applications in OPNET Modeler. It introduces practical methodology for creating process models of new network applications and seamlessly integrating them within OPNET Modeler. In particular, this paper describes
· how to specify and parse application attributes using the application_config process model,
· how to create a process model for a new application,
· how to send application messages via TPAL layer,

· how to seamlessly integrate new application process model with other standard OPNET applications, and
· the author’s endeavors to develop and integrate within the OPNET Modeler the AOL Instant Messenger (AIM) application.

1. Introduction

The Internet and computer networks in general, are among the greatest technological inventions that drives today’s economy. Such applications as e-mail, web-browsing, instant messenger, and many others became a common part of our everyday lives. Today, numerous new applications that rely on the Internet, wireless communication, or other networking technologies are being developed and deployed everywhere. Often the key to success of these applications is the effectiveness of their data delivery over communication medium. Debugging and evaluating performance of such applications in a live network is very expensive and tiresome task. That is why the developers frequently use simulation and modeling to debug, test, and study the performance of their network solutions [1]. OPNET Modeler [2] is a leading software product for simulation and modeling of network applications, protocols, and technologies. It includes a vast library of communication device, medium, and protocol process models written in the programming language called Proto-C. Proto-C is a combination of the C/C+ programming language and the state transition diagrams [3]. Despite its flexibility, precision, and terrific performance, the complexity and the sheer amount of OPNET Modeler’s code frequently serves as a strong deterrent to the researchers, who often chose less accurate but simpler network simulation products, such as ns-2 [4], to study the performance of their network applications.

In this paper we attempt to demystify the process of developing new applications in OPNET Modeler. We introduce practical methodology for creating process models of new network applications as well as seamlessly integrating and deploying these process models within OPNET Modeler. In particular, this paper describes

· how to specify and parse application attributes using the application_config process model,

· how to create a process model for a new application,

· how to send application messages via TPAL layer,

· how to seamlessly integrate new application process model with other standard OPNET applications, and

· the author’s endeavors to develop and integrate within the OPNET Modeler the AOL Instant Messenger (AIM) [5] application.

The rest of the paper is organized as follows. In section 2 we describe the key components used by OPNET Modeler to specify standard applications. Section 3 introduces practical methodology for creating and deploying within OPNET Modeler a process model of a new application. Section 4 presents an example of how described methodology was used to develop the process model of AIM application and to integrate it within the OPNET Modeler. The paper concludes in Section 5.
2. Overview of OPNET standard applications design
OPNET standard applications such as E-mail, FTP, Web Browsing (e.g. HTTP) and others are defined via two separate process models: the application manager and the application client. The application manager implements the behavior of a specific application. The application client implements the data transmission using the Transport Adaptation Layer (TPAL) model suite. TPAL model suite is OPNET’s interface between the application and transport layers. Other standard OPNET applications such as Remote Login implement both the application behavior and the inter-application communication in a single process model. However, to create and deploy a new standard application the developer needs not only create the new application’s process models but also modify several other process models and external code files.
The user configures or defines applications in the network domain
 using the Application Configuration node which is implemented via the application_config process model. This process model defines application attributes, parses the attribute values, and then stores parsed values into the network-wide database. To enable configuration of the new application the same way as all standard OPNET applications the developer must modify and extend the application_config process model.

The user specifies how defined applications will be used in the simulation through the Profile Configuration node which is implemented via the profile_config process model. The Profile Configuration node allows the user to set the values for such attributes as the profile name, the profile start time, the profile duration, the applications used in the profile, the application start time, the application duration, the application’s operation mode (e.g. random, serial, or simultaneous), the application’s repeatability and many others. The profile_config process model defines profile attributes, parses their values, and stores parsed values into the network-wide database. However, to add a new standard application the developer does not need to modify this process model. Instead, the developer should update the application invocation mechanism implemented in the gna_profile_mgr process model that used profile information provided by the profile_config process model.
The majority of today’s network applications follow the client-server architectural paradigm, where the client is a process that initiates the inter-application communication by generating requests to another process and the server is a process that responds to (e.g. serves) the client requests. The gna_clsvr_mgr process model implements the client-server interaction of the standard OPNET applications
. The gna_clsvr_mgr process model is fairly complex and is responsible for such tasks as initiating server sessions, invoking and terminating certain applications, processing client requests, computing request service time, registering and updating certain application statistics, resolving symbolic server names, and others. The gna_clsvr_mgr process model is the key process for uniform deployment of new standard OPNET applications and it should be carefully examined and updated to accommodate proper integration of a new application. The gna_clsvr_mgr process model implements server management and relies on the gna_profile_mgr process model for client management. The gna_profile_mgr process model is responsible for retrieving the profile information from the shared memory and then spawning and terminating applications according to the profile specifications.

[image: image1]
Figure 1. OPNET’s organization of standard applications
Finally, there are several header files that contain various application specific constants and data structure definitions. These files should also be updated to include information about the new application to be added. For example, the developer should add the data structure that describes the new application in the gna_mgr.h file.

Figure 1 illustrates interactions between the process models that implement standard OPNET applications. As Figure 1 shows, profile_config and application_config parse application and profile information, respectively and save parsed values into the simulation-wide database. These values are retrieved and used by the gna_clsvr_mgr process model which invokes the gna_profile_mgr process model for each defined profile. In turn, the gna_profile_mgr process model invokes the application manager process model (e.g. gna_ftp_mgr, gna_email_mgr, etc.) whenever an application to be started. Finally, for each session or connection to be established by the application, the application manager function spawns an application client process model (e.g. gna_ftp_cli, gna_email_cli, etc.) which relies on TPAL facilities (e.g. tpal_v3) to send messages between application instances (e.g. from client to server).
3. Methodology for Development and Deployment of Standard Applications Process Models
Once the developer completed the design of the new application, the next most logical step would appear to be creating the process model for that application. However, from our experience, modifying the application_config process model to add the new application attributes is a more appropriate first step because it exposes the developer to simple OPNET code for manipulating the data structures that maintain the attributes of application to be implemented. Only after the application attributes are defined via the application_config process model the developer should create the process model(s) for the application itself followed by the steps for integrating the new application model(s) within OPNET. Figure 2 illustrates proposed methodology for creating a new standard application.

[image: image2]
Figure 2. Methodology for creating a new standard application
3.1 Specifying Simulation-Wide Application Attributes
Before updating the application_config process model, the developer should modify the gna_mgr.h file and add:

· a new application type in the GnaT_ApType structure,
· a new data structure to maintain attributes that describe a new application, and
· a new data structure that maintains application information passed to the application client by the application manager.
A new application type should be added in the position one before last entry in the GnaT_ApType structure because the last entry contains the count of items in this enumerated structure. The data structure that describes the application should contain such information as frequency of message generation, the size of the messages, and others. Finally, the structure that maintains the application information to be passed from the manager to the client contains the values to be carried by the application message. For example this data structure may contain such information as the type of the application message (e.g. login, data, logout, etc), the size of the message (i.e. not the distribution function of the message sizes), the sever name, and others. Figure 3 shows an example of modified gna_mgr.h file.

[image: image3]
Figure 3. Modified gna_mgr.h file
Next, the developer should define model attributes of new application by modifying compound attribute “Application Definitions->Description” accessible from the drop-down menu of the application_config process model (i.e. Interfaces -> Model Attributes). Usually, individual characteristics of the new application are combined into a single compound attribute. Figure 4 shows compound attribute that defines properties of AIM application.
To parse application attributes and store obtained values into the simulation-wide database the developer needs to modify the gna_application_desc_parser function defined in the application_config process model. This function retrieves the application attribute values (e.g. the application description), populates the data structure called GnaT_Application_Des with parsed values, and then returns this data structure to the caller function named gna_application_parser, which stores application description into global memory (e.g. the simulation-wide database) using oms_data_def OPNET API package. Figure 5 shows the definition of the GnaT_Application_Des data structure.

[image: image4.png]] (AIM) Properties

Default rumber of ows: Edit Row Cout Praperies

[AndbuteName T Type | Unis

Default Valie
Message sze sting byies None
Send Interarival Tine_sting seconds Nene.
sting AIM Server
Type of Serice integer Best Efor (0]

K| B[S

New atibute:

Edit Compound Altbute Propettes

Add Delte MovelUp | Move Down | EditPropettes oK

Cancel

Figure 4. AIM attributes
The gna_application_desc_parser function calls parsing functions for individual applications. It is a good idea to place the code for parsing the attributes of a new application into a separate function. Figure 6 shows the code added in the gna_application_desc_parser function. The function for parsing new applications attributes (i.e. gna_aim_desc_parser) is omitted but the application_config process model contains several similar functions for parsing attributes of other standard applications such as FTP, Email, HTTP, etc that can be used as an example.

[image: image5]
Figure 5. Definition of GnaT_Application_Des

[image: image6]
Figure 6. Extended code of the gna_application_desc_parser function for parsing new application
Finally, the developer should update the gna_api.h file by defining the name of a new application and by expanding the definitions of GnaT_App, GnaT_Application_Type, and GnaT_Application_Name data types to include the new application information as shown in Figure 7.

[image: image7]
Figure 7. gna_api.h file updates
3.2 Developing new application model

There are two approaches for accomplishing the next few steps:

(1) develop a complete application process model and then integrate it with the rest of the OPNET code or

(2) first create a dummy process model for the new application, integrate it with the OPNET code ensuring that everything compiles and runs properly, and only then expand the application process model to complete implementation of the new application.

In practice the second approach is better because it allows for proper software design. However, in the paper, to avoid going back and forth describing the methodology, we follow the first approach.
Clearly, the development of a new application model will vary from application to application. However, there are several tasks that are common to all application models. These tasks are:
(1) Retrieve application information

(2) Set-up and collect application statistics

(3) Open TPAL session

(4) Send a message

(5) Receive a message

(6) Close TPAL session

(7) Implement server processing

We assume that the reader is familiar with the basics of creating an empty process model and working with the Process Model Editor. To retrieve application information the developer needs to access the data structure GnaT_Nam_Appl through argument memory. This structure is defined in gna_mgr.h file and it contains application description and other related information retrieved upon simulation initialization. Figure 8 shows the code for retrieval of this data structure.

[image: image8]
Figure 8. Retrieving application information
Next is a two-step process of setting-up the application statistics. First, the developer needs to define local and global statistics in the statistic declaration table accessible via the drop-down menu in the Process Model Editor. Figure 9 shows an example of the local statistic declarations. Local statistics are usually defined as Dimensioned indicating that each application instance collects its own set of values for this statistic. The value of attribute count indicates the maximum number of application instances for which statistic values will be collected. Global statistics usually declared as Single indicating that there is only one statistic available for all application instances. The rest of the statistic attributes are self-explanatory.
[image: image9.png]*|Declare Local Statistics: gna_aim

] StaName Mode |Coutl Descipion | Group | CapweMode | Dran St Low Bound Figh Bound
Fessages Sert pesfoze]] Dinersioned 100 Average btes/se... AM Cier bucket/cefsut o1l lnear 00 disbled
Messages Sent (messages/sec) Dimensioned 100 Average number .. AIM Client bucket/default total/... linear 0o disabled
Messages Received (bytes/s... Dimensioned 100 Average bytes/se... AIM Client bucket/default total/... linear 0o disabled
Messages Received (messag... Dimensioned 100 Average number .. AIM Client bucket/default total/... linear 0o disabled
versge Nuber of Actve Bu.. Dimensined 100 Aversge number .. AIM Clert bucket/defauttoal.. docrete 00 dssbled

[Deete ||| Vovellp | [VoveDom|

Figure 9. Local Statistics Declaration Table

Next, that the developer should define state variables for declared statistics: one variable per statistic. Dimensioned statistic variables are declared as OmsT_Dim_Stat_Handle while single statistic variables are declared as Stathandle. Finally, statistics should be registered as shown in Figure 10.

[image: image10]
Figure 10. Code for registering statistics

The second parameter in the function Oms_Dim_Stat_Reg is statistic’s group and the third parameter is name of the local statistic, both defined in the statistic declaration table. These values are combined together via a dot (e.g. “.”) in the function call to register a global statistic. To avoid run-time errors make sure to spell statistic and group names the same way as they defined in the statistic declaration table. Variable annot_str_ptr contains a more descriptive annotation of the registered statistic.
Use functions Oms_Dim_Stat_Write and op_stat_write to update dimensioned and single statistics, respectively. These functions record (time, value) pair for specified statistics. Figure 11 shows an example of updating statistic values. Refer to OPNET Documentation on statistic package for further details regarding these functions.

[image: image11]
Figure 11. Updating statistics
Before sending any data messages the application needs to open a connection with the TPAL layer. Only after the connection is opened successfully the application may send the data. Once all the data is sent the application needs to close the connection. Opening a TPAL connection corresponds to opening a transport layer connection. Thus, if application requires a separate transport layer connection for each message then the application process model will need to open a separate TPAL connection for each message as well. That is why, many standard applications are split into two process models: the application manager, which deals with application tasks such as generating and processing messages and the application client, which is only responsible for managing TPAL connections and sending the messages received from the application manager. Figure 12 illustrates an example of opening a TPAL connection. A remote interrupt (e.g. OPC_INTRPT_REMOTE) is generated upon successful connection establishment with TPAL. This interrupt has code TPALC_EV_CONF_OPEN.

[image: image12]
Figure 12. Opening TPAL connection
Application message departures are usually controlled via self interrupts (e.g. interrupt type OPC_INTRPT_SELF) scheduled by the process model itself using the function call op_intrpt_schedule_self. This function takes two parameters: the time when the interrupt occurs and the interrupt code, an integer value used to differentiate between self-interrupts of the same type. To send a message the developer should use function app_pkt_create defined in external C file tpal_app_support.ex.c to create an application packet and then use function op_pk_send to send the newly created packet to TPAL.

[image: image13]
Figure 13. Sending application packet, receiving application packet, and closing TPAL connection
Application message arrivals are controlled via stream interrupts (e.g. interrupt type OPC_INTRPT_STRM). Upon message arrival the developer should use function op_pk_get to retrieve arriving packet. Function op_pk_get takes a single parameter of type integer which corresponds to the stream on which the packet arrives. The stream value can be obtained using function op_intrpt_strm. To end an application the developer needs to free memory allocated by the process model and then terminate the process model. Figure 13 illustrates an example of sending an application packet, retrieving an application packet, and terminating the process model.

Finally, the developer may need to implement additional message processing at the server. In such cases, the developer should modify the gna_clsvr_mgr process model. In particular, the developer needs to examine and perhaps modify the code in the arrival state and the following functions:

· gna_clsvr_mgr_process_request
· gna_clsvr_mgr_close_packet_send
3.3 Integrating application model with OPNET code
Integration of the new application with the rest of OPNET code requires modifying two process models: gna_clsvr_mgr and gna_profile_mgr. Both process models rely on the constants and the enumerated data types added and modified in gna_api.h and gna_mgr.h header files.

The first step modifying the gna_clsvr_mgr process model is adding the process model attribute to specify transport protocols used by the new application. After that, the developer needs to modify the process model’s header block as follows:
· add one or more entries in the array of services names, NasC_Service_Names,

· increase the value of NASC_NUM_SERVICES constant by the number of added entries in NasC_Service_Names, and
· increase the value of NASC_NUM_APPS constant by the number of entries added to GnaT_Application_Type data structure (defined in gna_api.h file).
[image: image14.png]Default rumber of ows: |1 it Row Count Propertes

Atibute Name Type] Unit| Default Valie
Custor Applcation Trar sting TCP+UDP
Database Transpart sting TCP
Emai Transpart sting TCP
Fip Transport sting TCP
Hitp Transport sting TCP
Remote Login Transport sting TCP
Print Transpart sting TCP
Video Corferencing Transport sting UDP.
Veice Transpart sting UDP
Femal 1P | |

&M Transpart sting TCF

o M

Edit Compound Altbute Propettes

New atibute:

Add Delete | || Move Doun | Edit roperties oK Cancel

Figure 14. Updated process model attributes in gna_clsvr_mgr
Next, the developer should declare a state variable to store the maximum free statistic index for new application. Figures 14 - 16 illustrate these modifications.

[image: image15]
Figure 15. Updated header block in gna_clsvr_mgr
[image: image16.png]+jgna_clsvr_mer.state variables

oo
o i st i
i [y
i [

i W s
i Pty i
i el s i
i e

© T
D
s
O _Psouce_Harde
soule

aotive_profes_pe
epu_tesource._ndl
application_segment_size
JRE—————]

e

Comments
* Masimum fee statisic nde for hitp application, */

7 Masimum fee statistc indexforprint application. */

* Masimum fee statistic index forftp applicatian, */

* Masimum fee statistic indes for video applicatian. */
* Masimum fee statistic indes for voice applicatian. */
7 Masimum fee stattc indes for email applicatian. */
* Masimum fee statstc indesfor custom applicatin. */
7 Masimum fee statistic indes for A1M applcatian, */

7 List of symbolic source name which are supparted at this nade */

7 Listof profles which are curently spwned on this node */
" Handle t the shared CPU {resource) for this nods */
* Appicalion segment sie fo al spplications. */

7 Snerifies whether tats have skeael heen reristered

ewsscn | s ||

¥ lgnore case

Find

Figure 16. Updated state variables in gna_clsvr_mgr

Once all necessary constants, variables, and data structures are added and updated, the developer can start modifying the function block of the gna_clsvr_mgr process model. First, the gna_clsvr_mgr_service_time_compute function has to be modified to include the new application in the if statement that computes the normal server response time. Second, the switch statement in function gna_clsvr_mgr_conf_read should be modified to add the case for processing new application’s information. Third, function gna_clsvr_mgr_port_to_apptype should be updated to return the type of new application based on the port number. Finally, the gna_clsvr_mgr_profile_parser function should be updated to include the case for parsing the profiles which contain information about the new application. Figure 17 illustrates examples of required updates in the function block of the gna_clsvr_mgr process model.

[image: image17]Figure 17. Example of the modified function block of the gna_clsvr_mgr process model
After completing the update of the gna_clsvr_mgr process model, the developer must add the code for spawning a new application manager. This code should be added in the spawn state’s enter execs of the gna_profile_mgr process model. An example of spawning a process model for a new application manager is shown in Figure 18.

[image: image18]
Figure 18. Spawning a new process model in gna_profile_mgr
The last thing the developer may want to do is update function gna_application_name_find in gna_support.ex.c file to include name translation for the new application as shown in Figure 19.

[image: image19]
Figure 19. Modified gna_support.ex.c file
3.4 Creating simulation project to test new application
Finally, once all the code is updated the developer needs to test the implementation of the new application. The initial testing should be performed in a small network to simplify debugging. Before setting-up the network the developer should modify the node models of the workstation and the server by adding processor modules that execute the new application’s process model. The updated node models should be used in the simulation scenario instead of the regular workstation and server models available via the OPNET model library. Figures 20 and 21 show updated ppp_wkstn_adv node model and attributes of added processor module.
The described modifications should allow the newly added application be configurable the same way as any other standard OPNET application. To configure the newly added application the developer should perform the following steps:
· specify application configuration,
· specify user profile,

· configure server nodes to support specified services,

· configure client nodes to support specified profiles, and

· select application statistics.

[image: image20.png]*|Node Model: ppp_whstn_adv.
Fie Edt Interfaces Objects Windows Help

AsEaim -~ EHEHAEEE

=

Figure 20. Updated ppp_wkstn_adv node model that supports AIM application

Unfortunately, the methodology described in the paper does not allow configuration of the new application through the “Protocols -> Applications -> Deploy Defined Applications” drop-down menu. We were unable to identify the necessary code changes required to enable this option. Currently, when the new application is configured via the drop-drop menu the “Deploy Application” window does not contain an option for configuring servers to support the new application. However, the servers can be configured to support new application services by specifying the server’s “Application: Supported Services” attribute. We hope to address this problem in the future work.
[image: image21.png]] (AIM) Attributes

Bibute
@ prame

@ |process model
@ Ficonnane

<

Evtended At

T~ ipply changes to selected objects

Eind Nest

Figure 21. Attributes of AIM processor in updated ppp_wkstn_adv node mode

4. Example of AIM implementation

The methodology described in this paper was used to create a new process model of the AOL Instant Messenger (AIM) [5] application. To add AIM application we updated the gna_mgr.h and gna_api.h header files, extended the application_config, gna_clsvr_mgr, and gna_profile_mgr process models, and created new process model called gna_aim. Since AIM application uses a single TCP connection to relay messages to the server, we combined application manager and application client in a single process model shown in Figure 22.
The finite state machine of the AIM application consists of six states. The forced
 Init state retrieves configuration of the AIM configuration, similarly to that shown in Figure 8. From the Init state the finite state machine transits into the unforced ESTAB state which attempts to open TPAL connection as shown in Figure 12. If an attempt to open the TPAL connection is successful then the process model registers AIM statistics as shown in Figure 10, schedules a self interrupt for message departure, and the finite state machine transits into the Idle state. Otherwise, the finite state machine follows into the End state where it terminates the process model as shown in Figure 13.
[image: image22.png]Fle Edt Inerfaces FsM CodeBlocks Comple Windows Help

DS H OO & 6 @ E E =

P
EnD_sa) |

= ®evD_sg)

tos

END_APL || CLOSED) |

(AORT || CLOSED)

Figure 22. The gna_aim process model

From the Idle state the finite state machine transits into the forced Send state whenever self-interrupt with GNAC_AIM_MSG code occurs. In the Send state the process model generates an application packet and sends it to TPAL as shown in Figure 13. After that, the process model schedules the next message departure and then the finite state machine follows back into the Idle state waiting for the next event to occur.

[image: image23]
Figure 23. Definition of the transition conditions of gna_aim process model
The finite state machine transits into the Receive state upon stream interrupt occurrence. In the Receive state the process model retrieves application packet as shown in Figure 13, interprets received information, and if necessary, generates a reply.

The finite state machine follows from the Idle state into the End state when one of the following events occur:

· the TPAL process terminates connection, or

· the AIM application ends normally according to the profile configuration.

The first case occurs either due to an internal TPAL error or due to the server issuing a TPAL command to close the connection. The second case occurs when the process model receives self interrupt scheduled in the Init state. The interrupt with the code GNAC_AIM_END is scheduled based on the application duration value configured in the application profile. Figure 23 shows definitions of various constants used for state transition conditions in the gna_aim process model. These constants are defined in the header block of the process model.
[image: image24.png]| (Application) Attributes.

Type Uilies

[Tawibue
@ rname Appication
@ = Applcaion Defiions [
rows 2
B
e TEST AM
& Descrpion [
- Custom ot
F-Databsse ot
Femai ot
b ot
tp ot
it ot
-Remete Login ot
Video Corferencing ot
wm ot
TR
|- Number of Buds
|- Message size bytes] expanenua\ e
|- Send Interarival Time (seco... exponential (10]
|- Receive Inerarival Time (se... exponential (10]
FSymbolc Servrfame AIM Server E
I o]

T~ ipply changes to selected objects I~ Adyanced

@
@
@
@
@
@
@
@
@
@
@

Eind Nest of Cancel

Figure 24. Configuring AIM Application

Even though we have not yet implemented a complete set of AIM features, following the methodology described in this paper we were able to create the process model that implements basic functionality of AIM application and successfully integrated it within OPNET Modeler. Current implementation of AIM application allows the user to configure AIM application as a standard OPNET application (Figure 24), execute OPNET simulation in which the AIM application sends messages between client and server nodes, and collect such basic AIM application statistics as the number of packet sent, the number of bytes sent, the number of packets received, and the number of bytes received.

5. Conclusion

This paper presents practical methodology for adding new standard application process models in OPNET Modeler. In particular, the paper discusses the code organization used to implement standard applications in OPNET and describes how the process models, external code files, and header files have to be modified to add a new application model. The paper also describes the set of steps required to develop a new application process model and provides an example of the process model that implements basic functionality of AIM application. We plan to address the problem that would allow configuring new application though the drop-down menu and implement complete AIM functionality in the near future.
References

[1] V. Hnatyshin, G. Gramatges, and M. Stiefel, "Practical Considerations for Extending Network Layer Models with OPNET Modeler," in proceedings of 18th IASTED International Conference on Modeling and Simulation (MS 2007), May 2007.
[2] OPNET Technologies, Inc. http://www.opnet.com/, accessed 06/11/2007.
[3] OPNET Technologies, Inc. OPNET Modeler Product Documentation, release 12.0, December 2006.
[4] ns-2, (2007), “The Network Simulator – ns-2”, http://www.isi.edu/nsnam/ns/, accessed 06/11/2007.

[5] AIM/Oscar Protocol Specification, http://www.oilcan.org/oscar/, accessed 06/11/2007.
Manager

Application Process Models

tpal_v3

invoke

Client

application_config

profile_config

Simulation-wide

Database

gna_profile_mgr

gna_clsvr_mgr

Integrate the new Application Model(s) within OPNET

Communication

invoke

invoke

read

store

store

use

Process Models for Parsing Profile and Application Attributes

Profile/Application Management Process Models

Develop the new Application Process Model(s)

Specify Simulation-Wide Application Attributes

// Application Types:

typedef enum {

GnaT_ApType_Dbase,

GnaT_ApType_Email,

GnaT_ApType_Ftp,

GnaT_ApType_Http,

GnaT_ApType_Rlogin,

GnaT_ApType_Print,

GnaT_ApType_Video,

GnaT_ApType_Voice,

GnaT_ApType_Custom,

GnaT_ApType_Stream,

GnaT_ApType_AIM,

GnaT_ApType_Count

} GnaT_ApType;

// New Application Data Structure

typedef struct {

 // Frequency of sending the messages

 // This field is of type string and it

 // stores the name of the distribution function

 char* 	 send_dist_ptr;

 // Message size distribution

 OmsT_Dist_Handle size_dist_handle;

 // Symbolic Server Name

 char* 	 symb_server_ptr;

 // Type of Service

 OmsT_Qm_Tos	 tos;

} GnaT_AIM_Desc;

/* Declarations */

void*			temp_application_ptr;

GnaT_Application_Desc*	application_ptr;

/****** Parse AIM application *********/

temp_application_ptr =

 gna_aim_desc_parser (application_row_objid, application_already_parsed);

if (temp_application_ptr != OPC_NIL)

{

 /* Store the application in the parsing structure.	*/

 application_ptr->application_desc_ptr = temp_application_ptr;

 /* Store the type of the application.	*/

 application_ptr->application_type = GnaT_ApType_AIM;

 /* Set a flag telling that an application has already been parsed. Other applications

 will be ignored. If another application is defined a simulation will be written */

 application_already_parsed = OPC_TRUE;

}

// GnaT_Application_Desc: Specifies the parameters associated with each

// application. This structure is populated during the initial parsing (at the beginning

// of simulation).

typedef struct

{

 char* 		application_name_ptr;	/* Application name (e.g., Web) */

 GnaT_ApType	application_type;	

 // This can be of different application types (HTTP, Email, Custom, AIM, etc.)

 // e.g. GnaT_AIM_Desc

 void*		application_desc_ptr;

} GnaT_Application_Desc;	

/* Spawn the correct application manager for the application.	*/

switch (app_type)

{

 // …

 // Code to spawn new AIM application

 case GnaT_ApType_AIM:

 {

 // Allocate memory for process handles

 application_mgr_prohandle_ptr =

 (Prohandle*) gna_sup_pmo_alloc ("PMO/prof_mgr/app_mgr_prohndl",

 sizeof (Prohandle) * int_traffic_growth_factor, 10);

 // When traffic scaling factor is used create an array of processes

 for (ith_app = 0; ith_app < int_traffic_growth_factor; ith_app++)

 {

application_mgr_prohandle_ptr [ith_app] =

op_pro_create ("gna_aim", apptrack_profile_info_ptr);

 }

 break;

 }

 // …

}

// Maximum number of service types available.

// Corresponds to (the number of entries - 1) in GnaT_Application_Type.

// Changed from 12 to 14 to account for added two new entries

#define	NASC_NUM_APPS			14

// Changed value from 8 to 9. One name was added to NasC_Service_Names

#define NASC_NUM_SERVICES		9

static const char* NasC_Service_Names [NASC_NUM_SERVICES] =

 {

 "Custom Application",

 // …

 "AIM"			// Added value

 };	

// Function: gna_clsvr_mgr_service_time_compute (…)

// …

if (app_type 	== GnaC_App_Type_Ftp_Get 		||

 app_type 	== GnaC_App_Type_Email_Recv 		||

 (app_type 	== GnaC_App_Type_Database 	&&

 type_of_request 	== GnaC_Query) 		||

 app_type	== GnaC_App_Type_Http		||

 app_type 	== GnaC_App_Type_AIM_Login		||

 app_type 	== GnaC_App_Type_AIM_Msg)	

 // ...

// Function: gna_clsvr_mgr_conf_read (…)

// …

case GnaT_ApType_AIM:

 // Set the port number, defined in gna_api.h, in GnaT_App

 serv_index = AIM;

 // Get the transport protocol for this application.

 op_ima_obj_attr_get (prtcl_cattr_id, "AIM Transport", protocol);

 // Check the status of the service in this node

 op_ima_obj_attr_get (comp_attr_objid, "Service Status", &status);

 // If the Service Status has been set to disabled then don’t register the service.

 if (status == OPC_FALSE)

 continue;				

 break;

// …

// Function: gna_clsvr_mgr_port_to_apptype (…)

// …

case AIM:

 result = GnaC_App_Type_AIM_Login;

 break;

// …

// Function: gna_clsvr_mgr_profile_parser (…)

// …

GnaT_AIM_Desc *	aim_appl_ptr = OPC_NIL;

// …

case GnaT_ApType_AIM:

 // Get the transport protocol

 op_ima_obj_attr_get (transport_protocol_objid, "AIM Transport",

 protocol_name_ptr);

 nam_appl_ptr->transport_protocol = (char *) prg_cmo_alloc (cmo_handle,

 strlen (protocol_name_ptr) * sizeof (char) + 1);

 strcpy (nam_appl_ptr->transport_protocol, protocol_name_ptr);

				

 // Get the name of the symbolic server

 aim_appl_ptr = (GnaT_AIM_Desc *) appl_desc_ptr->application_desc_ptr;

 server_name_ptr = aim_appl_ptr->symb_server_ptr;

 // Set statistic index for couple <profile/application>

 nam_appl_ptr->stat_index = aim_max_stat_index;;

 if (same_lan_profile == OPC_FALSE)

 aim_max_stat_index ++;

 break;

// …

// GnaT_Cli_AIM_Params_Info: Specifies parameters passed to an	

/* AIM client by AIM manager at the beginning of each session. 	

typedef struct

{

	// Type of request (login or Msg) 	GnaT_Application_Type	request_type;		// Request size (bytes).		

	double	request_size;		// Server name for FTP session.		char*	server_name;		// Information about application.		GnaT_Nam_Appl*	app_info_ptr;		// Type of Service for QoS.		

	OmsT_Qm_Tos	tos;		// apptracking support			ApptrackT_Profile_Info*	apptrack_profile_info_ptr;	

} GnaT_Cli_AIM_Params_Info;

#define GNAC_APP_AIM	"AIM"		

/* Enumerated constants for different GNA application types.	

typedef enum GnaT_Application_Name

{

	GnaC_App_Custom_Application,

	// …

	GnaC_App_AIM		// Added Entry

} GnaT_Application_Name;

// Enumerated constants for different GNA application types.	

typedef enum GnaT_Application_Type

	{

	GnaC_App_Type_Custom_Application,

	// …

	GnaC_App_Type_AIM_Login,	// Added Entry

	GnaC_App_Type_AIM_Msg

} GnaT_Application_Type;

// GnaT_App: enumerate all applications base on the port numbers.

typedef enum

{

	Ftp = 20,

	Rlogin = 23,

	// ..

	AIM = 4999	// Added Entry	

} GnaT_App;

char* gna_application_name_find (…)

{

	// …

	case GnaC_App_Type_AIM_Login:

		GNAC_APP_NAME_SET(appln_name, "Aim Login");

		break;

	case GnaC_App_Type_AIM_Msg:

		GNAC_APP_NAME_SET(appln_name, "Aim Messaging");

		break;

	// …

}

// Acquire the application information from the argument memory.

application_info_ptr = (GnaT_Nam_Appl *) op_pro_argmem_access ();

// Get the AIM description

aim_app_desc = (GnaT_AIM_Desc *) application_info_ptr->

application_comp_ptr->application_ptr->application_desc_ptr;

// Get this module's ID, type Objid

my_module_id = op_id_self ();

// Register Local Statistic

bytes_sent_stathandle = Oms_Dim_Stat_Reg (

my_module_id,

"AIM Client",

			"Messages Sent (bytes/sec)",

annot_str_ptr,

OPC_STAT_LOCAL);

// Register Global Statistic

bytes_sent_global_stathandle = op_stat_reg (

"AIM.Messages Sent (bytes/sec)",

			 OPC_STAT_INDEX_NONE,

 OPC_STAT_GLOBAL);

// Update Statisatics

Oms_Dim_Stat_Write (bytes_sent_stathandle, pkt_size);

op_stat_write (bytes_sent_global_stathandle, pkt_size);

// Get parameters for opening TPAL session

// Get remote host Address

remote_host = app_server_name_select (application_info_ptr);

// Get symbolic application name.	

service_name = application_info_ptr->application_comp_ptr->

application_ptr->application_name_ptr;

// AIM port numbers are defined in GnaT_Appl

port_num = AIM;

// Get transport protocol.	

strcpy (protocol, application_info_ptr->transport_protocol);

// Create a session record. The session record will be included in the request ICI. sess_ptr = (GnaT_Cli_Mgr_Session *) prg_cmo_alloc (cmo_handle,

sizeof (GnaT_Cli_Mgr_Session));

sess_ptr->prohndl = op_pro_self ();

// Get RSVP parameters.	

rsvp_params_ptr = application_info_ptr->rsvp_parameters_ptr;

// Set type of service for quality of service

tos = aim_app_desc->tos;

// Get trace

trace_active = op_prg_odb_ltrace_active ("gna_aim");

// Open a TPAL connection.

req_ici_ptr = tpal_app_session_open (

 	GNAC_SESSION_TYPE_ACTIVE, remote_host, service_name, 	

	port_num, port_num, protocol, sess_ptr, session, tpal_objid,

	rsvp_params_ptr, tos, trace_active);

// Session was open successfully if session_ptr != OPC_NIL

op_ici_attr_get (req_ici_ptr, "Session ID", &session_ptr);

// ================= SEND AN APPLICATION MESSAGE

// Create packet

pkptr = app_pkt_create (GnaC_Appl_Type_Aim_Msg, request_size,

response_size, TPALC_CMD_UNDEF, OPC_FALSE, 1,	req_ici_ptr,	copy_appl_info_ptr, trace_active);	

// Register the application instance and obtain an app_instance_id

apptrack_instance_id = apptrack_instance_create ("AIM", service_name);

// Set the apptrack ID in the packet

op_pk_nfd_set_int32 (pkptr, "apptrack_id", (int) apptrack_instance_id);

// Add application name to the packet

tpal_app_name_in_pkt_set (pkptr, service_name);

// Send the packet to TPAL

op_pk_send (pkptr, 0);

// ================= RECEIVE AN APPLICATION MESSAGE

if (op_intrpt_type () == OPC_INTRPT_STRM)

{

	// Obtain the incoming packet off the interrupting stream.

	pkptr = op_pk_get (op_intrpt_strm ());

}

// ================= TERMINATE APPLICATION PROCESS

// Destroy the request ICI

op_ici_destroy (req_ici_ptr);

// Terminate this process.

op_pro_destroy (op_pro_self ());

// Define Interrupt codes

#define GNAC_AIM_MSG 		-11

#define GNAC_AIM_END 		-12

// Define transitions

#define SEND_MSG	(interrupt_code == GNAC_AIM_MSG 	&&

 interrupt_type == OPC_INTRPT_SELF)

#define END_APPL	(interrupt_code == GNAC_AIM_END 	&&

 		 interrupt_type == OPC_INTRPT_SELF)

#define ESTAB	(interrupt_code == TPALC_EV_CONF_OPEN 	&&

		 interrupt_type == OPC_INTRPT_REMOTE)

#define ABORT	(interrupt_code == TPALC_EV_IND_ABORT)

#define CLOSED	((interrupt_code == TPALC_EV_IND_CLOSE 	||

 	 interrupt_code == TPALC_EV_IND_ABORT) 	&& 		(interrupt_type == OPC_INTRPT_REMOTE))	

#define RCVD_MSG	(interrupt_type == OPC_INTRPT_STRM)

 �In OPNET, at the network domain the developer defines the topology of a simulated communication network, including the configuration of individual nodes, deployed applications, and their profiles.

� The gna_clsvr_mgr process models also implement client-client paradigm for voice and video applications.

� Forced state is the state that transits into the next state without any event occurrence. Unforced state is the state that transits into the next state only when a specific event occurs.

PAGE
9

