1. If $\vec{A} = 4\hat{a}_x + 4\hat{a}_y - 2\hat{a}_z$ and $\vec{B} = 3\hat{a}_x - 1.5\hat{a}_y + \hat{a}_z$, find the angle ($< 90^\circ$) between \vec{A} and \vec{B}.

2. (a) Find an equation for the plane that is perpendicular to the vector $\vec{A} = 2\hat{a}_x + 3\hat{a}_y + 6\hat{a}_z$ and passes through the end point (from the origin) of the vector $\vec{B} = \hat{a}_x + 5\hat{a}_y + 3\hat{a}_z$.

(b) What is the shortest distance from the origin to the plane?

3. If $\vec{A} = 10\hat{a}_\rho/\rho + 5\hat{a}_\phi + 2\hat{a}_z$ and $\vec{B} = 5\hat{a}_\rho + \cos \phi \hat{a}_\phi + \rho \hat{a}_z$,

(a) Find $\vec{A} \cdot \vec{B}$ at the point $x = 1, y = 1, z = 1$.

(b) Find $\vec{A} \times \vec{B}$ at the point $x = 1, y = 1, z = 1$.

4. Given the following vector in Cartesian coordinates, convert it to cylindrical coordinates.

$\vec{A} = 4\hat{a}_x + 4\hat{a}_y - 2\hat{a}_z$

5. Consider the following field: $\vec{A} = (x^2 + y^2)^{-1}(x\hat{a}_x + y\hat{a}_y)$

(a) Express the field in cylindrical coordinates. Note, all components must be from the cylindrical coordinate system.

(b) Evaluate \vec{A} at $\rho = 2, \phi = 0.2\pi$, and $z = 5$. Express this vector in both cylindrical and rectangular coordinate systems.