OPNET Technologies, Inc.

0

Dynamically Adjusting the Request Zone in GeoAODV Protocol

Vasil Hnatyshin, Remo Cocco, Malik Ahmed, and Dan Urbano Department of Computer Science Rowan University

Glassboro, NJ 08028

Copyright © 2012 OPNET Technologies, Inc

CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, copied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the Author.

Outline

Introduction

- Ad-hoc on-demand distance vector (AODV) routing protocol
- Location-based routing in MANET
- Location-Aided Routing (LAR)
 - LAR zone
 - LAR distance
- Geographical AODV (GeoAODV)
 - Regular GeoAODV
 - GeoAODV Rotate
- OPNET implementation of location-based routing protocols
 - Modeler Specifics
 - Uncovered LAR issues
- Simulation study
- Summary and conclusions
- The Practical OPNET® User Guide for Computer Network Simulation

Introduction: AODV

- Ad-hoc on-demand distance vector (AODV) routing protocol
 - Reactive routing protocol for mobile ad-hoc networks (MANET)
 - Finds a route when there is data to transmit
 - Discovers routes using a flooding technique
 - Broadcasts a route request (RREQ) packet to its immediate neighbors
 - Neighboring nodes retransmit RREQ packet
 - Route reply packet (RREP) is unicast to the source node when a destination or a node that has a path to the destination is reached.
 - Process terminates when RREP arrives at the source
 - Generates too much control traffic (i.e., RREQ broadcast)
 - Expanding ring search:
 - TTL field limits the broadcast area
 - Location-aided routing
 - Only certain nodes participate in RREQ broadcast

Introduction: Location-Aided Routing

- Idea of location-aided routing
 - Location information:
 - (x, y, z) coordinates
 - Traveling speed
 - Obtained via GPS
 - Request zone:
 - Based on location information
 - Area that likely contains the path to destination
 - Only nodes within request zone re-broadcast RREQs
- Advantages
 - Only nodes that likely on the path to destination participate in route discovery

AODV

request zone

- Fewer nodes rebroadcast RREQs
- Reduces the control traffic overhead

4

Location-Aided Routing: LAR zone

XIROMELAD

- All nodes know:
 - **d** destination's location at time \mathbf{t}_0
 - v destination's average speed
- Expected zone:
 - Area likely to contain destination at time $\mathbf{t_1}$
 - Circle centered in **d** with radius **r**
 - $\mathbf{r} = \mathbf{v} \times (\mathbf{t}_1 \mathbf{t}_0)$

- Request zone:
 - Rectangular area
 - Sides parallel to x and y axis
 - Sides tangent to expected zone
 - Contains source node and the expected zone

Location-Aided Routing: LAR distance

- Uses the distance between an intermediate node and destination to determine if an RREQ message will be rebroadcast or not
- Example:
 - RREQ for destination **D** arrives at node N_1 from node N_0
 - If distance between N_1 and D is not larger than distance between N_0 and D then RREQ re-broadcast, otherwise RREQ discarded
 - RREQ is forwarded if

Geographical AODV: Regular GeoAODV

- GeoAODV approach:
 - Request zone is a cone-shaped area controlled via a flooding angle
 - Source node is the apex of the cone
 - Flooding angle is evenly divided by line between source and destination
 - N, S, and D denote intermediate, source, and destination nodes
 - RREQ carries last known coordinates of S and D nodes and flooding angle α
 - Compute angle θ formed between nodes **D**, **S**, and **N**:
 - $\theta = \cos^{-1} \left((SD \cdot SN) / (|SD| \times |SN|) \right)$
 - If $\theta < \frac{1}{2} \times \alpha$ then RREQ is rebroadcast, otherwise RREQ is discarded

Geographical AODV: Regular GeoAODV

- GeoAODV supporting structures
 - Does not assume that node coordinates are known
 - Coordinates are distributed via control messages
 - Nodes maintain location tables with other node's coordinates, IP addresses, and freshness (i.e., a sequence number)
 - Stale location information is periodically purged
- If destination coordinates are unknown then flooding angle is 360°
 - GeoAODV operates the same way as regular AODV
- If route discovery fails to find a path then flooding angle increased and process repeated again until flooding angle becomes 360°
- GeoAODV requires initialization time to distributed node coordinates
 - Initially, GeoAODV is expected to perform similarly to AODV
 - GeoAODV performance is expected to improve once the node coordinates are available throughout the network.

Geographical AODV: GeoAODV Rotate

- GeoAODV Rotate
 - Operates the same way as Regular GeoAODV, but
 - Request zone is computed based on previous node's coordinates
 - Regular GeoAODV uses the source node coordinates
 - Request zone is re-oriented towards destination node at intermediate nodes
- Example
 - N₁ computes the request zone using coordinates for S and D
 - N_2 computes the request zone using coordinates for N_1 and D

GeoAODV rotate request zones recomputed at intermediate nodes GeoAODV request zone

OPNET Implementation

- Used OPNET Modeler 16.0
- Modified the code for
 - Standard AODV process model
 - Various supporting external files
 - RREQ and RREP packets structure files
- List of updated files:
 - manet_mgr.pr.c, aodv_rte.pr.c, aodv_pk_support.exc.c, aodv_request_table.ex.c
 - aodv_ptypes.h, aodv_pkt_suport.h, aodv.h, manet_mgr.pr.m
- Added few additional external files for LAR and GeoAODV implementation
- For LAR, node traveling speed and coordinates maintained using oms_data_def package
 - Add location information using *oms_data_def_entry_insert()* call
 - Retrieve location information using *oms_data_def_entry_access()* call

OPNET Implementation: LAR Special Cases

We uncovered several special case for LAR

Notation:

11

- (X_s, Y_s) source coordinates
- (X_d, Y_d) destination coordinates
- **R** expected zone radius
- LAR defines request zone as
 - Rectangle that encompasses the expected zone and has its sides tangent to the expected zone circle and parallel to x and y coordinate axis
- If source node is located in any of the areas specified below then the above definition of LAR request zone will not include portion of expected zone.
 - Area 1: X_s in $(X_d R, X_d + R)$ and $Y_s > Y_d + R$
 - Area 2: $X_s > X_d + R$ and Y_s in $(Y_d R, Y_d + R)$
 - Area 3: X_s in $(X_d R, X_d + R)$ and $Y_s < Y_d R$
 - Area 4: $X_s < X_d R$ and Y_s in $(Y_d R, Y_d + R)$

OPNET Implementation: LAR Special Cases

• Area 1:

- \mathbf{X}_{s} in $(\mathbf{X}_{d} \mathbf{R}, \mathbf{X}_{d} + \mathbf{R})$ and
- $\mathbf{Y}_{s} > \mathbf{Y}_{d} + \mathbf{R}$

• Area 2:

- $\mathbf{X}_{s} > \mathbf{X}_{d} + \mathbf{R}$ and
- \mathbf{Y}_{s} in $(\mathbf{Y}_{d} \mathbf{R}, \mathbf{Y}_{d} + \mathbf{R})$

• Area 3:

- \mathbf{X}_{s} in $(\mathbf{X}_{d} \mathbf{R}, \mathbf{X}_{d} + \mathbf{R})$ and
- $\mathbf{Y}_{s} < \mathbf{Y}_{d} \mathbf{R}$

• Area 4:

- $\mathbf{X}_{s} < \mathbf{X}_{d} \mathbf{R}$ and
- \mathbf{Y}_{s} in $(\mathbf{Y}_{d} \mathbf{R}, \mathbf{Y}_{d} + \mathbf{R})$

OPNET Implementation: LAR Special Cases

- To address the above issue by changing the definition of the corners in the request zone, as follows:
 - Lower-left corner: $[Min(X_d R, X_s), Min(Y_d R, Y_s)]$
 - Upper-right corner: $[Max(X_d + R, X_s, Max(Y_d + R, Y_s)]$
- Other observations:
 - LAR distance may fail to find a route to destination even if it exists; if a path to destination contains sections which require traveling in the direction away from destination
 - LAR distance does not provide any mechanism for identifying and dealing with the situations when the protocol fails to find the path to destination while the path exists.
 - The optimal values of α and β very much depend on the network topology
 - Determining proper values of α and β could be quite challenging.

Simulation Study: Set-up

- Simulation set-up:
 - Area size: 1500 m x 1500 m
 - 50 randomly placed nodes
 - Number of communicating nodes: 2, 5, 10, 20, and 30
 - Communicating nodes and destinations selected randomly
 - Communication start time: 100 seconds
 - Random Waypoint node movement model
 - Pause time: exponential(10) seconds.
 - Node traveling speed: 0, 5, 10, and uniform(0,20) meters/second
 - Wireless LAN configuration: default OPNET Modeler values.
 - Duration of simulation: 300 seconds.
- Each scenario executed 6 times (different seed value)
- Total 600 simulation runs
- GeoAODV flooding angle: initial value 90°, with 90° increment

Simulation Study: Set-up

Configuration Parameter	Value
Channel Data Rate	11 Mbps
Transmit Power	0.0005 Watts
Packet Reception Power Threshold	-95 dBm
Start of data transmission	normal (100, 5) seconds
End of data transmission	End of simulation
Duration of Simulation	300 seconds
Packet inter-arrival time	exponential (1) second
Packet size	exponential (1024) bytes
Mobility model	Random Waypoint
Pause Time	exponential(10)
Destination	Random

Simulation Results: 2 communicating nodes

Copyright © 2012 OPNET Technologies, Inc. CONFIDENTIAL - RESTRICTED ACCESS: This information may not be disclosed, copied, or transmitted in any format without the prior written consent of OPNET Technologies, Inc. Used with permission of the Author

Simulation Results: 5 communicating nodes

Simulation Results: 10 communicating nodes

Simulation Results: 20 communicating nodes

Simulation Results: 30 communicating nodes

Simulation Study: Conclusions

- The protocols that employ location information generate less control traffic than regular AODV.
- LAR Zone is outperforms all other protocols
 - Assumes that node coordinates and traveling velocity are known
- GeoAODV Rotate is consistently the second best option
 - Dynamically distributes node coordinates
 - Requires initialization time
 - Does not employ the knowledge of node velocities

Future Work

- We currently investigating:
 - Performance of GeoAODV Rotate in different environmental settings
 - Developing mechanisms to more accurately increment the value of flooding angle after failures
- We plan to:
 - Create a mechanism for determining more accurate flooding angle values (initial and increment)
 - Re-run the simulation study with a larger number of repetition (each with a different seed value),
 - Further analyze the collected results
 - Examine the performance of the GeoAODV Rotate during the pre- and post-convergence periods
 - Study how fast GeoAODV Rotate converges to a stable state
 - Examine the accuracy of node locations distributed via GeoAODV Rotate
 - Investigate how the accuracy of node locations influences the performance of GeoAODV Rotate
 - Compare GeoAODV Rotate with other location-based routing protocols

The Practical OPNET[®] User Guide for Computer Network Simulation

The Practical OPNET® User Guide for Computer Network Simulation

- Adarshpal S. Sethi
- Vasil Y. Hnatyshin

Hardcover:	527 pages
Publisher:	Chapman and Hall/CRC (September 4, 2012)
Language:	English
ISBN-10:	1439812055
ISBN-13:	978-1439812051

- The Practical OPNET® User Guide for Computer Network Simulation
 - One of the first books to provide a comprehensive description of OPNET® IT Guru and Modeler software
 - Explains how to use this software for simulating and modeling computer networks.
 - The included laboratory projects help readers learn different aspects of the software in a hands-on way.
- Quickly Locate Instructions for Performing a Task
 - The book begins with a systematic introduction to the basic features of PNET, which are necessary for performing any network simulation.
 - The remainder of the text describes how to work with various protocol layers using a top-down approach.
 - Every chapter explains the relevant OPNET features and includes step-by-step instructions on how to use the features during a network simulation.

- Gain a Better Understanding of the "Whats" and "Whys" of the Simulations
 - Each laboratory project in the back of the book presents a complete simulation and reflects the same progression of topics found in the main text.
 - The projects describe the overall goals of the experiment, discuss the general network topology, and give a high-level description of the system configuration required to complete the simulation.
- Discover the Complex Functionality Available in OPNET
 - By providing an in-depth look at the rich features of OPNET software, this guide is an invaluable reference for IT professionals and researchers who need to create simulation models.
 - The book also helps newcomers understand OPNET by organizing the material in a logical manner that corresponds to the protocol layers in a network.

Features

- Provides detailed descriptions of the most commonly used OPNET software features
- Illustrates how to develop and configure models for every layer of the TCP/IP reference model
- Contains extensive examples that show how to set up and configure many nontrivial features of OPNET software
- Presents detailed answers to commonly asked "how-to" questions
- Includes laboratory assignments that cover all layers of the TCP/IP reference model and enable readers to experiment with various software features described in the text