

HISTORY OF ASPHALT GRADING SYSTEMS

History of Asphalt Grading Systems

Grading By Chewing

- Chewing first mode of testing to determine asphalt hardness
- Initially used for natural asphalts such as Trinidad Lake asphalt
- Trinidad asphalt contains colloidal clay of volcanic origin
- Solubility in carbon disulfide used to determine the purity
- First sheet asphalt pavement using Trinidad asphalt - Pennsylvania Avenue, Washington, DC (1876)

Penetration Grading

- Bowen of Barber Asphalt Co. invented penetration test in 1888
- Many modifications of No. 2 sewing needle (tip truncated)
- Specified load, time, and temperature
- ASTM Committee D-4 adopted penetration test (1903)
- Non-uniformity in application of penetration values by states

Penetration Grading (cont.)

- 1918 Bureau of Public Roads (now FHWA) developed penetration grades and recommended uses for northern and southern states
- 1931 AASHTO published specifications
- 1955 Thin film oven (TFO) test added
- Current: Five penetration grades specified

40 - 50	120 - 150
60 - 70	200 - 300
05 100	

ASTM D 946 Penetration Graded Asphalt Cements

	Penetration Grade									
	40-50		60-70		85-100		120-150		200-300	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Penetration at 77 ₱ (25 ℃) 100 g, 5 s	40	50	60	70	85	100	120	150	200	300
Flash point, 👎	450		450		450	•••	425	•••	350	•••
Solubility in trichloroethylene, %	99.0		99.0		99.0		99.0		99.0	
Retained penetration after TFO, %	55+		52+		47+		42+		37+	
Ductility at 77 F (25 C) cm after TFO			50	•••	75	•••	100	•••	100	

Temperature Susceptibility of Asphalts

6

Penetration Grading

- <u>Advantages</u>
 - Consistency at average service temperature
 - -Short testing time
 - Adaptable to field applications (contamination)
 Relatively low equipment cost

Penetration Grading (Cont.)

- <u>Disadvantages</u>
 - -Grade overlap (85-100 grade = AC-5, AC-10, or AC-20)
 - Similitude at 77°F deceptive to performance at higher and lower service temperatures
 - Rates of test (shear rate) high and variable
 - No viscosity available near mixing and compaction temperatures

Viscosity Grading

- Developed due to construction and high temperature performance problems
- Fundamental rather than empirical units
- Approach similar to oils and liquid asphalts
- FHWA/Asphalt Institute (1963)
- Five grades established

AC - 2.5	AC - 20
AC - 5	AC - 40
AC - 10	

- Included viscosity at 275 F (135 C)
- Two tables specified (Tables 1 and 2 of ASTM D3381)
- AC-30 developed by southeastern states

History of Asphalt Grading Systems

ASTM D 3381 Viscosity Graded Asphalt Cements (Table 1)

Test	Viscosity Grade						
	AC-2.5	AC-5	AC-10	AC-20	AC-40		
Viscosity, 140 ₽ (60 ℃), P	250±50	500±100	1000±200	2000±400	4000± 800		
Viscosity, 275 ₱ (135 ℃), min, cSt	80	110	150	210	300		
Penetration, 77 F (25 C), min	200	120	70	40	20		
Tests on TFO residue:							
Viscosity, 140 ₽ (60 €), max, P	1250	2500	5000	10,000	20,000		
Ductility, 77₱ (25℃), min, cm	100	100	50	20	10		

ASTM D 3381 Viscosity Graded Asphalt Cements (Table 2)

Test	Viscosity Grade					
	AC-2.5	AC-5	AC-10	AC-20	AC-30	AC-40
Viscosity, 140 ₱ (60 €), P	250±50	500±100	1000±200	2000±400	3000±600	4000±800
Viscosity, 275 ₱ (135 ℃), min, cSt	125	175	250	300	350	400
Penetration, 77 F (25 C), min	220	140	80	60	50	40
Tests on TFO residue:						
Viscosity, 140 ∓ (60 €), max, P	1250	2500	5000	10,000	15,000	20,000
Ductility, 77 F (25 C), min, cm	100	100	75	50	40	25

Viscosity Grading

<u>Advantages</u>

 Suitability to wide range of environments - Pavement temperature from 77°F (25°C) to 140°F (60°C)

- Property fundamental Independent of test system and sample size
- Viscosity available near construction temperatures

Viscosity Grading (Cont.)

- <u>Disadvantages</u>
 - Still some grade overlap (AC-20 = 60-70 or 85-100 penetration grade)
 - Grading at 140°F (60°C) deceptive to performance at average service temperatures
 - TFOT residue viscosity can vary considerably within the same grade
 - No safeguard against low temperature cracking
 - Not suitable for modified asphalt binders

Aged Residue (AR) Grading

- Developed in 1960s following viscosity grading
- Aimed at setting problem (tender mix)
- RTFO preferred over TFO
- Lead by California Dept. Of Highways
- Five grades established (Table 3 of ASTM) D3391)

AR - 1000 AR - 8000 AR - 2000 AR - 16000 AR - 4000

 Minimum penetration at 77°F (25°C) and minimum viscosity at 275°F (135°C) for **RTFO** residue specified

ASTM D 3381 Viscosity Graded Asphalt Cements (Table 3 - Grading Based on RTFOT Residue)

Tests on RTFOT	Viscosity Grade							
Residue:	AR-1000	AR-2000	AR-4000	AR-8000	AR-16000			
Viscosity, 140 ⁻ (60 ⁻ €), P	1000±250	2000±500	4000±1000	8000±2000	16000±4000			
Viscosity, 275 ₱ (135 ℃), min, cSt	140	200	275	400	550			
Penetration, 77 F (25 C), min	65	40	25	20	20			
% of original penetration, min	• ••	40	45	50	52			

Asphalt Residue (AR) Viscosity Grading

- <u>Advantages</u>
 - Represents asphalt properties after mixing
 - Property fundamental Independent of test system
 - Suitability to wide range of environments - Pavement temperature from 77°F (25°C) to 140°F (60°C)

Asphalt Residue (AR) Viscosity Grading (cont.)

- Disadvantages
 - -Highly regional
 - -Requires more test temperatures
 - Longer testing time (no consistency test on original asphalt)

Comparison of Penetration Grades and Viscosity Grades of Asphalt Cement (based on RTFOT Residue for AR-Grades and Penetration Grades; TFOT Residue for AC-Grades)

Superpave Performance Graded (PG) Binder System

- Developed during the SHRP Research Program, 1987-1992
- Aimed at addressing:
 - Climatic effects from complete range of pavement service temperatures
 - Construction
 - Aging during construction and in-service
 - Traffic speed
 - Traffic volume

