
PRACTICAL CONSIDERATIONS FOR EXTENDING
NETWORK LAYER MODELS WITH OPNET MODELER

Vasil Hnatyshin, Gregg Gramatges, and Matthew Stiefel

Rowan University
Department of Computer Science

Glassboro, NJ, 08028
hnatyshin@rowan.edu, {gramat64,stiefe93}@students.rowan.edu

ABSTRACT
The Internet is an evolving force that contributes to rapid
economic expansion worldwide. However, each newly
emerging Internet technology requires rigorous evaluation
and testing; a process that often includes simulation and
modeling. OPNET Modeler is among the foremost
software products for the simulation and modeling of
communication protocols and Internet technologies.
However, OPNET's considerable amounts of source code
and supporting application programming interfaces (API)
can be quite overwhelming, even for experienced
developers. This paper attempts to demystify the process
of modeling in OPNET and enumerate the key steps for
creating new simulation models using the OPNET
Modeler software package. In this paper, the authors share
experiences from their foray into developing a new IP
layer mechanism for QoS support. Additionally, this
paper details a methodology for expanding the OPNET
Modeler network layer implementation.

KEY WORDS
Modeling, simulation, OPNET, protocols, network layer,
IP, QoS

1. INTRODUCTION
According to the Organization for Economic Co-
operation and Development, information and
communication technologies are growing rapidly and
have a significant impact on the global economy [1]. The
Internet is among the key contributing factors that compel
this rapid economic expansion. Internet technologies that
were once exotic, such as web-casting, Internet TV, and
voice over IP, have become parts of everyday life.
However, before a new technology can be released to the
public, it must pass rigorous testing and evaluation; a
process that often involves simulation and modeling.

The OPNET Modeler software package [2] is among the
most popular and most comprehensive tools available on
the market for modeling new communication technologies
and protocols. OPNET Modeler includes a vast model
library of communications devices, communication
mediums, and cutting-edge protocols. It also allows users
to extend models and create new ones using C/C++.

However, developing or expanding simulation model is a
quite complex and challenging task. When working with
OPNET Modeler, developers are faced with considerable
amounts of source code and supporting application
programming interfaces (API). This can be quite
overwhelming, even for experienced software developers.
Often the hardest question to answer is, “Where do I
start?” In this paper, we attempt to demystify the process
of modeling in OPNET as well as enumerate the key steps
for creating new simulation models using the OPNET
Modeler software package. In particular, we concentrate
on network layer technologies and protocols, including
mechanisms for quality of service (QoS) support [3] over
Internet Protocol (IP) [4].

In this paper, we share experiences from our foray into
developing a new IP layer mechanism for QoS support,
and present a methodology for expanding the OPNET
Modeler network layer implementation. The simulation
models described in this paper have been implemented
with version 11.5 of OPNET Modeler. Upon this writing,
the latest release of OPNET Modeler is version 12.0,
which has been available since late 2006. However,
version 12.0 includes no significant changes to the
network layer implementation. Thus, the processes and
methodologies described in this paper are applicable to
both version 11.5 and 12.0 of OPNET Modeler.

The rest of the paper is organized as follows. Section 2
provides brief overview of the OPNET Modeler
architecture followed by Section 3 that describes
methodology for developing and integrating new models
in OPNET. Section 4 presents an example of using
described methodology to implement. Summary and
conclusions appear in Section 6.

2. OVERVIEW OF OPNET ARCHITECTURE
The OPNET Modeler architecture consists of three
modeling domains: the process, the node, and the
network. Within the process modeling domain the
developer implements the behavior of various processes,
such as e-mail clients, TCP managers, or IP interfaces. In
OPNET, the modular implementations of these processes
are referred to as process models. The complete
specification of an OPNET process model consists of a

finite state machine, action statements expressed in
C/C++, and configurable parameters.

Within the node modeling domain the developer
implements the behavior of various network devices, such
as clients, servers, switches, or routers. Node models are
usually defined via one or more functional elements
called modules and by the data flow between them. The
behavior of individual modules is specified either via a set
of built-in parameters or through one or more process
models.

Within the network domain the developer implements
complete network models including individual nodes and
interconnecting communication links. A network model
specification also includes the configuration of such
simulation model characteristics as individual
applications, user profiles, and network protocols. The
configuration of individual nodes and communication
mediums, their connectivity and geographical locations,
serves to further define a network model. The attribute
values specified in the network modeling domain
propagate all the way down to the process models. The
attribute values specify either local characteristics,
applicable to individual devices, or global characteristics,
applicable to multiple devices in the network.

The OPNET modeling architecture is structured in a
layered fashion with the process domain being the lowest
layer, followed by the node domain, and finally the
network domain layer at the top. The process models are
used directly to build node models, which in turn are
combined to build various network models.

3. METHODOLOGY FOR ADDING A NEW

PROCESS MODELS
Generally, in OPNET Modeler, creating new process
model consists of three major steps: specifying
simulation-wide attributes (if needed), developing a
process model of desired technology or protocol, and
finally integrating the process model within OPNET. The
rest of this section examines these steps in more detail.

3.1. Specifying Simulation-Wide Attributes
It is appropriate to define an attribute that contains the
same value in all applicable nodes in the network as
simulation wide. For example, such attributes as
application definitions, user profiles, and active queue
management disciplines are easier to configure through a
single configuration node than by setting up the same
definition in every node of the network model. To define
simulation-wide attributes the developer should modify
one of the corresponding process models. For example,
the developer should modify the application_config
process model when creating new application definitions,
while the profile_config and qos_attribute_definer
process models contain simulation-wide attributes for
configuring user profiles and various QoS mechanisms,
respectively.

The process models for specifying simulation-wide
attributes are simple and easy to expand. They usually
consist of one of more initialization states that parse the
attribute values and store them into simulation-wide
database using facilities of the OPNET Model Support
(OMS) data definition package, oms_data_def. During
simulation, these process models are instantiated first,
which means that the user-defined process model is
invoked when the simulation-wide attributes are already
stored in the database and can be retrieved using the
corresponding procedure calls. The oms_data_def
package contains two procedures:
oms_data_def_entry_insert to write the data entries into
and oms_data_def_entry_access to retrieve the data
entries from the simulation-wide database.

3.2. Developing New Process Models
The steps required for creating new process models
depend solely on the nature of the technology or
communication protocol being implemented. However,
there are several steps that are common for the majority of
process models. These include collecting and registering
statistics, setting-up model attributes, and providing inter-
process communication.

Process model statistics provide feedback to the user
about the behavior and performance of the model. For
example, the process model may collect such statistics
information as the number of bytes sent, the number of
packets dropped, and others. There are two types of
statistics available in OPNET: local, which are computed
for each process model separately; and global, which are
computed as a sum or average for all instances of the
same process model within the simulation. Each statistic,
local or global, has to be declared via the Process Editor
GUI and then registered using the op_stat_reg procedure
during initialization of the process model. Once a statistic
has been registered, it can be updated as needed using the
op_stat_write procedure.

Model attributes communicate information from the
network domain to the process model. For example, the
process model of the Transport Control Protocol (TCP)
[5] contains attributes such as the receiver window size
and the maximum segment size. These attributes have
their values set within the network domain but determine
TCP’s behavior at the process level. There are two
attribute types: local, i.e. each instance of a process model
has its own set of local attributes, and global, i.e.
attributes that are common to all process model instances
within a simulation. As with the statistics, the attributes
have to be declared via the Process Editor GUI before
they can be used. After that, the user-specified values can
be read, usually during the process model initialization,
using function op_ima_obj_attr_get. One of the best ways
to learn how to set-up and use process model statistics and
attributes is by examining other OPNET process models
such as application_config, ip_dispatch,
tcp_manager_v3, rip_udp_v3, and others.

Once the process model statistics have been declared and
the model attribute values have been obtained, the
developer can start implementing the behavior of the new
technology or protocol. Often to achieve the desired effect
the new technology requires exchange of information
among the nodes in the network. For example, to support
quality of service requirements the Integrated Services [6]
rely on the Resource Reservation Protocol (RSVP) [7].
RSVP forwards control messages about the flow
requirements and resource availability between the
routers. Modeling such message exchange in OPNET is
quite challenging. There are several approaches to
implementing communication between nodes in OPNET.
In this paper we concentrate on two approaches to:
explicit exchange of control packets and use of a
simulation-wide database.

To implement inter-node communication using the
explicit exchange of control packets, the process model
has to use OPNET facilities for generating and processing
packets. The PK (Packet) package, described in Chapter
11 of the Discrete Event Simulation API Reference
Manual [8], provides a collection of the procedures for
manipulating packets in OPNET. Modeling inter-node
communication using explicit packet exchange enables
precise representation of the protocol behavior, and will
accurately reflect such performance characteristics as
delay of the packets as they travel through the network.
However, implementing explicit packet exchange is
usually a complex, challenging, code-intensive, and often
error-prone task.

The use of simulation-wide database is more appropriate
in the situations when the exchange of protocol control
information can be separated from the rest of the design
and control packet latency can be neglected. Even though
this is not intended use for the OMS facility, the
oms_data_def package can be used to exchange
information between nodes as well. When needed, the
control information can be stored in a model-specific data
structure and then written using the
oms_data_def_entry_insert procedure into the simulation-
wide database. Similarly, the control information can be
retrieved from the simulation-wide database using the
oms_data_def_entry_access procedure and then stored in
the model-specific data structure. This approach
significantly reduces implementation complexity of the
process model but may result in inaccurate simulation
results because the control packet propagation through the
network and associated delays are not simulated.

3.3. Integrating the New Process ModelWithin

OPNET
Integrating a new process model within OPNET is a
challenging and often confusing task because it requires
intimate knowledge of the standard, built-in OPNET
process models, which are quite complex. If the process
model implements a new application then the developer
needs to understand the inner-workings of the generic

client-server manager (gna_clsvr_mgr) process model; to
implement or modify a routing protocol the developer
requires an understanding of the corresponding routing
protocol process model; and so on. This knowledge is
needed to determine how to invoke the new process
model from within the OPNET’s code. Describing the
details of all existing standard OPNET process models is
beyond the scope of this work. Instead the paper
concentrates on the implementation of the IP protocol and
related technologies which are the heart of the Internet.

Figure 1. Node model of a point-to-point workstation

Figure 1 illustrates an OPNET node model of a point-to-
point workstation, where grey boxes represent modules
that implement various protocols, and the arrows
designate the inter-module communication. As Figure 1
shows, the network layer is simulated via two modules:
ip_encap and ip. The ip_encap module uses the
ip_encap_v4 process model to implement encapsulation,
e.g. adding the IP header to the packets that travel from
the upper layers down into the network, and
decapsulation, i.e. stripping the IP header off the packets
that arrive from the network and travel to the upper
layers. The ip module relies on the ip_dispatch process
model to implement such basic IP activities as
forwarding, fragmentation, and reassembly. In addition,
ip_dispatch invokes the ip_output_iface process model to
implement packet processing at individual outgoing
interfaces of the node. The majority of new IP
technologies for QoS support are based on effective
management of outgoing interfaces and network resources
associated with them, such as bandwidth and queue
occupancy. In OPNET, such technologies are
implemented via the ip_output_iface process model
which we examine next.

Figure 2. Process model ip_output_iface

As Figure 2 illustrates the ip_output_iface process model
consists of three states. States “init” and “init2” initialize
all of the process model’s variables and data structures in
the do_init() and allocate_buffers() procedures. State
“idle”, on the other hand, deals with packet arrivals and
the RSVP protocol. We ignore the RSVP implementation
because it is beyond the scope of the paper. We primarily
concentrate on initialization and packet processing which
are key procedures for adding new network layer process
models.

First, the developer needs to call a procedure to spawn a
child process for the new process model. This can be
accomplished by calling the op_pro_create() OPNET
kernel procedure, which returns the process handle of, or
the reference to, the created child process. The new
process model should be spawned during the
ip_output_iface process model initialization. The
do_init() procedure deals with the initialization of various
process model variables and data structures. While the
allocate_buffers() procedure deals with the initialization
of the output interface buffers used to model various
active queue management and scheduling disciplines.
That is why, from the software engineering point of view,
the do_init() procedure is more appropriate than the
allocate_buffers() procedure for spawning new processes.

Once the new process is created, it can be invoked, as
necessary, using the op_pro_invoke() OPNET kernel
procedure. Usually a new process invocation is associated
with a packet arrival or departure. Generally, there are
two main events that occur in the ip_output_iface process
model and that may trigger a new process invocation: (1)
the packet that has not been processed yet arrives on the

outgoing interface and (2) the packet is processed and is
scheduled for departure from the outgoing interface. From
the networking point of view it is logical to invoke a new
process when the packet arrives on the outgoing interface
and before the packet is placed in the queue. In such cases
the new process has a chance to examine every packet
that arrives on the interface. If the new process is invoked
upon the packet departure, then not all of the packets may
be accessible because some packets may be discarded
upon queue overflow. To invoke the new process before
the packet is placed in the queue the developer should call
the op_pro_invoke() kernel procedure from the
enqueue_packet() procedure. The enqueue_packet()
procedure is executed each time the packet arrives on the
outgoing interface.

On the hand, one can envision situations where the new
process has to be invoked after the packet has been
processed. For example, the new process deals only with
those packets that were not discarded and are ready to be
placed on the physical wire. In this case, the developer
should modify procedure extract_and_send() which is
called after queue management (QM) completed packet
processing.

Once the new process is not longer needed, the developer
can terminate it using the OPNET kernel procedure
op_pro_destroy(). This kernel procedure can be called
either from the process model’s termination block, or
from the enqueue_packet() or extract_and_sent()
procedure upon arrival or departure of certain packet. It
should be noted that all process model procedures such as
do_init(), allocate_buffers(), enqueue_packet(),
extract_and_sent(), and others can be examined and

modified via the process model’s function block of a
process model.

Editing or adding new queue management and scheduling
disciplines requires a modification of the QM package
procedures stored in the oms_qm_ex.c file. In particular,
the developer would need to study and update such
procedures as Oms_Qm_Packet_Process(),
Oms_Qm_Incoming_Packet_Handler(),
Oms_Qm_Packet_Enqueue(), and others. However, this
discussion is beyond the scope of the work and is not
included in the paper.

4. EXAMPLE OF THE IP LAYER TECHNOLOGY

IMPLEMENTATION IN OPNET
This section discusses implementation of the Bandwidth
Distribution Scheme (BDS) in OPNET to serve as an
example of how develop network layer process models
and integrate them in OPNET Modeler.

4.1. Brief Overview of the Bandwidth Distribution

Scheme
The Bandwidth Distribution Scheme (BDS) is a
mechanism for supporting quality of service in the
Internet. In short, BDS operates as follows. Each new
flow that enters the network specifies the minimum
requested rate which is the minimum amount of
bandwidth that the flow needs to operate properly, and the
maximum requested rate which is the maximum amount
of bandwidth that the flow can utilize. These values are
called the Requested Bandwidth Range (RBR) and all
admitted flows are guaranteed to receive the amount of
bandwidth within its RBR. If there is a sufficient amount
of bandwidth to support the new flow’s request then all
the other flows that share resources with the newly
admitted flow are throttled to accommodate the new flow
arrival. The core nodes in the network maintain the sum
of the flow RBR values for each of their outgoing links,
which is called an aggregate RBR. Aggregate RBR values
are distributed among edge nodes for the purpose of
computing the fair share transmission rates of each flow.
The edge nodes monitor the flow arrival rate and throttle
the flows, if needed, by discarding those packets that
arrive at the rate above their computed fair share. BDS
relies on a fairly complex message exchange protocol for
maintaining the aggregate RBR values in the network
core and distributing them among the edge routers. BDS
operates at the network layer and is implemented as an
extension of the outgoing interface processing in the IP
layer. Refer to [9, 10] for additional details on BDS
operation.

4.2. Summary of BDS Implementation in OPNET
First step towards implementing BDS was to modify the
qos_attribute_definer process model for parsing the BDS
attribute values specified at the network domain level.
Parsed data is stored in the simulation-wide database
using the oms_data_def package.

To support BDS we created two data structures: flow table
and interface table. Each entry in the flow table contains
such information as source and destination IP addresses
(for flow identification), RBR, computed fair share,
complete path to the destination, and current transmission
rate. The interface table contains such information as
available link capacity for BDS traffic, and the aggregate
RBR values for the flows that travel via the interface. In
real a network, such data structures are not available
globally and are local to individual nodes. However, since
the goal of our study was to examine the feasibility of
BDS independently of the control packet exchange
protocol, the flow and interface table information was
made available to all nodes in the network using
simulation-wide database of the oms_data_def package.

We implemented the bandwidth distribution scheme as a
separate process model invoked from the ip_output_iface
process model upon the packet arrival. Figure 3 illustrates
the BDS process model. The “BDS_INIT” state initializes
various local data structures including the flow and
interface tables. Once the initialization is complete the
process model transitions into the “BDS” state, were it
waits for a packet arrival.

Figure 3. BDS process model

When a packet arrives, BDS retrieves packet information
provided by the ip_output_iface process, identifies the
flow the packet belongs to based on source and
destination IP addresses, and retrieves flow information
from the flow table. Next, BDS updates the corresponding
entries in the flow and interface tables using the
oms_data_def_access() and oms_data_def_insert()
procedures.

Finally, we integrated the BDS process model within the
ip_output_iface process model. We spawned the BDS
process by calling the op_pro_create() kernel procedure
from the do_init() procedure. We invoke the BDS process
upon each packet arrival from the enqueue_packet()
procedure by calling op_pro_invoke() kernel procedure.
Upon completion the packet processing, BDS returns a
Boolean variable set to TRUE if the packet arrived at the
rate above its flow’s fair share and FALSE otherwise. We
also modified the enqueue_packet() procedure to examine
the value returned by the BDS process before placing the
packet in the queue. If the value is TRUE then the packet

is discarded using the kernel procedure op_pk_destroy(),
otherwise the packet is placed in the queue as usual.

The BDS implementation was tested using several
different scenario settings. Preliminary results indicate
that the current BDS implementation distributed available
bandwidth resources within 2% of expected fair share
values. However, a complete report of the study is beyond
the scope of the paper. We are currently completing the
result compilation, expanding the BDS implementation,
and planning to present a comprehensive report of the
study in future publications.

5. CONCLUSION
This paper examined a practical methodology for
expanding network layer technologies using the OPNET
Modeler software. We plan to extend this study and
provide a more detailed account of the BDS
implementation in our future work. We also plan to
examine the OPNET implementation of the active queue
management and scheduling mechanism in greater detail
and implement the control packet exchange protocol
during the next phase of our study.

REFERENCES
[1] Organization for Economic Co-operation and

Development (OECD), Information and
Communication Technologies,
http://www.oecd.org, last visited on 07/01/07.

[2] OPNET Inc., http://www.opnet.com/, last visited
on 07/01/07.

[3] Quality of Service Networking,
http://www.cisco.com, last visited on 07/01/07.

[4] Postel, J., Internet Protocol, RFC 791, DARPA,
September 1981.

[5] W. Feng, D. Kandlur, D. Saha, K. Shin,
Understanding and improving TCP performance
over networks with minimum rate guarantees,
IEEE/ACM Transactions on Networking, 7 (2),
1999, 173–187.

[6] R. Braden, D. Clark, S. Shenker, “Integrated
Services in the Internet Architecture: an
Overview”, June 1994, IETF RFC 1633.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, S.
Jamin, Resource reservation protocol (RSVP) –
version 1 functional specification, September 1997,
IETF RFC 2205.

[8] OPNET Modeler version 11.5. Discrete Event
Simulation API Reference Manual

[9] V. Hnatyshin and A. S. Sethi, Bandwidth
Distribution Scheme for Dynamic, Scalable, and
Fair Allocation of Bandwidth, International
Journal of Network Management (Wiley), 16(5),
2006, 317- 336.

[10] V. Hnatyshin and A. S. Sethi, Scalable
Architecture for Providing Per-flow Bandwidth
Guarantees, Proc. of the IASTED conference on
Communications, Internet and Information
Technology (CIIT 2004), St. Thomas, Virgin Isles,
2004.

