
Modeling a University Computer Laboratory using OPNET Software

Vasil Hnatyshin*, Andrea F. Lobo*, Pavel Bashkirtsev,
Robert DeDomenico, Andrew Fabian, Gregg Gramatges,

James Metting, Mike Simmons, and Matt Stiefel

{bashki12, dedome96, fabian78, gramat64, mettin61,
simmon51, stiefe93}@students.rowan.edu

*{hnatyshin, lobo}@rowan.edu

Computer Science Department
Rowan University

201 Mullica Hill Rd
Glassboro, NJ 08028

Abstract

Networking hardware and software can be both complicated and expensive.
Companies wish to better understand the anticipated benefits of new networking
resources before making additional purchases. In such situations, simulation and
modeling is a quick and inexpensive way of studying multiple scenarios and
identifying the best possible configuration. The goal of this project is to examine
student and faculty usage of network applications and its effects on the Rowan
University network. This paper presents a simulation model of a Computer
Science Department’s undergraduate laboratory at Rowan University. We
developed application and user profiles to model the applications used by the
students in this laboratory. These applications include FTP clients, e-mail
transfer agents, web browsers, instant messengers, and other applications that
rely on the campus network and the Internet for data transfer. We created a
custom built OPNET model of the AOL Instant Messaging application. Next we
built a model of the laboratory’s physical layout and applied the developed
application and user profiles to the workstations in the layout. We compared
results obtained via simulation with live packet traces collected in the
laboratory, and adjusted the simulation configuration accordingly. The
simulation was developed using the OPNET Modeler[2] software package, and
the packet traces were collected and analyzed using Ethereal[1], a public-
domain protocol analysis software.

1. Introduction

Networking hardware can be both complicated and expensive. In today’s
competitive world, companies wish to better understand the anticipated benefits
of new networking resources before making additional investments. In such
situations, simulation and modeling is a quick and inexpensive way of studying
multiple scenarios and identifying the best possible configuration. For example,
an expanding company that plans to add a set of new offices may want to
research options for upgrading their network infrastructure. Specifically, the
company may want to know if existing network capacity is sufficient to carry
additional traffic generated by the new offices, how the projected network
resource consumption will change, and what the best options are for upgrading
the network. Often the quickest and the most inexpensive way to get the answer
to these questions is to create a model of the existing network and study possible
scenarios of the network expansion via software simulation. Simulation is an
excellent tool for studying performance and identifying the cause of problems in
the network.
In this paper we discuss our ongoing efforts to develop a model of the Rowan

University network and to study its performance using the OPNET Modeler [2]
network simulation software. The goal of this study is to develop a
comprehensive model of the Rowan University’s wired and wireless networks
which will include:

• open student computer laboratories,
• faculty and administration offices,
• networked computer equipment for conducting research,
• the campus backbone, and
• the university’s Internet Service Provider.

This paper describes the first step in this study: Creating a simulation model of
an undergraduate student computer laboratory which includes modeling its
network topology, applications, and user profiles. In addition, this paper
describes the simulation model of AOL’s Instant Messenger software developed
using OPNET Modeler [2].

2. Methodology

To develop a simulation model of the student computer laboratory, we
examined and studied the physical topology of the local area network in the

laboratory, the application usage profiles of the lab users, and the applications
that require network access.

To verify the correctness of the developed simulation models, we planned
to compare simulation results with the live packet traces obtained from a Rowan
University Computer Science Department laboratory, located in 303 Robinson
Hall. To simplify the verification process, we first created a small network
model to examine and validate the implementation of individual application
models. We compared simulation results with live packet traces obtained from
the network. The simulation models of individual applications were developed
using the OPNET Modeler [2] network simulation software. The packet traces
from the network were collected and analyzed using Ethereal [1], a public-
domain protocol analysis software. Once all application models were verified,
we deployed them into the simulation model of the laboratory.

Figure 1. Topology of Robinson 303 student laboratory

2.1. Network Topology

We examined the connectivity and hardware configuration of the computers
in the Robinson 303 laboratory. Figure 1 illustrates the physical topology of the
laboratory. The laboratory consists of twenty-two Dell GX270 workstations and
a laser printer connected to a CISCO 303 Catalyst 2950 switch. The printer and
eighteen workstations that run the Windows XP operating system are directly
connected to the CISCO 303 Catalyst 2950 switch. The other six workstations
run FreeBSD and are connected to the CISCO 303 Catalyst 2950 switch via a
CISCO 8-port switch.

The Robinson 303 student laboratory model is connected to a simplified
model of the Rowan University network and its Internet connection. We
modeled the Rowan University network as a CISCO 3550 switch that connects
to a cluster of local servers, the Robinson 303 laboratory, and the Rowan
University Internet gateway router. Other connections to the switch are ignored
in this version of the model but can be easily added later on. The Internet is
simulated using an IP32 cloud, a built-in OPNET model. To access application
services over the Internet, the traffic that originates from the Robinson 303
laboratory must travel via the Rowan University Internet gateway router, the
IP32 cloud, and the Internet Servers gateway. Figure 2 illustrates the topology of
the Rowan University network and its Internet connections.

Figure 2. Rowan University Network topology

2.2. Applications

Next we identified the most commonly used applications that require
network access. We divided these applications into two categories: (1) those that
require Internet access, which we call the Internet applications and (2) those that
obtain the necessary services on the local Rowan University network, which we
call the local applications. Internet application traffic must travel via the Rowan
University Internet gateway, the IP32 cloud, and finally via the Internet Servers
gateway to reach the Internet Servers. The Internet applications are web
browsing, instant messaging, and online games.

The local applications access the services they need via the CISCO 3550
switch without ever traversing the Internet. The local applications are remote
login, e-mail, browsing the Rowan University web pages, and FTP. Students
usually use remote login and FTP applications to access local Rowan University
servers to complete various programming assignments or save data on the
network drives. Students access local e-mail servers to read their daily e-mail.
Finally, students access the Rowan University web pages for various school and
course-related information. Currently we do not model any communication
between the local servers and the Internet because they have very little influence
on the traffic generated in the laboratory.

We classified the Internet and local applications described above into two
broad categories: leisure and homework. We further divided each category into
additional sub-classes as follows:

o Leisure: gaming – which is 90% of time playing online games and
10% using the Instant Messenger,

o Leisure: web-browsing – which is 60% browsing the Internet, 10%
accessing e-mail, and 30% using Instant Messenger,

o Homework: writing a term paper – which is 60% using FTP program
to save data on the local network drive, 10% reading e-mail, 25%
browsing the Internet to find information on the subject, and 5%
browsing Rowan University web pages to retrieve course-related
information.

o Homework: programming – which is 60% using remote login to
complete programming assignments, 10% reading e-mail, 25%
browsing the Internet to find information on the subject, and 5%
browsing Rowan University web pages to retrieve course-related
information.

Table 1 summarizes the application classifications. Even though there are
other network applications used in the computer laboratory, this study
concentrates on the applications most frequently used in the Robinson 303
laboratory. The model can be easily expanded to include additional applications.

Application

Category Sub-category Local Applications Internet Applications

Web-
browsing • E-mail (10%) • Web (60%)

• Instant Messenger (30%)
Leisure

Online
Gaming • None • Gaming (90%)

• Instant Messenger (10%)

Writing a
paper

• FTP (60%)
• E-mail (10%)
• Web (5%)

• Web (25%)

Homework

Programming
• Remote Login (60%)
• E-mail (10%)
• Web (5%)

• Web (25%)

Table 1. Application Classification

2.3. User profiles

We developed a set of user profiles which specify how the network
applications are being used in the computer laboratory. First, we divided the user
profiles based on the times during the semesters into the following categories:
exam time, weekdays, and weekends. These categories determine lab occupancy
(e.g. the number of simultaneously active users in the laboratory) and the
application selection (e.g. which applications are being used).

The exam time happens twice during the semester, at midterm and at end of
semester, and, during these periods, the lab is completely occupied with students
working on their homework and programming assignments only. The weekdays
time period models student activity on Monday through Friday. During this time
period, the laboratory is not completely occupied, and students mostly work on
their homework assignments and occasionally run leisure applications. Finally,
the weekends time period includes Saturday and Sunday, when the laboratory is
primarily empty. On weekends students mostly run leisure applications and
occasionally work on homework assignments. We further divided each user
profile based on the time of the day into four sub-categories: morning, day,

evening, or night. Table 2 summarizes the user profiles and lists the application
distribution and laboratory occupancy.

User

Profile
Time of the Day Lab Occupancy Application

Category
Morning 0% • N/A
Day 100% • 100% Homework
Evening 100% • 100% Homework Exam Time

Night 50% • 90% Homework
• 10% Leisure

Morning 20% • 100% Homework
Day 60% • 100% Homework

Evening 80% • 80% Homework
• 20% Leisure

Weekdays

Night 20% • 50% Homework
• 50% Leisure

Morning 0% • N/A

Day 20% • 30% Homework
• 70% Leisure

Evening 10% • 10% Homework
• 90% Leisure

Weekends

Night 0% • N/A

Table 2. User profiles

For simplicity, we assumed that, for each application category, students
execute the sub-category applications with equal frequency. For example, at
night during the exam time period the laboratory is only 50% occupied and out
of those users, 90% of users are doing homework assignments; 45% are writing
papers and another 45% are working on programming assignments. The other
10% of the users run leisure applications; 5% are playing online games and
another 5% are doing leisure web browsing. The simulation model can be easily
modified to have sub-category applications used with different frequencies.

3. Modeling Applications in OPNET

We modeled the user applications via OPNET Modeler [2] simulation
software. OPNET Modeler provides standard built-in models for software
applications such as web (HTTP), e-mail, FTP, and remote login, which can be

easily configured to simulate applications used in the computer laboratory.
However, there are no built-in models for applications such as the Instant
Messenger and online gaming. Thus, these applications have to be implemented
and configured via OPNET’s Custom Application feature. Sections 3.1 through
3.5 briefly describe the configuration steps for each application.

3.1. Configuring Web (HTTP) applications

To set-up and configure any application in OPNET, the user must add the
Application Configuration and Profile Configuration modules. The Application
Configuration module contains the application definitions, while the Profile
Configuration module contains the profiles of user behavior, e.g. describes how
the users employ the applications defined in the Application Configuration
module. To configure a web browsing application, the application named HTTP
should be selected from the list of built-in models. OPNET provides pre-set
configurations such as: Light Browsing, Heavy Browsing, Searching, or Image
Browsing. In addition, OPNET allows configuring web applications via
parameters such as: HTTP Specification which defines the version of HTTP
protocol, Page Interarrival Time which specifies time in seconds between
consecutive webpage downloads, Page Properties which models properties of
the webpage by specifying the number and the type of objects. Figure 3
illustrates steps for configuring a web application in OPNET.

Figure 3. Configuring a web application in OPNET

3.2. Configuring e-mail applications

OPNET provides preset configurations for e-mail application as well. The
preset E-mail configurations include Low Load, Medium Load, and High Load
as shown in Figure 4.

Figure 4. Configuring an e-mail application in OPNET

The model also allows custom configuration via parameters such as
Send(Receive) Interarrival Time which specify the amount of time in seconds
between consecutive sent (receive) operations, Send(Receive) Group Size which
determine the number of e-mails messages per single sent(receive) operation,
and E-Mail Size which defines the size of e-mail message in bytes.

3.3. Configuring FTP applications

OPNET also provides preset configurations for FTP application. The preset
FTP configurations include Low Load, Medium Load, and High Load as shown
in Figure 5.

Figure 5. Configuring an FTP application in OPNET

The model also allows for a custom configuration of FTP applications. The
Command Mix parameter specifies the ratio between the number of get
commands and the total number of FTP requests. For example, when the
Command Mix parameter is set to its default value of 50% then half of FTP
requests will be to get (download) data and the other half to put (upload) data.
The Inter-Request Time parameter is the time in seconds between consecutive
FTP requests. The File Size defines the size in bytes of the FTP file to be
transferred.

3.4. Configuring Remote Login applications

Similar to E-mail and FTP applications, OPNET provides preset Low Load,
Medium Load, and High Load configurations as well as the ability to specify
user-defined settings for Remote Login application as shown in Figure 6.

Figure 6. Configuring a Remote Login application in OPNET

The Inter-Command Time parameter specifies the time in seconds between
consecutive commands during the remote login session. The Terminal(Host)
Traffic parameter defines the size in bytes of each command generated at the
terminal (host).

3.5. Configuring AOL Instant Messenger applications

Instant messenger and online gaming are not part of the standard OPNET
application models, and they are more complex to simulate. So far we have
examined and modeled the Instant Messenger application only. First, we
researched the implementation of the AOL Instant Messenger (AIM) software.
Then we modeled the Instant Messenger software using OPNET’s Task

Configuration module which specifies the packet exchange between the
application nodes. Finally, we compared the amount of traffic generated by the
Instant Messenger application modeled using OPNET software with live AIM
packet traces collected in the network. Based on the comparison, we adjusted the
AIM configuration in OPNET until we obtained results that closely resemble the
AIM packet trace.

Summary of AIM implementation

The AOL Instant Messenger is implemented as follows. The AIM user must
log in to an authorization server with a valid username and password before
he/she can send any messages. Upon successful login, the authorization server
forwards a cookie to the AIM user. The authentication cookie is required to
access the Basic Oscar Service (BOS) server, which manages the message
exchange between the AIM users. Oscar is the name of the protocol used for
message exchange between instant messenger users. The AIM file transfer is
accomplished by creating a direct TCP connection between the AIM users who
want to exchange information [3, 4].

Modeling AIM in OPNET

To implement the AIM application, we used the Custom Application and
the Task Configuration modules. The Task Configuration module specifies a
basic unit of user activity within the custom application, such as a server login
or reading an e-mail message [2]. The Custom Application module specifies
applications that use the tasks defined in Task Configuration module. We
modeled AIM behavior via four basic tasks:

o Authorization – log in to authorization server
o BOS Login – log in to BOS server
o BOS Messaging – message exchange among AIM users via BOS

server
o BOS File transfer – data exchange among AIM users via direct

TCP connection
We used these tasks to implement AIM via two custom applications:

o AIM Login – log in to authorization and BOS servers
o AIM Transfer – message exchange and file transfer using AIM

The AIM Login is implemented as a one-time sequence of Authorization
and BOS Login tasks. AIM Transfer is implemented as a weighted random

selection of BOS messaging and BOS file transfer tasks with corresponding
weights of 90 and 10, respectively. Figure 7 illustrates the Custom Application
and Task Configuration modules set-up.

Figure 7. Application and Task Configuration

The Authorization and BOS Login tasks are configured as a request-
response message exchanges between a single client and the corresponding
server. Since all AIM users can talk to each other via the BOS server, we
implemented the BOS Messaging task as an exchange of messages between an
AIM client and BOS server and between BOS server and another random AIM
client. The BOS File transfer is implemented as a direct TCP connection
between two randomly selected AIM clients.

4. Validating the AIM model

The biggest challenge in modeling the AIM application was to determine
the correct configuration of the parameters that determine the size of each
message and the inter-request time between messages in the BOS Messaging
task. Other configuration parameters such as the size of the login message and
the size of the authorization server response were obtained from [3, 4].

We collected over 10.5 hours of AIM packet traces generated by four
different AIM users. We used the Ethereal [1] software to collect data and to
filter out AIM traffic. First, we examined collected traces to determine the
proper packet size. Each of the traces reported the average packet size to be
around 205 bytes with the average packet size per trace ranging between 176
and 240 bytes/packet. Such behavior is best modeled by normal distribution
because the packet size appears to have a clearly defined mean of 205
bytes/packet with positive and negative deviations equally likely. We configured
the simulation to have packet size normally distributed with a mean outcome of
205 bytes and variance of 20 bytes.

Next, we examined collected traces to determine the inter-request times
between consecutive AIM packets. We observed that the inter-request time

primarily depends on the frequency of the messages generated by the AIM user.
If the user actively communicated with multiple AIM users, then the packet
generation frequency varied between 1080 and 1740 packets per hour. We call
such behavior high-intensity user. On the other hand, if the user only
occasionally talks to other AIM members while using the computer to work on
some other task, then the average packet generation frequency varies between
102 to 186 packets per hour. We call such behavior low-intensity user.

OPNET [5] recommends modeling such user behaviors with the exponential
distribution, which assumes that requests are independent of each other. We
configured the OPNET simulation to have inter-request times for high- and low-
intensity users modeled using exponential distribution with mean outcomes of
2.6 seconds and 40 seconds respectively.

Figure 8. Network topology used to evaluate the AIM implementation

To validate correctness of the Instant Messenger implementation in OPNET
we set up a simple OPNET simulation and compared the traffic rate generated
by the AIM application in the real network with the data collected from the
OPNET simulation. We used a simplified network topology that consists of four
workstations connected to authentication and Basic Oscar Service servers via a

single router, as illustrated in Figure 8. This simple network topology simplified
the debugging process significantly. Table 3 compares the data from the OPNET
simulation results and the Ethereal packet traces of the AIM application.

Low Intensity User High Intensity User

Packets/second Bytes/packet Packets/second Bytes/packet
Ethereal
trace 0.0408 198 0.3016 208

OPNET
simulation 0.0402 205 0.0311 205

Table 3. Comparison of OPNET and Ethereal AIM traffic

We collected OPNET simulation results for high-intensity and low-intensity
users. We ran three 1000-second simulations using randomly selected seed
values for each user type. We averaged the data based on the results collected
from the individual AIM client workstations.

Figure 9. Comparison of TCP traffic generated by the actual

and the modeled AIM applications

Figure 9 contains 250 seconds of TCP traffic generated by randomly chosen
live and simulated AIM sources. The top of the figure illustrates the Ethereal
packet trace of a single AIM client. The bottom of the figure illustrates the
traffic obtained from a single AIM client in the OPNET simulation. The
behavior is similar.

5. Conclusion

This paper discusses the first steps in ongoing research efforts to model the
Rowan University network. In particular, this paper describes the methodology
developed for modeling applications and user profiles in a computer laboratory,
and explains the steps for modeling a non-standard application such as AOL
Instant Messenger using OPNET Modeler. The AIM application model was
validated against live traces.
Plans for future work include further refinement of the AIM application model

to include periodic BOS server message updates. In addition, the AIM traffic
collected through Ethereal had to traverse the Internet to reach the BOS server,
while the simulated AIM clients were connected to the BOS server via a single
switch. We plan to investigate the influence of network conditions on the
accuracy of comparison between the OPNET simulation traffic and the Ethereal
trace. We also plan to apply the methodology used to develop the AIM
simulation model to create a simulation model of online gaming applications.
Finally, we will continue developing a comprehensive model of the Rowan
University network, starting from the Computer Science Laboratory in 303
Robinson Hall.

6. References

[1] Ethereal: A Network Protocol Analyzer, http://www.ethereal.com, accessed
8/15/2006.

[2] OPNET Technologies, Inc. http://www.opnet.com/, accessed 8/15/2006.
[3] Gaim 1.5.0: A multi-protocol instant messaging (IM) client,

http://gaim.sourceforge.net/protocol.php, accessed 8/15/2006.
[4] AIM/Oscar Protocol Specification, http://www.oilcan.org/oscar/, accessed

8/15/2006.
[5] OPNET Technologies, Inc. OPNET Modeler Product Documentation,

release 11.5.

7. Biographies
This work was conducted by the members of the Networking Club at Rowan University. The Club
consists of undergraduate students and faculty members of the Computer Science Department
at Rowan University who are interested in data communications and computer networks. The
Networking Club was established in 2005 and is supervised by Dr. Hnatyshin and Dr. Lobo. The
research interests of the Networking Club include network simulation and modeling, quality of

service in IP networks, protocol design, and wireless communications. The Club extensively uses
OPNET Modeler and OPNET IT Guru to conduct its research studies.

