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ABSTRACT 
The Internet is an evolving force that contributes to rapid 
economic expansion worldwide. However, each newly 
emerging Internet technology requires rigorous evaluation 
and testing; a process that often includes simulation and 
modeling. OPNET Modeler is among the foremost 
software products for the simulation and modeling of 
communication protocols and Internet technologies. 
However, OPNET's considerable amounts of source code 
and supporting application programming interfaces (API) 
can be quite overwhelming, even for experienced 
developers. This paper attempts to demystify the process 
of modeling in OPNET and enumerate the key steps for 
creating new simulation models using the OPNET 
Modeler software package. In this paper, the authors share 
experiences from their foray into developing a new IP 
layer mechanism for QoS support. Additionally, this 
paper details a methodology for expanding the OPNET 
Modeler network layer implementation. 
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1. INTRODUCTION   
According to the Organization for Economic Co-
operation and Development, information and 
communication technologies are growing rapidly and 
have a significant impact on the global economy [1]. The 
Internet is among the key contributing factors that compel 
this rapid economic expansion. Internet technologies that 
were once exotic, such as web-casting, Internet TV, and 
voice over IP, have become parts of everyday life. 
However, before a new technology can be released to the 
public, it must pass rigorous testing and evaluation; a 
process that often involves simulation and modeling.  
 
The OPNET Modeler software package [2] is among the 
most popular and most comprehensive tools available on 
the market for modeling new communication technologies 
and protocols. OPNET Modeler includes a vast model 
library of communications devices, communication 
mediums, and cutting-edge protocols. It also allows users 
to extend models and create new ones using C/C++. 
 

However, developing or expanding simulation model is a 
quite complex and challenging task. When working with 
OPNET Modeler, developers are faced with considerable 
amounts of source code and supporting application 
programming interfaces (API). This can be quite 
overwhelming, even for experienced software developers. 
Often the hardest question to answer is, “Where do I 
start?” In this paper, we attempt to demystify the process 
of modeling in OPNET as well as enumerate the key steps 
for creating new simulation models using the OPNET 
Modeler software package. In particular, we concentrate 
on network layer technologies and protocols, including 
mechanisms for quality of service (QoS) support [3] over 
Internet Protocol (IP) [4]. 
 
In this paper, we share experiences from our foray into 
developing a new IP layer mechanism for QoS support, 
and present a methodology for expanding the OPNET 
Modeler network layer implementation. The simulation 
models described in this paper have been implemented 
with version 11.5 of OPNET Modeler.  Upon this writing, 
the latest release of OPNET Modeler is version 12.0, 
which has been available since late 2006. However, 
version 12.0 includes no significant changes to the 
network layer implementation. Thus, the processes and 
methodologies described in this paper are applicable to 
both version 11.5 and 12.0 of OPNET Modeler. 
 
The rest of the paper is organized as follows. Section 2 
provides brief overview of the OPNET Modeler 
architecture followed by Section 3 that describes 
methodology for developing and integrating new models 
in OPNET. Section 4 presents an example of using 
described methodology to implement. Summary and 
conclusions appear in Section 6. 
 
2. OVERVIEW OF OPNET ARCHITECTURE  
The OPNET Modeler architecture consists of three 
modeling domains: the process, the node, and the 
network. Within the process modeling domain the 
developer implements the behavior of various processes, 
such as e-mail clients, TCP managers, or IP interfaces. In 
OPNET, the modular implementations of these processes 
are referred to as process models. The complete 
specification of an OPNET process model consists of a 



finite state machine, action statements expressed in 
C/C++, and configurable parameters.  
 
Within the node modeling domain the developer 
implements the behavior of various network devices, such 
as clients, servers, switches, or routers. Node models are 
usually defined via one or more functional elements 
called modules and by the data flow between them. The 
behavior of individual modules is specified either via a set 
of built-in parameters or through one or more process 
models.  

 
Within the network domain the developer implements 
complete network models including individual nodes and 
interconnecting communication links. A network model 
specification also includes the configuration of such 
simulation model characteristics as individual 
applications, user profiles, and network protocols. The 
configuration of individual nodes and communication 
mediums, their connectivity and geographical locations, 
serves to further define a network model. The attribute 
values specified in the network modeling domain 
propagate all the way down to the process models. The 
attribute values specify either local characteristics, 
applicable to individual devices, or global characteristics, 
applicable to multiple devices in the network.  
 
The OPNET modeling architecture is structured in a 
layered fashion with the process domain being the lowest 
layer, followed by the node domain, and finally the 
network domain layer at the top. The process models are 
used directly to build node models, which in turn are 
combined to build various network models.  
 
3. METHODOLOGY FOR ADDING A NEW 

PROCESS MODELS  
Generally, in OPNET Modeler, creating new process 
model consists of three major steps: specifying 
simulation-wide attributes (if needed), developing a 
process model of desired technology or protocol, and 
finally integrating the process model within OPNET. The 
rest of this section examines these steps in more detail. 
 
3.1.  Specifying Simulation-Wide Attributes 
It is appropriate to define an attribute that contains the 
same value in all applicable nodes in the network as 
simulation wide. For example, such attributes as 
application definitions, user profiles, and active queue 
management disciplines are easier to configure through a 
single configuration node than by setting up the same 
definition in every node of the network model. To define 
simulation-wide attributes the developer should modify 
one of the corresponding process models. For example, 
the developer should modify the application_config 
process model when creating new application definitions, 
while the profile_config and qos_attribute_definer 
process models contain simulation-wide attributes for 
configuring user profiles and various QoS mechanisms, 
respectively.  

The process models for specifying simulation-wide 
attributes are simple and easy to expand. They usually 
consist of one of more initialization states that parse the 
attribute values and store them into simulation-wide 
database using facilities of the OPNET Model Support 
(OMS) data definition package, oms_data_def. During 
simulation, these process models are instantiated first, 
which means that the user-defined process model is 
invoked when the simulation-wide attributes are already 
stored in the database and can be retrieved using the 
corresponding procedure calls. The oms_data_def 
package contains two procedures: 
oms_data_def_entry_insert to write the data entries into 
and oms_data_def_entry_access to retrieve the data 
entries from the simulation-wide database. 
 
3.2.  Developing New Process Models 
The steps required for creating new process models 
depend solely on the nature of the technology or 
communication protocol being implemented. However, 
there are several steps that are common for the majority of 
process models. These include collecting and registering 
statistics, setting-up model attributes, and providing inter-
process communication.   
 
Process model statistics provide feedback to the user 
about the behavior and performance of the model. For 
example, the process model may collect such statistics 
information as the number of bytes sent, the number of 
packets dropped, and others. There are two types of 
statistics available in OPNET: local, which are computed 
for each process model separately; and global, which are 
computed as a sum or average for all instances of the 
same process model within the simulation. Each statistic, 
local or global, has to be declared via the Process Editor 
GUI and then registered using the op_stat_reg procedure 
during initialization of the process model. Once a statistic 
has been registered, it can be updated as needed using the 
op_stat_write procedure.  
 
Model attributes communicate information from the 
network domain to the process model. For example, the 
process model of the Transport Control Protocol (TCP) 
[5] contains attributes such as the receiver window size 
and the maximum segment size.  These attributes have 
their values set within the network domain but determine 
TCP’s behavior at the process level. There are two 
attribute types: local, i.e. each instance of a process model 
has its own set of local attributes, and global, i.e. 
attributes that are common to all process model instances 
within a simulation. As with the statistics, the attributes 
have to be declared via the Process Editor GUI before 
they can be used. After that, the user-specified values can 
be read, usually during the process model initialization, 
using function op_ima_obj_attr_get. One of the best ways 
to learn how to set-up and use process model statistics and 
attributes is by examining other OPNET process models 
such as application_config, ip_dispatch, 
tcp_manager_v3, rip_udp_v3, and others.  



Once the process model statistics have been declared and 
the model attribute values have been obtained, the 
developer can start implementing the behavior of the new 
technology or protocol. Often to achieve the desired effect 
the new technology requires exchange of information 
among the nodes in the network. For example, to support 
quality of service requirements the Integrated Services [6] 
rely on the Resource Reservation Protocol (RSVP) [7].  
RSVP forwards control messages about the flow 
requirements and resource availability between the 
routers. Modeling such message exchange in OPNET is 
quite challenging. There are several approaches to 
implementing communication between nodes in OPNET. 
In this paper we concentrate on two approaches to: 
explicit exchange of control packets and use of a 
simulation-wide database.  
 
To implement inter-node communication using the 
explicit exchange of control packets, the process model 
has to use OPNET facilities for generating and processing 
packets. The PK (Packet) package, described in Chapter 
11 of the Discrete Event Simulation API Reference 
Manual [8], provides a collection of the procedures for 
manipulating packets in OPNET. Modeling inter-node 
communication using explicit packet exchange enables 
precise representation of the protocol behavior, and will 
accurately reflect such performance characteristics as 
delay of the packets as they travel through the network. 
However, implementing explicit packet exchange is 
usually a complex, challenging, code-intensive, and often 
error-prone task.  
 
The use of simulation-wide database is more appropriate 
in the situations when the exchange of protocol control 
information can be separated from the rest of the design 
and control packet latency can be neglected. Even though 
this is not intended use for the OMS facility, the 
oms_data_def package can be used to exchange 
information between nodes as well. When needed, the 
control information can be stored in a model-specific data 
structure and then written using the 
oms_data_def_entry_insert procedure into the simulation-
wide database. Similarly, the control information can be 
retrieved from the simulation-wide database using the 
oms_data_def_entry_access procedure and then stored in 
the model-specific data structure. This approach 
significantly reduces implementation complexity of the 
process model but may result in inaccurate simulation 
results because the control packet propagation through the 
network and associated delays are not simulated.  
 
3.3. Integrating the New Process ModelWithin 

OPNET 
Integrating a new process model within OPNET is a 
challenging and often confusing task because it requires 
intimate knowledge of the standard, built-in OPNET 
process models, which are quite complex. If the process 
model implements a new application then the developer 
needs to understand the inner-workings of the generic 

client-server manager (gna_clsvr_mgr) process model; to 
implement or modify a routing protocol the developer 
requires an understanding of the corresponding routing 
protocol process model; and so on. This knowledge is 
needed to determine how to invoke the new process 
model from within the OPNET’s code. Describing the 
details of all existing standard OPNET process models is 
beyond the scope of this work. Instead the paper 
concentrates on the implementation of the IP protocol and 
related technologies which are the heart of the Internet.  
 

 
 

Figure 1. Node model of a point-to-point workstation 
 
Figure 1 illustrates an OPNET node model of a point-to-
point workstation, where grey boxes represent modules 
that implement various protocols, and the arrows 
designate the inter-module communication. As Figure 1 
shows, the network layer is simulated via two modules: 
ip_encap and ip. The ip_encap module uses the 
ip_encap_v4 process model to implement encapsulation, 
e.g. adding the IP header to the packets that travel from 
the upper layers down into the network, and 
decapsulation, i.e. stripping the IP header off the packets 
that arrive from the network and travel to the upper 
layers. The ip module relies on the ip_dispatch process 
model to implement such basic IP activities as 
forwarding, fragmentation, and reassembly. In addition, 
ip_dispatch invokes the ip_output_iface process model to 
implement packet processing at individual outgoing 
interfaces of the node. The majority of new IP 
technologies for QoS support are based on effective 
management of outgoing interfaces and network resources 
associated with them, such as bandwidth and queue 
occupancy. In OPNET, such technologies are 
implemented via the ip_output_iface process model 
which we examine next. 



 
 

 
Figure 2. Process model ip_output_iface 

 
As Figure 2 illustrates the ip_output_iface process model 
consists of three states. States “init” and “init2” initialize 
all of the process model’s variables and data structures in 
the do_init() and allocate_buffers() procedures. State 
“idle”, on the other hand, deals with packet arrivals and 
the RSVP protocol. We ignore the RSVP implementation 
because it is beyond the scope of the paper. We primarily 
concentrate on initialization and packet processing which 
are key procedures for adding new network layer process 
models.  
 
First, the developer needs to call a procedure to spawn a 
child process for the new process model. This can be 
accomplished by calling the op_pro_create() OPNET 
kernel procedure, which returns the process handle of, or 
the reference to, the created child process.  The new 
process model should be spawned during the 
ip_output_iface process model initialization. The 
do_init() procedure deals with the initialization of various 
process model variables and data structures. While the 
allocate_buffers() procedure deals with the initialization 
of the output interface buffers used to model various 
active queue management and scheduling disciplines. 
That is why, from the software engineering point of view, 
the do_init() procedure is more appropriate  than the 
allocate_buffers() procedure for spawning new processes.  
 
Once the new process is created, it can be invoked, as 
necessary, using the op_pro_invoke() OPNET kernel 
procedure. Usually a new process invocation is associated 
with a packet arrival or departure. Generally, there are 
two main events that occur in the ip_output_iface process 
model and that may trigger a new process invocation: (1) 
the packet that has not been processed yet arrives on the 

outgoing interface and (2) the packet is processed and is 
scheduled for departure from the outgoing interface. From 
the networking point of view it is logical to invoke a new 
process when the packet arrives on the outgoing interface 
and before the packet is placed in the queue. In such cases 
the new process has a chance to examine every packet 
that arrives on the interface. If the new process is invoked 
upon the packet departure, then not all of the packets may 
be accessible because some packets may be discarded 
upon queue overflow. To invoke the new process before 
the packet is placed in the queue the developer should call 
the op_pro_invoke() kernel procedure from the 
enqueue_packet() procedure. The enqueue_packet() 
procedure is executed each time the packet arrives on the 
outgoing interface.  
 
On the hand, one can envision situations where the new 
process has to be invoked after the packet has been 
processed. For example, the new process deals only with 
those packets that were not discarded and are ready to be 
placed on the physical wire. In this case, the developer 
should modify procedure extract_and_send() which is 
called after queue management (QM) completed packet 
processing.  
 
Once the new process is not longer needed, the developer 
can terminate it using the OPNET kernel procedure 
op_pro_destroy(). This kernel procedure can be called 
either from the process model’s termination block, or 
from the enqueue_packet() or extract_and_sent() 
procedure upon arrival or departure of certain packet. It 
should be noted that all process model procedures such as 
do_init(), allocate_buffers(), enqueue_packet(), 
extract_and_sent(), and others can be examined and 



modified via the process model’s function block of a 
process model. 
 
Editing or adding new queue management and scheduling 
disciplines requires a modification of the QM package 
procedures stored in the oms_qm_ex.c file. In particular, 
the developer would need to study and update such 
procedures as Oms_Qm_Packet_Process(), 
Oms_Qm_Incoming_Packet_Handler(), 
Oms_Qm_Packet_Enqueue(), and others. However, this 
discussion is beyond the scope of the work and is not 
included in the paper. 
 
4. EXAMPLE OF THE IP LAYER TECHNOLOGY 

IMPLEMENTATION IN OPNET 
This section discusses implementation of the Bandwidth 
Distribution Scheme (BDS) in OPNET to serve as an 
example of how develop network layer process models 
and integrate them in OPNET Modeler.  
 
4.1. Brief Overview of the Bandwidth Distribution 

Scheme 
The Bandwidth Distribution Scheme (BDS) is a 
mechanism for supporting quality of service in the 
Internet. In short, BDS operates as follows. Each new 
flow that enters the network specifies the minimum 
requested rate which is the minimum amount of 
bandwidth that the flow needs to operate properly, and the 
maximum requested rate which is the maximum amount 
of bandwidth that the flow can utilize. These values are 
called the Requested Bandwidth Range (RBR) and all 
admitted flows are guaranteed to receive the amount of 
bandwidth within its RBR. If there is a sufficient amount 
of bandwidth to support the new flow’s request then all 
the other flows that share resources with the newly 
admitted flow are throttled to accommodate the new flow 
arrival. The core nodes in the network maintain the sum 
of the flow RBR values for each of their outgoing links, 
which is called an aggregate RBR. Aggregate RBR values 
are distributed among edge nodes for the purpose of 
computing the fair share transmission rates of each flow. 
The edge nodes monitor the flow arrival rate and throttle 
the flows, if needed, by discarding those packets that 
arrive at the rate above their computed fair share. BDS 
relies on a fairly complex message exchange protocol for 
maintaining the aggregate RBR values in the network 
core and distributing them among the edge routers. BDS 
operates at the network layer and is implemented as an 
extension of the outgoing interface processing in the IP 
layer. Refer to [9, 10] for additional details on BDS 
operation.  
 
4.2. Summary of BDS Implementation in OPNET 
First step towards implementing BDS was to modify the 
qos_attribute_definer process model for parsing the BDS 
attribute values specified at the network domain level. 
Parsed data is stored in the simulation-wide database 
using the oms_data_def package.  

To support BDS we created two data structures: flow table 
and interface table. Each entry in the flow table contains 
such information as source and destination IP addresses 
(for flow identification), RBR, computed fair share, 
complete path to the destination, and current transmission 
rate. The interface table contains such information as 
available link capacity for BDS traffic, and the aggregate 
RBR values for the flows that travel via the interface. In 
real a network, such data structures are not available 
globally and are local to individual nodes. However, since 
the goal of our study was to examine the feasibility of 
BDS independently of the control packet exchange 
protocol, the flow and interface table information was 
made available to all nodes in the network using 
simulation-wide database of the oms_data_def package.  
 
We implemented the bandwidth distribution scheme as a 
separate process model invoked from the ip_output_iface 
process model upon the packet arrival. Figure 3 illustrates 
the BDS process model. The “BDS_INIT” state initializes 
various local data structures including the flow and 
interface tables. Once the initialization is complete the 
process model transitions into the “BDS” state, were it 
waits for a packet arrival.  
 

 
Figure 3. BDS process model 

 
When a packet arrives, BDS retrieves packet information 
provided by the ip_output_iface process, identifies the 
flow the packet belongs to based on source and 
destination IP addresses, and retrieves flow information 
from the flow table. Next, BDS updates the corresponding 
entries in the flow and interface tables using the 
oms_data_def_access() and oms_data_def_insert() 
procedures.  
 
Finally, we integrated the BDS process model within the 
ip_output_iface process model. We spawned the BDS 
process by calling the op_pro_create() kernel procedure 
from the do_init() procedure. We invoke the BDS process 
upon each packet arrival from the enqueue_packet() 
procedure by calling op_pro_invoke() kernel procedure. 
Upon completion the packet processing, BDS returns a 
Boolean variable set to TRUE if the packet arrived at the 
rate above its flow’s fair share and FALSE otherwise. We 
also modified the enqueue_packet() procedure to examine  
the value returned by the BDS process before placing the 
packet in the queue. If the value is TRUE then the packet 



is discarded using the kernel procedure op_pk_destroy(), 
otherwise the packet is placed in the queue as usual. 
 
The BDS implementation was tested using several 
different scenario settings. Preliminary results indicate 
that the current BDS implementation distributed available 
bandwidth resources within 2% of expected fair share 
values. However, a complete report of the study is beyond 
the scope of the paper. We are currently completing the 
result compilation, expanding the BDS implementation, 
and planning to present a comprehensive report of the 
study in future publications. 
 
5. CONCLUSION 
This paper examined a practical methodology for 
expanding network layer technologies using the OPNET 
Modeler software. We plan to extend this study and 
provide a more detailed account of the BDS 
implementation in our future work. We also plan to 
examine the OPNET implementation of the active queue 
management and scheduling mechanism in greater detail 
and implement the control packet exchange protocol 
during the next phase of our study.  
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