
BATTLEFIELD NETWORK APPLICATIONS OF THE SHAMAN
MANAGEMENT SYSTEM

Adarshpal S. Sethi
Dong Zhu

Vasil Hnatyshin
Prasanth Kokati

Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716
fsethi, dzhu, vasil, kokatig@cis.udel.edu

ABSTRACT

SHAMAN (Spreadsheet-based Hierarchical Architecture
for MANagement) is a novel management framework de-
veloped at the University of Delaware; it extends the tra-
ditional flat SNMP management model to a hierarchi-
cal architecture. Effective management of battlefield net-
works requires such a hierarchical management architec-
ture wherein managers can dynamically delegate man-
agement tasks to intermediate managers. The SHAMAN
framework includes a spreadsheet-based intermediate
manager with a scripting language and MIB, a polling
subsystem, and an event model; a prototype implementa-
tion of the system is available. Our research has explored
several applications of the SHAMAN system to tactical
battlefield networks for the US Army. These applications
described in this paper include a Location Management
application, an application to reconfigure dynamically
changing topology of Tactical Internets, and another ap-
plication to interface with OPNET simulations of battle-
field networks.

Keywords: Network Management, Hierarchical Man-
agement, SNMP, Tactical Internet, Battlefield Networks,
Location Management.

INTRODUCTION

One of the significant achievements of the ATIRP Con-
sortium in Technical Factor 2 (Tactical/Strategic Interop-
erability) has been the design and development of an in-

Prepared through collaborative participation in the Advanced
Telecommunications/Information Distribution Research Program
(ATIRP) Consortium sponsored by the U.S. Army Research Labora-
tory under the Federated Laboratory Program Cooperative Agreement
DAAL01-96-2-0002. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon.

tegrated framework for hierarchical management called
SHAMAN (Spreadsheet-basedHierarchicalArchitecture
for MAN agement). This management system developed
at the Network Management Laboratory of the University
of Delaware incorporates management by delegation con-
cepts into the Internet management framework to facili-
tate the management of distributed systems [1], [2], [3],
[4]. This architecture allows a manager to delegate rou-
tine management tasks to an intermediate manager and
facilitates user configurability of management informa-
tion and control in a value-added manner.

A hierarchical management strategy is an effective means
of managing the large and complex internetworks that are
in use today [5]. The need for hierarchical management
is particularly acute in tactical battlefield networks which
are expected to have tens of thousands of nodes. Unfor-
tunately, the most popular management framework in use
today, the SNMP framework [6], [7], [8], only supports
the flat management model. The framework provides
no means for managers to delegate tasks to intermediate
managers or for peer-to-peer communication between in-
termediate managers during the execution of these tasks.
SHAMAN provides this much-needed capability to the
Internet management framework.

This paper provides a brief introduction to the SHAMAN
architecture and also describes how it can be used for
the management of tactical battlefield networks. We start
in Section 2 with a brief overview of SHAMAN. Sec-
tion 3 describes a Location Management Application and
its interfacing to an OPNET simulation, while Section
4 presents a Topology Reconfiguration Application. Fi-
nally, Section 5 presents the conclusions.

Manager Subsystem

Back-end

Interpreter

SNMP

SNMP

Spreadsheet

Event Model

Intermediate Manager

Function
 IM

 Module

 MIB

 Polling

 Agent

Fig. 1. Prototype Implementation of SHAMAN

I. Overview of SHAMAN

SHAMAN allows a manager to delegate tasks to an inter-
mediate manager (IM) by downloading scripts express-
ing these tasks into a spreadsheet-like structure of the
IM called the Spreadsheet MIB [9], [10]. This MIB is
divided into a two-dimensional structure of cells called
a spreadsheet, with each cell having a control part that
stores the script and a data part that contains the result of
executing the script. One IM can support multiple spread-
sheets.

The spreadsheet MIB implements the spreadsheets using
SNMP tables. All operations on the spreadsheet includ-
ing a manager’s downloading of scripts into the control
parts and accessing the results in the data part are carried
out via the Get and Set operations of the SNMP protocol.
User operations on cells map to operations on tables that
are part of this MIB. When the IM receives an SNMP re-
quest from the manager that translates to an operation on
a cell, the IM performs the necessary operations on the
spreadsheet MIB to implement the cell abstraction. Once
the request has been carried out, the IM returns a response
to the manager that requested the cell operation.

The scripts in SHAMAN are written in a special language
called the Spreadsheet Scripting Language (SSL). This
interpreted language contains features that facilitate the
development of procedural scripts as well as event speci-
fications. The language includes

� procedural language related features including opera-
tors, variable support, and control flow constructs
� network management specific features including
polling specification and management variable access
� paradigm specific features including cell access, re-

trieval, modification, and multiple value access
� event model related features including event and event
dependency specification

A prototype implementation of SHAMAN has been de-
veloped at the University of Delaware and is available on
the WWW at the URL

http://www.cis.udel.edu/�shaman

Interpreter TimerPolling
Subsystem

Module
SNMP Interface

Cell Module MIB Module

Input Queue

Output Queue

SNMP Communications Module

SNMPv2 interface with
manager and agent(s)

Intermediate Manager (IM)

Figure 1 depicts the various modules that constitute the
Intermediate Manager (IM) in the prototype implementa-
tion of SHAMAN. Figure I shows the software architec-
ture of the IM and the interdependencies of the various
modules that constitute the IM. Among these modules,
the MIB Module, the Interpreter Module, and the Cell
Module together implement three of the logical compo-
nents of the IM. The Polling Subsystem implements the
polling of the agents. The other modules perform support
functions like timer services and providing a communi-
cation interface for polling the agents.

II. Location Management in Battlefield Networks

Consider a scenario of location management for mobile
nodes in a battlefield network,. in which a group of nodes
individually move on a battlefield according to the needs
of the situation. Each node has an SNMP-manageable
MIB with variables for the x and y coordinates of the cur-
rent node position, and other variables corresponding to
various quantities of interest, such as amount of fuel or
ammunition remaining in the node. Each node requires to
be periodically monitored by a manager who keeps track

Top-level Manager

IM 1 IM 2

Fig. 2. Hierarchical Location Management for Mobile Nodes
in a Battlefield Network

of the current location of the node and the amounts of fuel
and ammunition left, and which may take appropriate ac-
tion if these amounts fall below specified limits.

The total number of such nodes to be managed may be
too large for a single manager to handle. Moreover, there
may be distance constraints so that we may wish to have
a node be managed by a manager that is located close
by. Figure 3 depicts a hierarchical management solu-
tion using the SHAMAN approach that is appropriate for
this situation. We designate two Intermediate Managers,
named IM1 and IM2, with management authority over
nodes that are within their spheres of communication as
shown by the circles in the figure. Each IM periodically
polls each node within its management domain to obtain
its current variable values. If any action is required for
the fuel or ammunition, then the top-level manager is in-
formed.

As the nodes in this system move around, they may mi-
grate from the management domain of one IM to the do-
main of the other. This may necessitate a “handoff” of
the management authority over this node to the second
manager. The need for a handoff may be detected by the
IM responsible for each node. Each time a node’s loca-
tion is polled, it can be determined if the node has entered
an intermediate zone (shown in the figure as the intersec-
tion of the two management domains). If it has, and if it
is rapidly moving towards the second zone, the top-level
manager is informed who then initiates the handoff of the
node to the second IM.

Even though the example presented here is somewhat
simplistic and a real-life situation has to consider other
factors such as failures of intermediate managers, it
serves to illustrate the power and utility of hierarchical
management. This example has been programmed into
SHAMAN in the form of a demo which is available at
the SHAMAN web page. In this example, for which
scripts have been written in the Spreadsheet Scripting
Language (SSL), domains are defined for two Interme-
diate Managers (IMs) separated by vertical lines with a
common overlapping portion. Each IM periodically polls
the nodes which are in its own domain. The top-level
manager can get an IM to either start or stop the polling
of a given node by activating or deactivating the appro-
priate scripts in that IM. When a node’s poll reveals a
new position for that node, this event triggers execution
of another script that determines if the node is still within
the IM’s domain, and also computes its direction of travel
and its velocity. If the node has entered the overlapping
zone between the IM’s and is traveling quickly towards
the other IM’s zone, then a handoff is initiated imme-
diately; if it is traveling slowly, a handoff is performed
only after it has actually entered the other IM’s zone. To
perform the handoff, the top-level manager is informed
who then activates the script for that node in the other
IM and deactivates it in the first IM. It is also possible
in the SHAMAN architecture for the two IM’s to directly
communicate with each other and perform the handoff
without involving the top-level manager.

Since it is very difficult to demonstrate applications such
as Location Management on a real system with more than
a few nodes, we must resort to simulation in order to
study their scalability to networks with large numbers of
nodes. Our partner in the ATIRP Consortium, Motorola,
has developed simulation models of realistic battlefield
situations that include knowledge and modeling of ter-
rain information. These simulations are implemented us-
ing OPNET [11] and demonstrate node mobility in dif-
ferent types of terrain and the effect on communication
patterns [12]. We have developed a simulated MIB in-
terface that allows us to connect the OPNET simulations
with the SHAMAN management system [13].

III. Topology Reconfiguration with SHAMAN

A tactical battlefield network is characterized by a spo-
radically changing topology, due to the sudden appear-
ance and disappearance of the network elements (e.g.,
routers, switches, links, etc.). Thus, an important compo-

nent of the an adaptive configuration management system
is to generate/re-generate an appropriate network con-
nectivity after a change has occurred in the underlying
network (i.e., adapt and respond to network triggers).
Broadly speaking, while many schemes exist to gener-
ate network topology the complexity of the scheme in-
creases in direct relation to the degree of optimality re-
quired. Strictly optimal solutions may not only be too
complex, but also may be intractable. On the other hand,
completely ad-hoc solutions may not yield consistent re-
sults.

Our partners in the ATIRP Consortium, Telcordia, have
designed a heuristic algorithm to compute the new topol-
ogy in such a situation [14], [15]. This algorithm applies
a number of heuristics to generate connectivity within a
Tactical Internet (TI) which are based on using the well-
known Dijkstra’s shortest-path algorithm to compute the
shortest path tree from a given node to all other nodes
within the network. This shortest path algorithm is mod-
ified to accommodate the constraints that are imposed on
the configuration by the application. Three constraints
that are used are:

� Every node in the network must be able to communi-
cate with every other node via at least one path that is less
than H hops long.
� Every communicating node pair has more than one pos-
sible routes through the underlying network (to provide
redundancy in case there are failures).
� There is a a maximum limit on the number of other
nodes with which any given node has direct connectivity.

To implement this algorithm in SHAMAN, we have
planned to use a structure of cells in the spreadsheet
which will make it easy to modularize the different log-
ical components of the algorithm. The first column of
cells are used for external interaction from the SHAMAN
entity, i.e., for communication with the top-level man-
ager. This column includes a cell used as the trigger for
topology generation. The manager will do an SNMPGet
operation on this cell to command the SHAMAN IM to
begin topology reconfiguration when it is necessary to do
so. Another cell is used to store the generated topology;
this topology is then set into an agent MIB that is used to
drive the input to the directory service system from where
it is accessible to the manager.

A second column of cells stores global parameters and
data. These include the number of nodes in the network,

the node addresses, the maximum limit on nodal connec-
tivity, and the limit on the maximum length of the shortest
path between two nodes. The third column contains local
structures to be used by the various components of the al-
gorithm. These are the node positions (which are polled
from the agents in the nodes, or may be obtained from the
DSS), the path cost matrix, the direct link costs, and the
predecessor of each node in the shortest path tree.

The remaining columns and cells in SHAMAN’s spread-
sheet are used for the code corresponding to the algo-
rithm’s components. The first of these is the Chain gener-
ation function, which initially generates chains between
the nodes that are as long as possible without violating
the maximum length constraints. The second is Dijkstra’s
algorithm which finds the shortest paths from each node
to every other node. The third component is a function
to create shorter paths whenever the algorithm has paths
that are unacceptably long. This is done by adding di-
rect links between the nodes so that path lengths may be
reduced. The final component is a function to perform
checks on the nodal degree constraint.

Implementation of this algorithm in SHAMAN is cur-
rently underway and we hope to be able to give a demon-
sration of the SHAMAN part of the system at the upcom-
ing Annual Conference. The integration of this with the
rest of the system being developed by our other task part-
ners will be done shortly afterwards, and the complete
joint demo should be available for demonstration before
the end of the project.

The remaining columns and cells in SHAMAN’s spread-
sheet are used for the code corresponding to the algo-
rithm’s components. The first of these is the Chain gener-
ation function, which initially generates chains between
the nodes that are as long as possible without violating
the maximum length constraints. The second is Dijkstra’s
algorithm which finds the shortest paths from each node
to every other node. The third component is a function
to create shorter paths whenever the algorithm has paths
that are unacceptably long. This is done by adding di-
rect links between the nodes so that path lengths may be
reduced. The final component is a function to perform
checks on the nodal degree constraint.

Implementation of this algorithm in SHAMAN is cur-
rently underway and we hope to be able to give a demon-
sration of the SHAMAN part of the system at the upcom-
ing Annual Conference. The integration of this with the

rest of the system being developed by our other task part-
ners will be done shortly afterwards, and the complete
joint demo should be available for demonstration before
the end of the project.

IV. Conclusions

In conclusion, one of the significant achievements of
the ATIRP Consortium in the area of network manage-
ment has been the development of the SHAMAN system.
SHAMAN is an architecture and framework for hierar-
chical management of networks that can be applied to im-
plement various management applications in the Army’s
tactical battlefield networks. We have described its util-
ity for location management of mobile nodes in a bat-
tlefield environment and for a configuration management
application that can be used to reconfigure network topol-
ogy when node positions have changed. A prototype im-
plementation of SHAMAN is available and will soon be
ported to the ARL Testbed so it can be used for other
management tasks and applications within the Testbed.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the
Army Research Laboratory or the U.S. Government.

REFERENCES

[1] P. Kalyanasundaram, A.S. Sethi, and C. Sherwin.
Design of A Spreadsheet Paradigm for Network
Management. InProceedings of the 7th IFIP/IEEE
Workshop on Distributed Systems: Operations and
Management, L’Aquila, Italy, October 1996.

[2] P. Kalyanasundaram, A.S. Sethi, C. Sherwin, and
D. Zhu. A Spreadsheet-based Scripting Environ-
ment for SNMP. In A. Lazar, R. Saracco, and
R. Stadler, editors,Integrated Network Manage-
ment V, pages 752–765. Chapman and Hall, Lon-
don, 1997.

[3] A.S. Sethi, P. Kalyanasundaram, C. Sherwin, and
D. Zhu. A Hierarchical Management Framework
for Battlefield Network Management. InProceed-
ings of MILCOM ’97, IEEE Military Communica-
tions Conference, Monterey, CA, November 1997.

[4] A.S. Sethi, P. Kalyanasundaram, C. Sherwin,
D. Zhu, and S. Pakala. Battlefield location manage-
ment applications of SHAMAN. InProceedings of
MILCOM ’98, IEEE Military Communications Con
ference, Boston, MA, November 1998.

[5] A.S. Sethi, Y. Raynaud, and F. Faure-Vincent, edi-
tors. Integrated Network Management IV. Chapman
and Hall, London, 1995.

[6] J. D. Case, M. S. Fedor, M. L. Schoffstall, and
C. Davin. Simple Network Management Protocol
(RFC 1157), May 1990.

[7] J. Case, K. McCloghrie, M. Rose, and S. Wald-
busser. Protocol Operations for Version 2 of the
Simple Network Management Protocol (SNMPv2)
(RFC 1905), January 1996.

[8] M. T. Rose and K. McCloghrie.Structure and Iden-
tification of Management Information for TCP/IP
based internets (RFC 1155), May 1990.

[9] A.S. Sethi, P. Kalyanasundaram, C. Sherwin, and
D. Zhu. A Spreadsheet-Based SNMP Scripting En-
vironment for Battlefield Network Management. In
Proceedings of the First ARL/ATIRP Annual Con-
ference, pages 251–256, College Park, MD, January
1997.

[10] A.S. Sethi, P. Kalyanasundaram, C. Sherwin, and
D. Zhu. Battlefield applications of hierarchical man-
agement with SHAMAN. InProceedings of the
Second ARL/ATIRP Annual Conference, pages 235–
240, College Park, MD, February 1998.

[11] Mil 3, Inc., Washington, D.C. OPNET Modeler,
v6.0, 1999.

[12] M. Humphrey and B. Rivera. Investigation of static
and dynamic wireless network routing including ter-
rain effects and application layer tuning. InPro-
ceedings of the Third ARL/ATIRP Annual Confer-
ence, pages 241–245, College Park, MD, February
1999.

[13] A.S. Sethi, K. Sivakumar, V. Hnatyshin,
M. Humphrey, and B. Rivera. Integrating
SHAMAN management applications with bat-
tlefield OPNET simulations. InProceedings of
the Fourth ARL/ATIRP Annual Conference, pages
319–324, College Park, MD, March 2000.

[14] A.S. Sethi, D. Zhu, Y. Zong, D.-P. Hsing, and
L. Kant. Application of the SHAMAN management
system to battlefield network configuration manage-
ment. In Proceedings of the Fourth ARL/ATIRP
Annual Conference, pages 187–191, College Park,
MD, March 2000.

[15] L. Kant, C.-H. Zhu, D.-P. Hsing, and M. Lee. An
adaptive configuration management architecture de-
sign for the army’s networks. InProceedings of the
Fourth ARL/ATIRP Annual Conference, pages 223–
227, College Park, MD, March 2000.

