
Influence of the discarding the out-of-profile
packets policy on TCP traffic

Vasil Hnatyshin, Joshua Ogren, Jonathan Pucci, and Christopher Clement.

hnatyshin@rowan.edu, {ogrenj54, puccij25, clement55}@students.rowan.edu
Computer Science Department

Rowan University
Glassboro, NJ 08071

Abstract

In the recent year a variety of approaches for QoS support in the Internet such as Integrated Services
[1], Differentiated Services [2], Bandwidth Distribution Scheme (BDS) [3], and others have been proposed.
Most of the proposed approaches rely on the traffic policing unit, which may mark, delay, or drop packets
that arrive above their reserved rate. The packets that arrive above their reserved rate are often referred to
as out-of-profile packets. Often the policer limits the transmission rate of the flows that enter the network
by dropping all out-of-profile packets. The Transport Control Protocol (TCP) [4] treats packet loss as an
indication of congestion and reduces the flow’s congestion window. Reducing the flow’s congestion
window effectively reduces the transmission rate of that flow. Thus, dropping out-of-profile packet may
have a double effect on the transmission rate of the flow: the flow’s rate is reduced by the traffic policer
and by the congestion control mechanism of TCP. In this paper we examine the influence of the traffic
policer that drops out-of-profile packets on the TCP traffic. We examine the performance of the traffic
policer within the BDS framework using the OPNET Modeler network simulator [5].

Keywords: Bandwidth distribution, traffic policing, token bucket, TCP.

1. Introduction
As the Internet expands and diversifies, the current best effort approach to Quality of Service

(QoS) in the Internet is no longer able to address the growing needs of the new emerging
applications. To solve the problem of providing Quality of Service in the Internet, a number of
service differentiation models have been proposed. The Integrated Services (IntServ) model[1],
the Differentiated Service (DiffServ) approach[2], and the Bandwidth Distribution Scheme (BDS)
[3] are just examples of the few among many approaches that have been introduced in the last
two decades. Generally, to guarantee a particular level of service the network negotiates a traffic
profile with the user and then enforces it in the network routers. Often the traffic profile is
included as a part of the Service Level Agreement (SLA).

When a packet arrives at the router it is being classified to identify the SLA the packet
belongs to, metered to determine if the packet conforms to its profile, and then policed according
to the rules specified in the SLA. The traffic meter differentiates between the packets that
conform to their profiles (these packets are called in-profile) and the packets that do not conform
to their profile (these packets are called out-of-profile). The traffic policer forwards all in-profile
packets to their corresponding outgoing interfaces and “punishes” all the out-of-profile packets.
The “punishment” of an out-of-profile packet may include shaping the packet (e.g. delaying the
packet until it becomes in-profile), marking the packet to indicate that it arrived at the rate outside
of the negotiated profile, or simply dropping the packet.

The policy of dropping out-of-profile packets may have a negative effect on the TCP traffic
because TCP treats packet loss as an indication of congestion. When TCP perceives that the
packet was lost it reduces the congestion window of the flow, which effectively lowers the

transmission rate of that flow. Thus, discarding the out-of-profile packets may have a double
effect on the flows: the transmission rates of the flows are reduced by the traffic policer and by
the congestion control mechanism of TCP [4].

This paper investigates the effects of the policy of dropping the out-of-profile packets on the
TCP traffic. We perform this study within the BDS framework that employs traffic policer at the
network edges. In the BDS approach the traffic rates are dynamically adjusted based on the
network characteristics and are strictly enforced at the network edges: the edge routers discard all
out-of-profile packets. The rest of the paper is organized as follows. Section 2 presents an
overview of the Bandwidth Distribution Scheme and a summary of TCP congestion control.
Section 3 describes the simulation set-up and collected results. Finally, Section 4 analyzes
collected results and provides summary and conclusions.

2. The overview of the Bandwidth Distribution Scheme
The Bandwidth Distribution Scheme[3] was developed to provide per-flow bandwidth

guarantees in a scalable manner. The BDS core routers do not maintain per-flow information (e.g.
bandwidth requirements of individual flows); instead core routers keep aggregate flow
requirements. The amount of information kept in the network core is proportional not to the
number of flows but to the number of edge routers, which we believe does not raise scalability
concerns. The edge nodes maintain per-flow information and fairly allocate network resources
(e.g. bandwidth) among individual flows according to the flow requirements and resource
availability. The dynamic resource allocation at the edge routers is enabled by the network
feedback which consists of periodic path probing and explicit congestion notifications. Overall,
the BDS architecture consists of: the admission control mechanism, which determines if a new
flow can be admitted into the network, the resource management mechanism, which fairly
distributes available bandwidth among individual flows, and the protocol for distribution of the
aggregate flow requirements, which provides feedback to the network routers about the changes
of network characteristics.

In the BDS approach, it is assumed that each user-flow negotiates (e.g. requests) the
bandwidth range called the Requested Bandwidth Range (RBR). The RBR of flow f , fRBR ,

consists of two values: a minimum rate, fb , below which the flow cannot operate normally, and
the maximum rate, fB , that the flow can utilize.

],[fff BbRBR = (1)
The BDS approach guarantees that each flow would receive at least its minimum requested

rate fb . The excess bandwidth, (e.g. what is left after each flow is allocated its minimum
requested rate) is fairly distributed among the flows that may benefit from it. The BDS resource
management mechanism computes the transmission rate of the flow f that travels on the path P
with the bottleneck link l as follows:

()()ll
f

l
fff

P bCbBR −+= ϕ,min (2)

In equation (2), lC is the capacity of bottleneck link l, lb is the aggregate of the minimum

requested rates of the flows that travel through l, and f
lϕ is the fair share of flow f on l. The fair

share of flow f on link l is usually computed as the ratio between the RBR of flow f and the
aggregate RBR on l.

The BDS edge routers classify, meter, and then police all incoming traffic. By default, the
edge routers drop all the packets that arrive above the flow’s transmission rate f

PR computed by
equation (2). The BDS edge routers implement the per-flow traffic policers as an array of token

buckets (e.g. one token bucket per flow). The token bucket is configured with the token
generation rate f

P
f

TB RR = and the token bucket size TBS . If the BDS edge router receives packet

p of flow f at time iT and the previous packet of flow f arrived at time 1−iT then the edge router
will discard packet p of flow f only if:

)()(1 psizeSTTR TBii
f

TB <+− − (3)
In this paper we examine how the above BDS resource management mechanisms influence

the TCP traffic. The TCP congestion control employs so called “additive increase – multiplicative
decrease” approach. In the absence of congestion, TCP increments transmission rates of
individual flows (congestion window) by one full-sized segment per round-trip time (RTT)
(linear increase during congestion avoidance). However, when congestion occurs, TCP cuts the
flow transmission rates in half [4]. TCP treats each packet loss as an indication of congestion
which may conflict with the discard all out-of-profile policy of the BDS traffic policer.

3. Simulation configuration and results
3.1. Topology Configuration

In this study we use the “dumbbell”-like topology shown in Figure 1. In this topology source
nodes client_1, client_2, and client_3 send traffic to destination nodes server_1, server_2, and
server_3. The generated traffic traverses the bottleneck link router_0 – router _1. We examine
performance of the BDS discarding policy using UDP and TCP transport protocols. In particular,
we examine how the BDS approach distributes available bandwidth among individual flows. It
should be noted, that the value of the link capacity is not the same as the amount of bandwidth
provisioned for BDS traffic. In this study we assume that the network administrator provisions a
portion of the link capacity for the BDS traffic. Thus, the BDS attempts to utilize all the
bandwidth allocated for its traffic.

Figure1. Simulation Topology.

3.2. UDP scenario
In this set of experiments the client nodes were configured to establish video conferencing

sessions with their corresponding server nodes. The video traffic has strict Quality of Service
requirements in terms of throughput and jitter and because of that it uses UDP as its transport
protocol. In this scenario the bottleneck link between router_0 and router_1 was provisioned with
4 Mbps of bandwidth for BDS traffic. Each flow was transmitting traffic at the constant rate that
was slightly above the flow’s maximum RBR. We ran simulation for 100 seconds. Table 1 shows
the summary of scenario’s configuration.

Source Destination Start Time End Time Min RBR Max RBR
client_1 server_1 10 sec 100 sec 500 Kbps 1000 Kbps
client_2 server_2 10 sec 85 sec 1000 Kbps 1500 Kbps
client_3 server_3 10 sec 60 sec 2000 Kbps 2500 Kbps

Table 1. Configuration of UDP scenario.

UDP is an unreliable transport protocol and does not react to the data losses. That is why we
expected that each flow will receive exactly its fair share as computed by the BDS resource
management mechanism. Table 2 shows the computed fair share for the initial [10 sec, 60 sec]
time period. Figure 2 illustrates achieved individual flow throughput for UDP scenario. As
expected, during the initial 60 seconds the traffic flows observed the throughput that was equal to
their fair shares as computed in Table 2. Such bandwidth distribution consumed 100% of the
bandwidth allocated for the BDS traffic.

When flow client_3 – server_3 terminated at time 60 seconds, the aggregated maximum
requested rate of remaining BDS flows was larger than the BDS capacity. According to equation
(2), the BDS flows cannot transmit above their maximum requested rates. Thus, after termination
of flow client_3 – server_3, the remaining flows client_1 – server_1 and client_2 – server_2 were
allocated the amount of bandwidth equal to their corresponding maximum requested rates of 1000
Kbps and 1500 Kbps, respectively.

Source Destination Bandwidth Share
client_1 server_1 500 + (4000 – 3500) * (1000 – 500)/(5000 – 3500) = 633 Kbps
client_2 server_2 1000 + (4000 – 3500) * (1500 – 1000)/(5000 – 3500) = 1133 Kbps
client_3 server_3 2000 + (4000 – 3500) * (2500 – 2000)/(5000 – 3500) = 2133 Kbps

Table 2. Computed flow fair shares during [10 sec, 60 sec] time period.

0

500000

1000000

1500000

2000000

2500000

10 16 22 28 34 40 46 52 58 64 70 76 82 88 94

Time (sec)

B
an

d
w

id
th

 (
b

ps
)

[2000K, 2500K]
[1000K, 1500K]
[500K, 1000K]

Figure 2. Flow throughput for UDP scenario.

This simple scenario shows that when using UDP transport protocol the policy of discarding
the out-of-profile traffic does not interfere with the BDS resource distribution mechanism and
allows each flow to achieve the throughput that corresponds to its fair share.

3.3. TCP scenario configuration

In this scenario the client nodes were configured to upload a large file to their corresponding
server using the FTP application. Each flow transmitted traffic until the FTP upload was
completed. Simulations were run for 300 seconds. FTP applications are very sensitive to loss and
thus require reliable data transfer offered by TCP transport protocol. Since FTP applications do
not require as much bandwidth as video traffic we adjusted the RBR of individual flows as well
as the amount of bandwidth provisioned for BDS traffic in the network. We allocated 300 Kbps
of available bandwidth for the BDS traffic on the bottleneck link. We set the individual client
RBR to roughly correspond to the current connection types. Table 3 summarizes the flow
configuration for TCP scenario.

Source Destination FTP Upload Min RBR Max RBR Connection Type
client_1 server_1 1 MByte 28 Kbps 56 Kbps Dial-up
client_2 server_2 2 MByte 80 Kbps 160 Kbps DSL
client_3 server_3 4 MByte 100 Kbps 200 Kbps Cable

Table 3. Flow configuration of TCP scenario.

3.4. Flow throughput vs. link capacity
First, we examined the performance of the FTP applications for two different BDS capacity

settings: 300 Kbps and 1000 Kbps. In this simulation we used the New Reno flavor of TCP. Table
4 briefly summarized configuration of New Reno and other TCP flavors used in this study.

TCP

Flavor
MTU

(bytes)
Receiver buffer

(bytes)
Fast

Retransmit
Fast

Recovery
Selective

Acknowledgement
Tahoe 512 64 K OFF OFF OFF
Reno 512 64 K ON Reno OFF
New Reno 512 64 K ON New Reno OFF
SACK 512 64 K ON New Reno ON

Table 4. Summary of TCP flavor settings.

Table 5 presents the results collected in this scenario. The results showed that regardless of
the capacity allocated for the BDS traffic, the actual throughput achieved by individual FTP
applications was below their allocated fair shares. In some cases the simulation reported that the
flow throughput was below the flow’s minimum requested rate.

Capacity = 300 Kbps Capacity = 1000 Kbps Source RBR

(Kbps) Fair Share Throughput Fair Share Throughput
client_1 [28, 56] 40.38 Kbps 18.82 Kbps 56 Kbps 20.95 Kbps
client_2 [80, 160] 115.4 Kbps 79.22 Kbps 160 Kbps 98.84 Kbps
client_3 [100, 200] 144.2 Kbps 76.68 Kbps 200 Kbps 120.36 Kbps

Table 5. Fair Shares and Achieved Throughput for TCP flows.

3.5. Flow throughput vs. TCP flavor

In this section we examined the throughput achieved by individual flows when using different
TCP flavors. In particular, we examine achieved throughput when using the following TCP
flavors: Tahoe, Reno, New Reno, and Selective Acknowledgement (SACK).

The Tahoe flavor of TCP does not implement the fast recovery/fast retransmit mechanism.
TCP Tahoe identifies the TCP segment loss based on the expiration of the retransmission timer.
TCP Reno implements the fast recovery/fast retransmit mechanism and identifies the segment
loss as follows. When the sender receives three consecutive acknowledgements (ACK) for the
same segment then it assumes that the segment was lost and immediately re-transmits that
segment without waiting for the timeout.

TCP New Reno also implements the fast recovery/fast retransmit mechanism. However, if
during the fast-retransmit procedure another segment loss occurs, the fast-retransmit procedure is
NOT terminated and restarted as in TCP Reno. If a partial segment acknowledgement (e.g. an
ACK for a recently lost and re-transmitted packet arrives but not for subsequent packets) then
TCP assumes that the following packet was also lost. This packet is being retransmitted without
waiting for 3 duplicate ACKs and without restarting fast retransmit. Finally, the SACK flavor of
TCP uses the same fast recovery/fast retransmit mechanism as TCP New Reno but instead of
returning a cumulative ACK for each received TCP segment, it returns an ACK that lists the
sequence numbers of successfully received TCP segment within its window. TCP SACK allows
faster identification of the packet and thus faster response to congestion.

Table 6 display the achieved application throughput for different TCP flavors. These results
were collected using flow configuration of Table 3 and BDS capacity of 300 Kbps. We ran each
simulation five time and averaged the results.

Flow Throughput (Kbps) Source RBR

(Kbps)
Fair Share

(Kbps) Tahoe Reno New Reno SACK
client_1 [28, 56] 40.38 15.67 15.23 16.31 65.00
client_2 [80, 160] 115.4 60.72 49.81 52.35 122.90
client_3 [100, 200] 144.2 80.43 73.39 80.08 150.54

Table 6. Fair Shares and Achieved Throughput for different TCP flavors.

The collected results show that when using TCP Tahoe, Reno, or New Reno, the average

flow throughput is significantly smaller than the corresponding flow fair share. However, when
using TCP SACK, the average flow throughput exceeded the corresponding flow fair share. We
were not able to discover the reasons for such behavior and currently investigating this
phenomenon.

3.6. Flow throughput vs. TCP receiver window

Finally, we conducted a study that examines the achieved flow throughput for different TCP
receiver window sizes. Reducing the TCP window size causes the actual TCP transmission rate to
decrease. This, in turn reduces the number of TCP segments dropped by the BDS traffic policer
and also limits the frequency of invocation the fast recovery/fast retransmit mechanism. Table 7
shows collected results for scenario flow configuration of Table 3 and BDS capacity of 300 Kbps.
We ran each simulation five time and averaged the results. The collected results shown that
regardless of the TCP receiver window size the flows were not able to achieve the throughput
level that corresponds to their fair shares.

Flow Throughput (Kbps) Source RBR

 (Kbps)
Fair Share

(Kbps) 8 Kbytes 16 Kbytes 32 Kbytes 64 Kbytes 128 Kbytes
client_1 [28, 56] 40.38 12.55 10.28 12.29 16.035 20.91
client_2 [80, 160] 115.4 54.17 65.56 83.84 64.00 46.14
client_3 [100, 200] 144.2 75.93 75.12 76.03 67.50 71.35

Figure 7. Fair Shares and Achieved Throughput for different Receiver window sizes

4. Analysis and conclusions
In this study we examined how the policy of discarding the out-of-profile traffic influences

the throughput of TCP and UDP flows. We used the BDS token bucket traffic policer to discard
the out-of-profile packets. When using UDP as transport protocol all the flows were able to
achieve the throughput that corresponds to the flow’s fair share. The reason for this behavior is
the “non-responsiveness” of the UDP. UDP ignores packet losses and continues to transmit traffic
at the same rate.

On the other hand, TCP reduces transmission rate of a flow whenever the flow experiences
the packet loss. The TCP behavior causes data packets to arrive in bunches which causes the
token bucket to discard consecutive packets. As the result, when token bucket drops multiple
consecutive packets, the TCP congestion control mechanism reduces the TCP congestion window
to 1 which slows down the flow’s transmission rate to almost a complete halt. This process
repeats multiple times until TCP converges to the “optimal” window size. Unfortunately, most of
the TCP flows are short lived (e.g. E-mail,. Telnet, HTTP, etc) and often terminate well before
TCP converges, which prevents them from achieving their allocated fair share. In addition, TCP
experiences segment loss even after it converged, causing the window size and the transmission
rate of the flow to fluctuate and go below the flow’s allocated fair share. These facts explain why
the TCP flows experience the throughout that is significantly lower than the flow fair share
allocated by the BDS resource management mechanisms.

In conclusion, this study showed that the policy of discarding the out-of-profile packets does
not work well with TCP flows. Such policy has double negative effect on the TCP flows: first, the
flow’s rate is reduced by the token bucket that drops all out-of-profile packets and then by the
TCP’s congestion control that reduces transmission rate upon each packet loss. As the result, the
throughput of the TCP flows is significantly lower than the corresponding rate limit enforced by
token bucket. This study was the first step in out investigation of the packet discarding policies
and their influence on TCP traffic. Currently, we plan to investigate other means for punishing
the out-of-profile traffic. In particular, we plan to study mechanisms where the packets are
delayed instead of being dropped, the edge routers notify TCP directly about the need to adjust
transmission rates, and the traffic policer avoids discarding consecutive packets and distributes
the packet loss of individual flows over a period of time.

References:

[1] R. Braden, D. Clark, S. Shenker, “Integrated Services in the Internet Architecture: an Overview”, June
1994, IETF RFC 1633.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss. "An Architecture for Differentiated
Services," December 1998. IETF RFC 2475.

[3] V. Hnatyshin and A.S. Sethi, “Scalable Architecture for Providing Per-flow Bandwidth Guarantees,"
Proceedings of the IASTED conference on Communications, Internet and Information Technology
(CIIT 2004), St. Thomas, Virgin Isles, November 2004.

[4] Stallings, William. Computer Networking with Internet Protocols and Technology, Pearson Prentice
Hall, Upper Saddle River New Jersey, 2004, p246-263.

[5] Opnet Modeler, version 10.5. http://www.opnet.com/

