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Abstract 

In the recent year a variety of approaches for QoS support in the Internet such as Integrated Services 
[1], Differentiated Services [2], Bandwidth Distribution Scheme (BDS) [3], and others have been proposed. 
Most of the proposed approaches rely on the traffic policing unit, which may mark, delay, or drop packets 
that arrive above their reserved rate. The packets that arrive above their reserved rate are often referred to 
as out-of-profile packets. Often the policer limits the transmission rate of the flows that enter the network 
by dropping all out-of-profile packets. The Transport Control Protocol (TCP) [4] treats packet loss as an 
indication of congestion and reduces the flow’s congestion window. Reducing the flow’s congestion 
window effectively reduces the transmission rate of that flow. Thus, dropping out-of-profile packet may 
have a double effect on the transmission rate of the flow: the flow’s rate is reduced by the traffic policer 
and by the congestion control mechanism of TCP. In this paper we examine the influence of the traffic 
policer that drops out-of-profile packets on the TCP traffic. We examine the performance of the traffic 
policer within the BDS framework using the OPNET Modeler network simulator [5]. 
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1. Introduction 
As the Internet expands and diversifies, the current best effort approach to Quality of Service 

(QoS) in the Internet is no longer able to address the growing needs of the new emerging 
applications. To solve the problem of providing Quality of Service in the Internet, a number of 
service differentiation models have been proposed. The Integrated Services (IntServ) model[1], 
the Differentiated Service (DiffServ) approach[2], and the Bandwidth Distribution Scheme (BDS) 
[3] are just examples of the few among many approaches that have been introduced in the last 
two decades. Generally, to guarantee a particular level of service the network negotiates a traffic 
profile with the user and then enforces it in the network routers. Often the traffic profile is 
included as a part of the Service Level Agreement (SLA). 

When a packet arrives at the router it is being classified to identify the SLA the packet 
belongs to, metered to determine if the packet conforms to its profile, and then policed according 
to the rules specified in the SLA. The traffic meter differentiates between the packets that 
conform to their profiles (these packets are called in-profile) and the packets that do not conform 
to their profile (these packets are called out-of-profile). The traffic policer forwards all in-profile 
packets to their corresponding outgoing interfaces and “punishes” all the out-of-profile packets. 
The “punishment” of an out-of-profile packet may include shaping the packet (e.g. delaying the 
packet until it becomes in-profile), marking the packet to indicate that it arrived at the rate outside 
of the negotiated profile, or simply dropping the packet.  

The policy of dropping out-of-profile packets may have a negative effect on the TCP traffic 
because TCP treats packet loss as an indication of congestion. When TCP perceives that the 
packet was lost it reduces the congestion window of the flow, which effectively lowers the 



transmission rate of that flow. Thus, discarding the out-of-profile packets may have a double 
effect on the flows: the transmission rates of the flows are reduced by the traffic policer and by 
the congestion control mechanism of TCP [4].  

This paper investigates the effects of the policy of dropping the out-of-profile packets on the 
TCP traffic. We perform this study within the BDS framework that employs traffic policer at the 
network edges. In the BDS approach the traffic rates are dynamically adjusted based on the 
network characteristics and are strictly enforced at the network edges: the edge routers discard all 
out-of-profile packets. The rest of the paper is organized as follows. Section 2 presents an 
overview of the Bandwidth Distribution Scheme and a summary of TCP congestion control. 
Section 3 describes the simulation set-up and collected results. Finally, Section 4 analyzes 
collected results and provides  summary and conclusions. 
 
 

2. The overview of the Bandwidth Distribution Scheme 
The Bandwidth Distribution Scheme[3] was developed to provide per-flow bandwidth 

guarantees in a scalable manner. The BDS core routers do not maintain per-flow information (e.g. 
bandwidth requirements of individual flows); instead core routers keep aggregate flow 
requirements. The amount of information kept in the network core is proportional not to the 
number of flows but to the number of edge routers, which we believe does not raise scalability 
concerns. The edge nodes maintain per-flow information and fairly allocate network resources 
(e.g. bandwidth) among individual flows according to the flow requirements and resource 
availability. The dynamic resource allocation at the edge routers is enabled by the network 
feedback which consists of periodic path probing and explicit congestion notifications. Overall, 
the BDS architecture consists of: the admission control mechanism, which determines if a new 
flow can be admitted into the network, the resource management mechanism, which fairly 
distributes available bandwidth among individual flows, and the protocol for distribution of the 
aggregate flow requirements, which provides feedback to the network routers about the changes 
of network characteristics.  

In the BDS approach, it is assumed that each user-flow negotiates (e.g. requests) the 
bandwidth range called the Requested Bandwidth Range (RBR). The RBR of flow f , fRBR , 

consists of two values: a minimum rate, fb , below which the flow cannot operate normally, and 
the maximum rate, fB , that the flow can utilize.  

],[ fff BbRBR =     (1) 
The BDS approach guarantees that each flow would receive at least its minimum requested 

rate fb . The excess bandwidth, (e.g. what is left after each flow is allocated its minimum 
requested rate) is fairly distributed among the flows that may benefit from it. The BDS resource 
management mechanism computes the transmission rate of the flow f that travels on the path P 
with the bottleneck link l as follows: 
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In equation (2), lC  is the capacity of bottleneck link l, lb  is the aggregate of the minimum 

requested rates of the flows that travel through l, and f
lϕ  is the fair share of flow f on l. The fair 

share of flow f on link l is usually computed as the ratio between the RBR of flow f and the 
aggregate RBR on l.  

The BDS edge routers classify, meter, and then police all incoming traffic. By default, the 
edge routers drop all the packets that arrive above the flow’s transmission rate f

PR  computed by 
equation (2). The BDS edge routers implement the per-flow traffic policers as an array of token 



buckets (e.g. one token bucket per flow). The token bucket is configured with the token 
generation rate f

P
f

TB RR =  and the token bucket size TBS . If the BDS edge router receives packet 

p of flow f at time iT  and the previous packet of flow f arrived at time 1−iT  then the edge router 
will discard packet p of flow f only if: 
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In this paper we examine how the above BDS resource management mechanisms influence 

the TCP traffic. The TCP congestion control employs so called “additive increase – multiplicative 
decrease” approach. In the absence of congestion, TCP increments transmission rates of 
individual flows (congestion window) by one full-sized segment per round-trip time (RTT) 
(linear increase during congestion avoidance). However, when congestion occurs, TCP cuts the 
flow transmission rates in half [4]. TCP treats each packet loss as an indication of congestion 
which may conflict with the discard all out-of-profile policy of the BDS traffic policer. 
 
 

3. Simulation configuration and results 
3.1.  Topology Configuration 

In this study we use the “dumbbell”-like topology shown in Figure 1.  In this topology source 
nodes client_1, client_2, and client_3 send traffic to destination nodes server_1, server_2,  and 
server_3. The generated traffic traverses the bottleneck link router_0 – router _1. We examine 
performance of the BDS discarding policy using UDP and TCP transport protocols. In particular, 
we examine how the BDS approach distributes available bandwidth among individual flows. It 
should be noted, that the value of the link capacity is not the same as the amount of bandwidth 
provisioned for BDS traffic. In this study we assume that the network administrator provisions a 
portion of the link capacity for the BDS traffic. Thus, the BDS attempts to utilize all the 
bandwidth allocated for its traffic.  

 

 
 

Figure1. Simulation Topology. 
 



3.2. UDP scenario 
In this set of experiments the client nodes were configured to establish video conferencing 

sessions with their corresponding server nodes. The video traffic has strict Quality of Service 
requirements in terms of throughput and jitter and because of that it uses UDP as its transport 
protocol. In this scenario the bottleneck link between router_0 and router_1 was provisioned with 
4 Mbps of bandwidth for BDS traffic. Each flow was transmitting traffic at the constant rate that 
was slightly above the flow’s maximum RBR. We ran simulation for 100 seconds. Table 1 shows 
the summary of scenario’s configuration. 

 
Source Destination Start Time End Time Min RBR Max RBR 
client_1 server_1 10 sec 100 sec 500 Kbps 1000 Kbps 
client_2 server_2 10 sec 85 sec 1000 Kbps 1500 Kbps 
client_3 server_3 10 sec 60 sec 2000 Kbps 2500 Kbps 

 

Table 1. Configuration of UDP scenario. 
 

UDP is an unreliable transport protocol and does not react to the data losses. That is why we 
expected that each flow will receive exactly its fair share as computed by the BDS resource 
management mechanism. Table 2 shows the computed fair share for the initial [10 sec, 60 sec] 
time period. Figure 2 illustrates achieved individual flow throughput for UDP scenario. As 
expected, during the initial 60 seconds the traffic flows observed the throughput that was equal to 
their fair shares as computed in Table 2. Such bandwidth distribution consumed 100% of the 
bandwidth allocated for the BDS traffic.  

When flow client_3 – server_3 terminated at time 60 seconds, the aggregated maximum 
requested rate of remaining BDS flows was larger than the BDS capacity. According to equation 
(2), the BDS flows cannot transmit above their maximum requested rates. Thus, after termination 
of flow client_3 – server_3, the remaining flows client_1 – server_1 and client_2 – server_2 were 
allocated the amount of bandwidth equal to their corresponding maximum requested rates of 1000 
Kbps and 1500 Kbps, respectively.  

 
Source Destination Bandwidth Share  
client_1 server_1 500 + (4000 – 3500) * (1000 – 500)/(5000 – 3500) = 633 Kbps 
client_2 server_2 1000 + (4000 – 3500) * (1500 – 1000)/(5000 – 3500) = 1133 Kbps 
client_3 server_3 2000 + (4000 – 3500) * (2500 – 2000)/(5000 – 3500) = 2133 Kbps 

 

Table 2. Computed flow fair shares during [10 sec, 60 sec] time period. 
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Figure 2. Flow throughput for UDP scenario. 



This simple scenario shows that when using UDP transport protocol the policy of discarding 
the out-of-profile traffic does not interfere with the BDS resource distribution mechanism and 
allows each flow to achieve the throughput that corresponds to its fair share.  

 
3.3. TCP scenario configuration 

In this scenario the client nodes were configured to upload a large file to their corresponding 
server using the FTP application. Each flow transmitted traffic until the FTP upload was 
completed. Simulations were run for 300 seconds. FTP applications are very sensitive to loss and 
thus require reliable data transfer offered by TCP transport protocol. Since FTP applications do 
not require as much bandwidth as video traffic we adjusted the RBR of individual flows as well 
as the amount of bandwidth provisioned for BDS traffic in the network. We allocated 300 Kbps 
of available bandwidth for the BDS traffic on the bottleneck link. We set the individual client 
RBR to roughly correspond to the current connection types. Table 3 summarizes the flow 
configuration for TCP scenario.  

 
Source Destination FTP Upload Min RBR Max RBR Connection Type 
client_1 server_1 1 MByte 28 Kbps 56 Kbps Dial-up 
client_2 server_2 2 MByte 80 Kbps 160 Kbps DSL 
client_3 server_3 4 MByte 100 Kbps 200 Kbps Cable 

 

Table 3. Flow configuration of TCP scenario. 
 

3.4. Flow throughput vs. link capacity 
First, we examined the performance of the FTP applications for two different BDS capacity 

settings: 300 Kbps and 1000 Kbps. In this simulation we used the New Reno flavor of TCP. Table 
4 briefly summarized configuration of New Reno and other TCP flavors used in this study. 

 
TCP  

Flavor 
MTU  

(bytes) 
Receiver buffer 

(bytes) 
Fast  

Retransmit 
Fast 

Recovery 
Selective 

Acknowledgement 
Tahoe 512 64 K OFF OFF OFF 
Reno 512 64 K ON Reno OFF 
New Reno 512 64 K ON New Reno OFF 
SACK 512 64 K ON New Reno ON 

 

Table 4. Summary of TCP flavor settings. 
 

Table 5 presents the results collected in this scenario. The results showed that regardless of 
the capacity allocated for the BDS traffic, the actual throughput achieved by individual FTP 
applications was below their allocated fair shares. In some cases the simulation reported that the 
flow throughput  was below the flow’s minimum requested rate.  

 
Capacity = 300 Kbps Capacity = 1000 Kbps Source RBR 

(Kbps) Fair Share Throughput Fair Share Throughput 
client_1 [28, 56] 40.38 Kbps 18.82 Kbps 56 Kbps 20.95 Kbps 
client_2 [80, 160] 115.4 Kbps 79.22 Kbps 160 Kbps 98.84 Kbps 
client_3 [100, 200] 144.2 Kbps 76.68 Kbps 200 Kbps 120.36 Kbps 

 
Table 5. Fair Shares and Achieved Throughput for TCP flows. 

 
3.5. Flow throughput vs. TCP flavor 

In this section we examined the throughput achieved by individual flows when using different 
TCP flavors. In particular, we examine achieved throughput when using the following TCP 
flavors: Tahoe, Reno, New Reno, and Selective Acknowledgement (SACK).  



The Tahoe flavor of TCP does not implement the fast recovery/fast retransmit mechanism. 
TCP Tahoe identifies the TCP segment loss based on the expiration of the retransmission timer. 
TCP Reno implements the fast recovery/fast retransmit mechanism and identifies the segment 
loss as follows. When the sender receives three consecutive acknowledgements (ACK) for the 
same segment then it assumes that the segment was lost and immediately re-transmits that 
segment without waiting for the timeout.  

TCP New Reno also implements the fast recovery/fast retransmit mechanism. However, if 
during the fast-retransmit procedure another segment loss occurs, the fast-retransmit procedure is 
NOT terminated and restarted as in TCP Reno. If a partial segment acknowledgement (e.g. an 
ACK for a recently lost and re-transmitted packet arrives but not for subsequent packets) then 
TCP assumes that the following packet was also lost.  This packet is being retransmitted without 
waiting for 3 duplicate ACKs and without restarting fast retransmit. Finally, the SACK flavor of 
TCP uses the same fast recovery/fast retransmit mechanism as TCP New Reno but instead of 
returning a cumulative ACK for each received TCP segment, it returns an ACK that lists the 
sequence numbers of successfully received TCP segment within its window. TCP SACK allows 
faster identification of the packet and thus faster response to congestion. 

Table 6 display the achieved application throughput for different TCP flavors. These results 
were collected using flow configuration of Table 3 and BDS capacity of 300 Kbps. We ran each 
simulation five time and averaged the results. 

 
Flow Throughput (Kbps) Source RBR  

(Kbps) 
Fair Share 

(Kbps) Tahoe Reno New Reno SACK 
client_1 [28, 56] 40.38  15.67  15.23 16.31 65.00 
client_2 [80, 160] 115.4  60.72 49.81 52.35  122.90 
client_3 [100, 200] 144.2  80.43  73.39 80.08  150.54 

 
Table 6. Fair Shares and Achieved Throughput for different TCP flavors. 

 
The collected results show that when using TCP Tahoe, Reno, or New Reno,  the average 

flow throughput is significantly smaller than the corresponding flow fair share. However, when 
using TCP SACK, the average flow throughput exceeded the corresponding flow fair share. We 
were not able to discover the reasons for such behavior and currently investigating this 
phenomenon. 

 
3.6. Flow throughput vs. TCP receiver window 

Finally, we conducted a study that examines the achieved flow throughput for different TCP 
receiver window sizes. Reducing the TCP window size causes the actual TCP transmission rate to 
decrease. This, in turn reduces the number of TCP segments dropped by the BDS traffic policer 
and also limits the frequency of invocation the fast recovery/fast retransmit mechanism. Table 7 
shows collected results for scenario flow configuration of Table 3 and BDS capacity of 300 Kbps. 
We ran each simulation five time and averaged the results. The collected results shown that 
regardless of the TCP receiver window size the flows were not able to achieve the throughput 
level that corresponds to their fair shares. 

 
Flow Throughput (Kbps)  Source RBR 

 (Kbps) 
Fair Share 

(Kbps) 8 Kbytes 16 Kbytes 32 Kbytes 64 Kbytes 128 Kbytes 
client_1 [28, 56] 40.38  12.55  10.28  12.29 16.035 20.91 
client_2 [80, 160] 115.4  54.17  65.56  83.84 64.00 46.14 
client_3 [100, 200] 144.2  75.93  75.12  76.03 67.50 71.35 

 
Figure 7. Fair Shares and Achieved Throughput for different Receiver window sizes 

 



4. Analysis and conclusions 
In this study we examined how the policy of discarding the out-of-profile traffic influences 

the throughput of TCP and UDP flows. We used the BDS token bucket traffic policer to discard 
the out-of-profile packets. When using UDP as transport protocol all the flows were able to 
achieve the throughput that corresponds to the flow’s fair share. The reason for this behavior is 
the “non-responsiveness” of the UDP. UDP ignores packet losses and continues to transmit traffic 
at the same rate. 

On the other hand, TCP reduces transmission rate of a flow whenever the flow experiences 
the packet loss. The TCP behavior causes data packets to arrive in bunches which causes the 
token bucket to discard consecutive packets. As the result, when token bucket drops multiple 
consecutive packets, the TCP congestion control mechanism reduces the TCP congestion window 
to 1 which slows down the flow’s transmission rate to almost a complete halt. This process 
repeats multiple times until TCP converges to the “optimal” window size. Unfortunately, most of 
the TCP flows are short lived (e.g. E-mail,. Telnet, HTTP, etc) and often terminate well before 
TCP converges, which prevents them from achieving their allocated fair share. In addition, TCP 
experiences segment loss even after it converged, causing the window size and the transmission 
rate of the flow to fluctuate and go below the flow’s allocated fair share. These facts explain why 
the TCP flows experience the throughout that is significantly lower than the flow fair share 
allocated by the BDS resource management mechanisms. 

In conclusion, this study showed that the policy of discarding the out-of-profile packets does 
not work well with TCP flows. Such policy has double negative effect on the TCP flows: first, the 
flow’s rate is reduced by the token bucket that drops all out-of-profile packets and then by the 
TCP’s congestion control that reduces transmission rate upon each packet loss. As the result, the 
throughput of the TCP flows is significantly lower than the corresponding rate limit enforced by 
token bucket. This study was the first step in out investigation of the packet discarding policies 
and their influence on TCP traffic. Currently, we plan to investigate other means for punishing 
the out-of-profile traffic. In particular, we plan to study mechanisms where the packets are 
delayed instead of being dropped, the edge routers notify TCP directly about the need to adjust 
transmission rates, and the traffic policer avoids discarding consecutive packets and distributes 
the packet loss of individual flows over a period of time. 
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