
Design and Implementation of an OPNET model for simulating

GeoAODV MANET routing protocol
Vasil Hnatyshin*and Hristo Asenov+

*Department of Computer Science

Rowan University

Glassboro, NJ 08028

E-mail: hnatyshin@rowan.edu

+Department of Computer and Information Science

University of Delaware

Newark, DE 19716

E-mail: hasenov@udel.edu

Abstract

Ad-Hoc On-Demand Distance Vector (AODV) is a routing

protocol for mobile ad hoc networks (MANET). AODV floods

the network with control messages to discover a route to the

destination, which often results in a large number of control

packets traveling through the network. This paper introduces the

design and implementation of GeoAODV routing protocol for

OPNET Modeler. GeoAODV takes advantage of Global

Positioning System (GPS) coordinates to only search the area

where a path to the destination is likely to be located. This paper

discusses the authors’ endeavors to develop a model of

GeoAODV protocol and seamlessly integrate it within OPNET

Modeler. In addition the paper provides an overview of OPNET

Modeler’s software architecture for modeling wireless networks

and MANET routing protocols.

1. Introduction

This paper describes the design and implementation of the

Geographical AODV (GeoAODV) routing protocol using the

OPNET Modeler network simulating software. GeoAODV is a

new protocol for simple and efficient location-based routing in

mobile ad hoc networks (MANET). GeoAODV uses Global

Positioning System (GPS) coordinates to improve performance

of the route discovery phase of the Ad-Hoc On-Demand

Distance Vector (AODV) routing protocol [7, 8]. GeoAODV is a

stateless reactive protocol, i.e. it does not maintain state

information, it relies only on local timers, and it initiates the

route discovery process only when a route to the destination is

required. However, unlike AODV, GeoAODV does not flood

the network with control messages to discover the route to the

destination. Instead, GeoAODV uses the destination’s last

known GPS coordinates to estimate the probable location of the

destination node and then limits the route discovery flooding

area to a region that is likely to contain a path to the destination.

The idea of using node coordinates is not new and has been

examined in the literature before [2-4, 6, 9].

OPNET Modeler [5] is a popular network simulation software

package that provides a flexible and accurate platform for

evaluating the performance of a variety of networking

technologies. OPNET Modeler gives access to a rich set of API

calls and process models usually implemented in the

programming language called Proto-C which is a combination of

the C/C++ programming language and state transition diagrams.

These features of OPNET software make almost any aspect of

simulated networking technologies modifiable and allow for the

development and study of new communication devices,

protocols, and networking paradigms [5]. We used OPNET

Modeler version 14.5 to study GeoAODV protocol and to

compare its performance with that of a regular AODV routing

protocol. In particular, we extended the existing implementation

of the AODV protocol to accommodate new GeoAODV features

and compared the performance of the route discovery phases of

AODV and GeoAODV protocols. The goal of this paper is to

introduce a new MANET routing protocol and provide the

details of how such a protocol can be implemented using

OPNET software.

The rest of the paper is organized as follows. Sections 2 and 3

provide a brief overview of the AODV routing protocol and

introduce the idea of GeoAODV protocol, respectively. An

overview of the OPNET architecture is given in Section 4,

followed by an overview of the OPNET implementation of

AODV protocol in Section 5. Design and implementation of

GeoAODV protocol are presented in Section 6. Discussion and

plans for future work are described in Section 7. The paper

concludes in Section 8.

2. Overview of AODV protocol

In this section we give a brief overview of the AODV protocol

[7-8]. As its name implies, the Ad-hoc On-demand Distance

Vector (AODV) routing protocol operates in the on-demand

fashion, that is, it attempts to discover a path to the destination

only when the source has data to send but does not have a route

to the destination. AODV consists of two primary phases: route

discovery and route maintenance. In this paper we are primarily

interested in the route discovery phase which relies on a flooding

technique to locate a path to the destination. The route

maintenance phase is responsible for removing outdated or

broken path entries from the routing table and is of no interest to

our study.

AODV initiates the route discovery phase by having the source

or the originator node broadcast a Route Request (RREQ)

message through the network. The RREQ message is re-

broadcast by each intermediate node until it reaches either the

destination node or a node with a fresh route to the destination.

In such a case the node generates a Route Reply (RREP)

message back to the originator. The route discovery phase

terminates when an RREP message that contains a route to the

destination arrives at the originator node. As the RREP traverses

the network back to the originator node it retraces the path of the

RREQ message, which was recorded as the RREQ message was

traveling through the network. Similarly, intermediate nodes that

receive an RREP message update their routing tables with the

route to the destination node. Once the route discovery phase

completes the originator node sends data to its destination over

the newly discovered path.

AODV also employs an expanding ring search technique which

works as follows: the originator node sets the TTL field in the IP

header of the RREQ message to a certain initial value. If the

mailto:hnatyshin@rowan.edu
https://exchange2007-ca-v1.rowan.edu/owa/redir.aspx?C=5947f7c956f945b199549920881e1d4d&URL=mailto%3ahasenov%40udel.edu

route discovery process fails to find a path to the destination then

the originator node increments the value of the TTL field and

repeats the process again. The process continues until either the

originator node finds a path to the destination or the whole

network has been searched and the path was not found; i.e. an

RREQ message with IP TTL field set to ttl_threshold value was

sent out but a route to the destination was not found. Such an

expanding ring search technique prevents unnecessary network-

wide dissemination of RREQs.

Despite the expanding ring search technique the route discovery

process in AODV often results in an unnecessarily large number

of control packets traveling through the network and consuming

such already scarce network resources as bandwidth, processing

power, and battery power. GeoAODV attempts to mitigate this

problem by reducing the scope of the control message broadcast

during the route discovery phase.

3. GeoAODV routing protocol

To reduce the search region during the route discovery phase

GeoAODV keeps track of and distributes known node GPS

coordinates in the network. Generally, a GPS position is defined

by a vector [x, y, z, t], where x, y, and z represent the

coordinates in three-dimensional space and t represents the time.

For simplicity, we assume that the z coordinate is always 0 (i.e.

all the nodes are located on the surface of the earth) while the

time coordinate t is maintained separately. Thus, GeoAODV

protocol keeps track of and distributes the last known node

position in the form of x and y coordinates, only.

Similar to AODV, in GeoAODV the originator node initiates the

route discovery phase when the path to destination is unknown.

However, the GeoAODV RREQ message carries additional

information which includes the originator and destination node

coordinates and the flooding angle. The flooding angle specifies

the search area within which the route discovery procedure will

take place. Specifically, if an intermediate node that receives an

RREQ message belongs to the search area specified by the

flooding angle then it forwards the RREQ message further,

otherwise the message is discarded, thus limiting the scope of

the route discovery process.

Figure 1. Example of GeoAODV operation

Generally, the flooding angle is computed based on the freshness

of the last known destination position. If the destination

coordinates are unknown then the flooding angle is set to a

maximum value, indicating that the search region is the whole

network. GeoAODV starts the route discovery process by

sending an RREQ message with the initial flooding angle value.

If the route discovery process does not succeed (i.e. no RREP

arrives prior to route request timer expiration) then the originator

node increases the value of the flooding angle and repeats the

process again. Eventually, the node will either find a route to the

destination or the value of the flooding angle will reach 360

degrees and GeoAODV will behave as AODV.

Figure 1 illustrates a basic idea of the route discovery process in

GeoAODV. When Source generates an RREQ message with the

flooding angle value A1 in an attempt to discover a path to

Destination only node N2 will forward the RREQ because it is

the only node within the search area defined by the flooding

angle. If the first round of route discovery with the flooding

angle A1 fails to find a path to Destination then Source will

generate another RREQ message with the flooding angle value

A2, which is larger than angle A1. The RREQ message with

flooding angle A2 may arrive at nodes N1, N2, and N3, however

only nodes N1 and N2 will forward the message because they are

inside of the search region defined by angle A2. Node N3 is

outside the search regions defined by flooding angles A1 and A2

and thus it will discard RREQ messages during both rounds of

route discovery.

4. Overview of OPNET architecture

The OPNET modeling architecture is structured in a layered

fashion. The process domain is the lowest layer in the hierarchy

and it contains the actual code of modeled protocols and

technologies. Node domain is responsible for creating models of

individual devices. It often relies on the process models to

simulate the behavior of certain modules within modeled

devices. Network domain is responsible for representing a

complete system of interconnected devices as a simulation

model.

Within the process modeling domain the developer implements

the behavior of various processes, such as upper layer

applications, routing protocols, IP interfaces, etc. In OPNET, the

modular implementations of these processes are often referred to

as process models. The complete specification of an OPNET

process model consists of a finite state machine, action

statements expressed in C/C++, and configurable parameters. In

addition, process models often rely on external files that contain

C/C++ implementations of various additional features.

Within the node modeling domain the developer implements the

behavior of various network devices, such as end nodes, hubs,

switches, routers, etc. Node models are usually defined via one

or more functional elements called modules. The behavior of

individual modules is specified either via a set of built-in

parameters or through one or more process models.

Network system models that include individual nodes and

interconnecting communication links are developed within the

network domain. Such network system models also include the

configuration of various additional features such as traffic

generation sources, application user profiles, network protocols,

etc. Generally, system models are configured via attribute values

that specify either local characteristics, applicable to individual

devices, or global characteristics, applicable to multiple devices

Source

Node N1

Node N2

Destination

Node N3

A1

A2

in the network. The attribute values specified in the network

domain layer propagate all the way down to the process models.

5. OPNET implementation of AODV

IP protocol’s process model ip_dispatch is part of every layer-

three networking device. One of many responsibilities of this

process is to identify and invoke the routing protocol that was

configured at the network domain layer. All MANET routing

protocols, except Optimized Link State Routing (OLSR), are

also indirectly invoked via the ip_dispatch process model. If a

simulation is configured to run one of the MANET routing

protocols then ip_dispatch creates and invokes the manet_mgr

process model. Similarly, manet_mgr parses attribute values

specified at the network domain layer to identify the MANET

routing protocol configured in the simulated network and then

creates and invokes the process model that implements the

routing protocol of interest.

OPNET’s implementation of the AODV protocol is defined via

several external C code files and a process model called

aodv_rte. As shown in Figure 2, the aodv_rte process model

consists of two states: init and wait. The init state is responsible

for initialization of various data structures including state

variables, local statistics, buffers, and protocol parameters. Once

initialization is complete, the process model moves into the wait

state which models the operation of the AODV protocol. The

aodv_rte process idles in the wait state until packet arrival or

expiry of a timer occurs. Based on the event type the process

performs the necessary actions by calling one or more of its

functions.

Figure 2. OPNET’s aodv_rte process model

Packets that arrive to AODV process model are handled by the

function aodv_rte_pkt_arrival_handle. The packet type allows

the process model to identify the function to be called next. If

the packet came from the application layer, it is a data packet

and it is processed by the aodv_rte_app_pkt_arrival_handle

function. In this function the packet’s header is examined

against a routing table to determine whether there is a route to a

destination. If there is no known route to destination then

function aodv_rte_route_request_send is called to generated

and send out a new RREQ message.

Control packets are handled separately from the data packets.

To process an incoming RREQ packet the aodv_rte process

model calls function aodv_rte_rreq_pkt_arrival_handle which is

responsible for determining if the RREQ packet should be re-

broadcast, discarded, or replied to with RREP. If the packet’s

source IP address matches the current node’s IP address or if the

packet have been seen before then the RREQ packet is

discarded. Each AODV node maintains a request table which

keeps track of all RREQ messages passed through this node and

allows identifying RREQ duplicates. Therefore, if the RREQ

packet is not discarded then its identity (i.e. source IP address

and request number) is recorded in the request table and its hop

count is incremented.

Next, the node attempts to update information about the route to

the originator node. Notice that each RREQ packet carries IP

addresses of the following nodes:

 Originator node IP address is stored in source address

fields of AODV RREQ message header

 Destination node IP address is stored in destination

address fields of AODV RREQ message header

 Previous node IP address is stored in source field of IP

header. Destination field of IP header is set to broadcast

address.

Routing table entry consists of the destination node IP address,

destination node sequence number (i.e. this number is issued by

the destination node and it determines the freshness of the route),

and the next hop IP address. Therefore, if the routing table does

not contain the route to originator node or if existing route is

invalid then the node updates its routing table as follows:

 Destination node IP address is set to the originator IP

address from RREQ header

 Destination node sequence number is set to originator

sequence number from RREQ header

 Next hop address is set to source IP address from IP

header (i.e. IP address of the previous node)

If the routing table already contains a entry for the originator

node then the entry is updated only if RREQ message carries a

better route (i.e. hop count is smaller) and if the route

information is fresher (i.e. the originator sequence number value

carried in RREQ message is greater than that of route entry).

Otherwise, the routing entry remains unchanged. Notice, that the

route to originator is needed when the RREP message that

carries the path to destination travels back.

Once the routing table is updated the node checks if it has a valid

and fresh (i.e. sequence number for destination node recorded in

the routing entry is greater than the corresponding sequence

number carried in RREQ) path to the destination node or if it is

the destination node itself. If the node has a “valid” path to

destination then it generates a RREP message and unicasts it

back to the originator node using aodv_rte_route_reply_send

function. Otherwise, the node sends RREQ message to IP layer

for rebroadcast.

In addition, aodv_rte process model employs following external

C code files:

o aodv_packet_queue – contains functions for managing hash

table which buffers data packets.

o aodv_route_table – contains functions for managing AODV

routing table.

o aodv_support – contains various supporting functions for

updating collected statistic values and printing debugging

information.

o aodv_pkt_support – contains function for creating AODV

data and control packets and headers.

o aodv_request_table – contains functions for managing

AODV’s request table.

o manet_support – contains functions that provide an interface

between MANET protocols and neighboring layers.

AODV control message headers are modeled as C structures

defined in external header file called aodv_pkt_support.ex.h.

Specifically, the RREQ message header is defined in

AodvT_Rreq structure, while RREP header is defined in

AodvT_Rrep. OPNET obtains the AODV message header from

the arriving IP packet by extracting the option field structure of

type AodvT_Packet_Option which consists of the following two

values:

 type – an integer value that specifies message type
 AODVC_ROUTE_REQUEST

 AODVC_ROUTE_REPLY

 AODVC_ROUTE_ERROR

 AODVC_RREP_ACK

 AODVC_HELLO

 value_ptr – a pointer of type void* that contains the

location of the corresponding message structure.

Using the type field of structure AodvT_Packet_Option, the

aodv_rte process identifies the AODV message type, retrieves

the data structure associated with the corresponding AODV

message header, and finally calls the function to handle the

corresponding AODV control message arrival.

The AODV process employs the routing table to keep track of

valid routes to destination nodes. Data structures

AodvT_Route_Table and AodvT_Route_Entry define the AODV

routing table and routing table entry, respectively. AODV

routing table is implemented as a hash table indexed by an IP

address. AODV routing table is populated and updated via

RREQ and RREP control messages. As expected, OPNET

implements packet forwarding within the IP module which uses

a common IP routing table. This routing table is updated and

maintained by the routing protocol configured for the simulation

study. Thus, AODV, and other routing protocols, in addition to

maintaining their internal routing tables are also responsible for

updating routing table at IP layer.

AODV process implements request table as a C structure called

AodvT_Request_Table. AODV’s request table has a dual

purpose:

(1) to keep track of RREQ messages generated from this

node and

(2) record all RREQs forwarded by this node.

A list of the RREQ messages originated from the node allows

implementing AODV’s expending ring search technique in the

route discovery process. This list is maintained in the form of a

hash table, indexed by destination IP addresses. The entries into

this hash table are defined by the AodvT_Orig_Request_Entry C

structure which stores request id, insertion time, current TTL

value, number of retries, and other information.

The record of RREQs forwarded by the node helps the AODV

process to identify and discard duplicate RREQ messages.

OPNET also maintains a list of RREQ messages forwarded by

this node, but not generated by it, as a hash table. This hash table

is indexed by the originator’s IP address and contains such

information as request id and insertion time.

Finally, the AodvT_Conn_Info structure implements the neighbor

connectivity table which keeps track of the neighbor nodes, i.e.

the nodes located one hop away from the current node. AODV

relies on the periodic exchange of HELLO messages between

neighboring nodes to maintain one hop routes. The neighbor

connectivity table is also implemented as a hash table. It is

indexed by the IP address of the neighboring node and stores the

time when the last HELLO message was received. All the data

structures that define AODV’s routing, request, and neighbor

connectivity tables are specified in the aodv.h header file.

6. Design and Implementation of GeoAODV

Instead of creating a new process model which would result in a

significant amount of duplicate code, we implemented

GeoAODV by extending the aodv_rte process model.

Specifically, we introduced the following changes:

(1) Added new protocol configuration parameters

(2) Modified the AODV control packet headers

(3) Modified AODV control packet managing routines

(4) Implemented GeoAODV protocol functionality

Model attributes for MANET routing protocols are specified in

the manet_mgr process model. However, the init state in

aodv_rte and other MANET routing protocol process models are

responsible for parsing and processing these attributes. For our

GeoAODV implementation we added several model attributes

including protocol type (i.e. AODV, GeoAODV, etc), and

certain configuration parameters (e.g. initial flooding angle, etc).

We defined new attributes in the manet_mgr process model and

parsed their values in the

aodv_rte_attributes_parse_buffers_create function of the

aodv_rte process model.

We modified the AodvT_Rreq and AodvT_Rrep C structures

defined in the aodv_pkt_support.h file, to specify additional data

carried by GeoAODV control packets. AodvT_Rreq was

modified to store originator and destination coordinates together

with the flooding angle carried in RREQ message; while the

AodvT_Rrep structure, which contains the format of AODV’s

RREP and HELLO messages, was changed to additionally store

destination coordinates. In our implementation we define node

coordinates as a pair of double precision floating point values

and, for simplicity, we represent the flooding angle as an integer

number, called request level, that has the following meaning:









360_,3

270_,2

180_,1

90_,0

_

angleflooding

angleflooding

angleflooding

angleflooding

levelrequest
 (1)

We added two new functions that create AODV control packets

according to the modified definitions of the AodvT_Rreq and

AodvT_Rrep C structures. We also updated the functions in the

aodv_rte process model that handle arrival and parsing of the

control packets.

We implemented GeoAODV protocol by adding the following

functionality to the aodv_rte process model:

(1) Each node maintains an internal table, called geo-table,

that stores the coordinates of other nodes in the network

(2) The geo-table is updated with node coordinates carried in

RREQ, RREP, and HELLO messages

(3) Decision about re-broadcasting arriving RREQ messages is

made based on a new GeoAODV algorithm

The geo-table is maintained in a similar fashion to that of the

AODV routing table. Each geo-table entry contains the

following information about the destination of interest: IP

address, sequence number, and location coordinates. The IP

address uniquely identifies the destination node. The sequence

number identifies the freshness of coordinates, the same way as

in regular AODV. Location coordinates specify the last known

location of the node. The geo-table is populated via RREQ,

RREP, and HELLO messages which carry node coordinates. We

added function calls for updating geo-table into the following

functions:
 aodv_rte_rreq_pkt_arrival_handle

 aodv_rte_rrep_pkt_arrival_handle

 aodv_rte_rrep_hello_pkt_arrival_handle

Implementation of GeoAODV functionality consists of two

distinct parts: (a) initiating and managing the route discovery

process at the originator node and (b) determining if the RREQ

packet is to be rebroadcast based on the flooding angle value.

The rest of GeoAODV protocol is very similar to AODV with a

few minor exceptions that were described above (i.e. distributing

node coordinates via GeoAODV control packets).

In GeoAODV, the originator node initially starts with a small

flooding angle value which it increases if the previous round of

route discovery failed to locate a route to the destination.

Therefore, the originator node needs to keep track of the

flooding angle used in the current round of route discovery. We

modified C structure AodvT_Orig_Request_Entry by adding an

integer field to record the value of the flooding angle used in the

last RREQ message originated from this node.

Figure 3. Computing initial value of request level

Always starting the route discovery process with the smallest

value of the flooding angle may lead to unnecessary delays if

there are no neighbouring nodes within the area defined by the

flooding angle. Therefore, the originator node computes the

initial value of the flooding angle by selecting a value so that

there will be at least one neighbouring node within the

corresponding search area. Also recall that if the originator node

does not have any coordinates for the destination node then it

sets the flooding angle to 360° and operates as in regular AODV.

Figure 3 describes the general algorithm used by the originator

node to compute the initial value of the request level that

represents the flooding angle.

Once the initial value of the flooding angle is computed the

originator node initiates the route discovery process by

generating an RREQ message and sending it to the IP layer for

broadcast. We updated the function

aodv_rte_route_request_send defined in the aodv_rte process

model to send an RREQ message based on modified definitions

of the AodvT_Rreq structure. Summary of the algorithm used at

the GeoAODV originator node upon the start of the route

discovery process is described in Figure 4.

Figure 4. Start of GeoAODV Route Discovery Process

Upon RREQ arrival, in addition to regular AODV validation

procedures, an intermediate node calls GeoAODV functions to

determine if the RREQ should be re-broadcast or not;

specifically, GeoAODV uses the originator and destination

coordinates and the flooding angle carried in the RREQ message

to determine if it is located within the route discovery search

area. Only those RREQs that satisfy both validation conditions

are re-broadcast farther.

Specifically, an intermediate node examines the angle θ formed

between the originator-destination and originator-intermediate

node vectors. If the angle θ is within half of the flooding angle

then the intermediate node is located within the search area,

otherwise it is not and the RREQ should be discarded. Angle θ is

computed as follows:

SNSD

SNSD1cos

(2)

Where,

 SD is a vector between originator and destination,

 SN is a vector between originator and intermediate

node N,

 SD and SN are absolute values of vectors SD and

SN , respectively.

Figure 5. Example of GeoAODV Search Area

1. Retrieve current node’s location coordinates
2. If the destination’s coordinates are available in geo-table then

i. Retrieve destination coordinates from geo-table
ii. Compute the initial value of the request level

3. Otherwise (destination coordinates are unknown)
i. Set the request level to 3 (e.g. regular AODV)

ii. Set destination coordinates to (-1, -1) (e.g. unavailable)
4. Generate RREQ message using obtained request level and

source and destination coordinates
5. Send generated RREQ message
6. Update Request Table (i.e. record RREQ message information)

1. If destination coordinates are unknown then return 3
2. Set the value of the request level to 0
3. Repeat while request level < 3

a. If there is at least one neighboring node within the
search area defined by the current value of request
level then return request level

b. Increment request level by 1
4. Return request level

N

D

S

Figure 5 illustrates a situation where intermediate node N

rebroadcasts the RREQ message because the angle θ formed by

the originator-destination and originator-intermediate node

vectors is within half of flooding angle α. Generally, the

originator-destination vector always divides the flooding angle

evenly. Thus, an intermediate node belongs to the search area if

it is located on either side of the originator-destination vector

and its angle θ is not larger than half of the flooding angle, or is

located directly on the originator-destination vector.

In addition to determining if the RREQ message is to be re-

broadcast, an intermediate node also updates its geo-table and

Request Table and checks if it has a route to the destination.

Summary of GeoAODV algorithm for processing RREQ

message at an intermediate node is presented in Figure 6.

Figure 6. Processing of RREQ at intermediate node

The RREP message is generated upon RREQ message arrival at

the destination node or an intermediate node that knows a path to

the destination. We modified the function

aodv_rte_route_reply_send defined in the aodv_rte process

model to send the RREP message based on the modified

definitions of AodvT_Rrep structure as well. The processing of

the RREP message at the intermediate nodes is almost identical

to that in regular AODV, with the exception that an intermediate

node also updates its geo-table with the most up-to-date value of

destination coordinates.

Once the RREP message arrives at the originator node the route

discovery process completes and the originator node transmits

all accumulated application layer packets. However, if the RREP

message never arrives at the originator node then the route

request timer expires and the route discovery process is repeated

with a larger value for the flooding angle. The process is

repeated until either a route to the destination is found or the

route discovery process uses a flooding angle value of 360

degrees (i.e. regular broadcast) and fails to find a route to the

destination. Figure 7 shows the summary of the overall route

discovery process.

Finally, GeoAODV also takes advantage of HELLO messages to

distribute node coordinates in the network. We modified the

function aodv_rte_route_table_entry_from_hello_update to

update geo-table with the coordinates of the neighboring nodes

carried in the HELLO message. Since HELLO messages use the

same format as RREPs the code changes were minimal.

To provide clear separation between the original implementation

of AODV and the changes we have introduced, all algorithms

for managing geo-table and limiting the route discovery search

area were placed into external files. Note that all external files

used by the process model must be explicitly declared via the

Declare External Files... drop-down option of the Process Model

Editor.

Figure 7. Summary of route Discovery Process

We validated the correctness of our model by performing unit

testing of the newly-added functions and conducting several

simple simulation studies (i.e. small size networks) of

GeoAODV protocol. In each study we carefully traced the

execution of the GeoAODV model using the OPNET debugger

and DES logs and verified correctness of intermediate and final

results.

7. Discussion and Future work

We performed a simple simulation study to verify the

advantages of GeoAODV protocol. The primary goal of this

study was to compare the number of control messages generated

by the AODV and GeoAODV protocols during the route

discovery process. Our study examined two sets of scenarios:

one with stationary nodes and another with mobile nodes. In

each set of scenarios we used a network topology that consists of

50 MANET nodes randomly placed within a 1000 meters by

1000 meters area.

In addition, each scenario used a different number of

communicating nodes and the communicating node pairs were

selected randomly. In mobile scenarios the nodes were moving

according to the random waypoint model without pause between

each step and the average node speed was uniformly distributed

between 1 and 10 meters/second. We examined scenarios with 5,

10, 20, and 30 communicating nodes. Table 1 presents the

summary of the main configuration parameter values. The

attributes marked with an asterisk (*) had their value computed

using a probability distribution function with the function name

and input parameter values specified in the value column.

Configuration Parameter Value

Channel Data Rate 11 Mbps

Transmit Power 0.005 Watts

Packet Reception Power Threshold -95 dBm

Start of data transmission* normal (100, 5) seconds

End of data transmission End of simulation

Packet inter-arrival time* exponential (1) second

Packet size* exponential (1024) bytes

Duration of Simulation 300 seconds

Table 1. Summary of Route Discovery Process

1. Done = false
2. While (!Done)

a. Compute new flooding angle
b. Update Request Table
c. Send RREQ
d. Start Route Request Timer
e. Wait until RREP arrival or Route Request Timer expiry
f. If RREP arrives then Done = true
g. If Route Request Timer expires

a. If (flooding angle == 360) then Done = true
b. Else Done = false

3. Send accumulated application packets

1. Update geo-table with originator node coordinates and
destination node coordinates if fresher

2. If the node is destination or the node knows route to destination
a. Generate RREP
b. Return from function

3. If AODV determines that RREQ message is to be rebroadcast and if
the node is within the search area then

a. Rebroadcast RREQ
b. Update Request Table
c. Return from function

4. Drop RREQ message

Simulation results confirmed our hypothesis that GeoAODV

improves the performance of the route discovery process of

AODV protocol and reduces the number of control packets that

traverse the network. Summary of simulation results is presented

in Figure 8. Refer to [1] for a detailed description of GeoAODV

simulation study.

Even though the simulation results are promising we believe that

the GeoAODV protocol has room for improvement. Currently,

we are investigating several variations to GeoAODV which will

limit the search area during the route discovery process even

further. Specifically we are considering the following

optimizations of GeoAODV protocol:

(a) Modify the processing at the intermediate node so that it

computes the search area formed in respect to previous–

destination node line instead of originator–destination line.

Such a modification is easy to implement and would re-

orient the search area in the direction of the destination at

each individual node. This modification might result in

fewer control messages re-broadcast through the network.

(b) Add provisions to ensure that the route discovery does not

extend too far beyond the location of the destination node. A

possible way to implement such a provision is to check that

the distance between the current node and destination is not

larger than the distance between the previous node and the

destination [4].

(c) Modify GeoAODV route discovery process so that the

flooding angle dynamically increases at the intermediate

nodes if there are no immediate neighbors within the search

area defined by the flooding angle specified in the arriving

RREQ message. Such an approach may reduce the number

of unnecessary route discovery attempts with a small value

of the flooding angle.

(d) Combine multiple ideas presented above to maximize the

overall improvement. One such hybrid approach could be to

use only two values of flooding angle, 180 and 360, and

always compute the search area based on the location of the

previous node. Such an approach will reduce the number of

GeoAODV route discovery attempts to at most two which

could be advantageous in sparsely populated MANETs.

Figure 8. Summary of simulation results

In addition, we are currently in the process of implementing

other approaches [2-4, 6] that employ GPS coordinates to

improve the route discovery process of AODV protocol. We

plan to conduct a comprehensive comparative study of such

protocols. Finally, we plan to examine the effectiveness of

GeoAODV protocol in distributing node location coordinates

throughout the network, which is one of the side-effects of this

protocol.

8. Conclusions

This paper presents the design and implementation of

GeoAODV, a new protocol for improving the performance of

AODV route discovery process. GeoAODV takes advantage of

the GPS system and uses node coordinates to reduce the search

area during the route discovery process. Specifically, this paper

describes OPNET architecture for modeling MANET routing

protocols and AODV protocol in particular as well as provides a

detailed account of the authors’ endeavours to implement

GeoAODV routing protocol by extending AODV process model

using OPNET Modeler version 14.5. In addition, this paper

provides a summary of simulation results which show that with

the help of GPS coordinates, GeoAODV routing protocol

reduces the control packet overhead during the route discovery

process. Currently, we are investigating new ideas for improving

performance of GeoAODV protocol and we plan to implement

other location-enabled routing schemes and compare their

performance with that of GeoAODV. Finally, we believe that

this paper could greatly benefit other researchers who use

OPNET tools to study and evaluate the performance of wireless

mobile ad hoc networks.

References

[1] H. Asenov and V. Hnatyshin, “GPS-Enhanced AODV routing”,

Proc. 2009 International Conference on Wireless Networks (ICWN'09),

Las Vegas, NV, 2009.

[2] D. Espes, Z. Mammeri, “Adaptive expanding search methods to

improve AODV Protocol,” IST Mobile and Wireless Communications

Summit, July 2005.

[3] Y. Ko and N. H. Vaidya, “Flooding-based geocasting protocols for

mobile ad hoc networks,” Mobile Networks and Applications, 7(6),

Dec. 2002, pp. 471-480.

[4] Y. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile

ad hoc networks,” Wireless Networks, 6(4), July 2000, pp. 307-321.

[5] OPNET Modeler ver. 14.5. OPNET Technologies, Inc®,

www.opnet.com last visited 6/5/10.

[6] G. Pei, M. Gerla, and T.-W. Chen, “Fisheye State Routing: A

Routing Scheme for Ad Hoc Wireless Networks” in Proc. of the IEEE

International Conference on Communication, New Orleans, LA, June

2000.

[7] E. M. Royer and C. E. Perkins, "An Implementation Study of the

AODV Routing Protocol," Proc. of the IEEE Wireless Communications

and Networking Conference, Chicago, IL, September 2000.

[8] C. E. Perkins and E. M. Royer, "Ad hoc On-Demand Distance

Vector Routing," Proc. of the 2nd IEEE Workshop on Mobile

Computing Systems and Applications, New Orleans, LA, Feb. 1999, pp.

90-100.

[9] B. Zhou, Y. Lee, M. Gerla, and F. de Rango, “Geo-LANMAR: a

scalable routing protocol for ad hoc networks with group motion:

Research Articles”, Wireless Communications & Mobile Computing,

6(7), Nov. 2006, pp. 989-1002.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

5 10 20 30

N
u

m
b

e
r

o
f

R
R

EQ
 m

e
ss

ag
e

s

Number of Communicating Nodes

GeoAODV Stationary

AODV Stationary

GeoAODV Mobile

AODV Mobile

http://www.irit.fr/publications.php3?code=3125&nom=Espes%20David
http://www.irit.fr/publications.php3?code=203&nom=Mammeri%20Zoubir

