

AGGREGATE BLENDING, ABSORPTION, & SPECIFIC GRAVITY

Topics to be Covered

- Aggregate Specific Gravities
- Gradations
- Blending Stockpiles
- Batching
- Combined Specific Gravities

Specific Gravity Tests for Aggregates

Two tests are needed

-Coarse aggregate (retained on the 4.75 mm sieve)

-Fine aggregate (passing the 4.75 mm sieve)

Apparent Specific Gravity, G_{sa}

Mass of Aggregate, oven dry

G_{sa} =

Volume of aggregate

Bulk Specific Gravity, G_{sb}

Effective Specific Gravity, Gse

 $G_{sa} =$

Mass, dry

Effective Volume

Solid Agg. Particle

Vol. of water-perm. voids not filled with asphalt

Absorbed asphalt

Effective volume = volume of solid aggregate particle + volume of surface voids not filled with asphalt

Water Absorption

Surface Voids

SSD weight - Oven dry weight

Oven dry weight

Coarse Aggregate Specific Gravity

- ASTM C127
 - Dry aggregate
 - Soak in water for 24 hours
 - Decant water
 - Use pre-dampened towel to get SSD condition
 - Determine mass of SSD aggregate in air
 - Determine mass of SSD aggregate in water
 - Dry to constant mass
 - Determine oven dry mass

Coarse Aggregate Specific Gravity Calculations

- $G_{sb} = A / (B C)$
 - A = mass oven dry
 - -B = mass SSD
 - C = mass under water
- $G_{s.SSD} = B / (B C)$
- $G_{sa} = A / (A C)$
- Water absorption capacity, %
 - Absorption % = [(B A) / A] * 100

Coarse Aggregate Specific Gravity Calculations - Example Problem

- Given:
 - -Mass oven dry 3625.5 (A)
 - -Mass SSD 3650.3 (B)
 - -Mass under Water 2293.0 (C)

Coarse Aggregate Specific Gravity Calculations - Example Problem

Apparent Specific Gravity - Gsa

$$A/(A-C)$$

Bulk Specific Gravity - Gsb

$$A/(B-C)$$

Absorption, %

$$(B - A) / A$$

Coarse Aggregate Specific Gravity Calculations - Example Problem

- Apparent Specific Gravity Gsa
 3625.5/ (3625.5-2293.0) = 2.721
- Bulk Specific Gravity Gsb
 3625.5 / (3650.3 2293.0) = 2.671
- Absorption, %
 (3650.3 3625.5) / 2293.0 = 0.68 %

Fine Aggregate Specific Gravity

- ASTM C128
 - Dry aggregate
 - Soak in water for 24 hours
 - Spread out and dry to SSD
 - Add 500 g of SSD aggregate to pycnometer of known volume
 - Pre-filled with some water
 - Add more water and agitate until air bubbles have been removed
 - Fill to calibration line and determine the mass of the pycnometer, aggregate and water
 - Empty aggregate into pan and dry to constant mass
 - Determine oven dry mass

Fine
Aggregate
Specific
Gravity

Fine Aggregate Specific Gravity Calculations

- $G_{sb} = A / (B + S C)$
 - A = mass oven dry
 - B = mass of pycnometer filled with water
 - C = mass pycnometer, SSD aggregate and water
 - S = mass SSD aggregate
- $G_{sb.SSD} = S / (B + S C)$
- $G_{sa} = A / (B + A C)$
- Water absorption capacity, %
 - Absorption % = [(S A) / A] * 100

Fine Aggregate Specific Gravity Calculations - Example Problem

Given

A = mass oven dry = 489.3

B = mass of pycnometer filled with water = 666.5

C = mass pycnometer, SSD aggregate and water = 982.3

S = mass SSD aggregate = 500.1

Fine Aggregate Specific Gravity Calculations - Example Problem

```
    G<sub>sb</sub> = A / (B + S - C) = 498.9/(666.5+500.1-982.3)
        = 2.707
    G<sub>sb,SSD</sub> = S / (B + S - C) = 500.1/(666.5+500.1-982.3)
        = 2.714
    G<sub>sa</sub> = A / (B + A - C) = 498.9/(666.5+498.9-982.3)
        = 2.725
    Water absorption = [(S - A) / A] * 100 =
        (500.1-498.9)/498.9 = 0.24 %
```

Aggregate Gradation

 Distribution of particle sizes expressed as percent of total weight

Determined by sieve analysis

Types Of Gradations

* Open graded

- Few points of contact
- Stone on Stone contact
- High permeability

- Good interlock
- Low permeability

* Gap graded

- Lacks intermediate sizes
- Good interlock
- Low permeability

Superpave Aggregate Gradation

Sieve Size (mm) Raised to 0.45 Power

Definitions

- Nominal Maximum Aggregate Size
 - one size larger than the first sieve to retain more than 10%
- Maximum Aggregate Size
 - one size larger than nominal maximum size

Superpave Mix Size Designations

Superpave Designation	Nom Max Size (mm)	Max Size (mm)		
19.0 mm	19	25		
12.5 mm	12.5	19		
9.5 mm	9.5	12.5		

9.5 mm

12.5 mm

19.0 mm

- Reasons for blending
 - -Obtain desirable gradation
 - Single natural or quarried material not enough
 - Economical to combine natural and process materials

- Numerical method
 - -Trial and error
 - –Basic formula

- P = Aa + Bb + Cc +
 - Where:
 - P = % of material passing a given sieve for the blended aggregates
 - A, B, C, ... = % material passing a given sieve for each aggregate
 - a, b, c, = Proportions (decimal fractions)
 of aggregates to be used in blend

P = Aa + Bb + ...

Material	Aggre	egate	Aggre	gate		
	No.	1	No.	2	Blend	Target
% Used	a 30.0%			b 70.0%		
Sieve	% Passing	% Batch	% Passing	% Batch		
3/8	A 100	30.0%	B 100	70.0%	100.0%	100
No. 4	90	27.0%	100	70.0%	97.0%	90 to 100
No. 8	30	9.0%	100	70.0%	79.0%	36 to 76
No. 16	7	2.1%	88	61.6%	63.7%	
No. 30	3	0.9%	47	32.9%	33.8%	
No. 50	1	0.3%	32	22.4%	22.7%	
No. 100	0	0.0%	24	16.8%	16.8%	
No. 200	0	0.0%	10	7.0%	7.0%	2 to 10

P = Aa + Bb + ...

Material	Aggre	egate	Aggre	gate		
	No. 1		No.	2	Blend	Target
% Used	a 50.0%		b 50.0%			
Sieve	% Passing	% Batch	% Passing	% Batch		
3/8	A 100	50.0%	B 100	50.0%	100.0%	100
No. 4	90	45.0%	100	50.0%	95.0%	90 to 100
No. 8	30	15.0%	100	50.0%	65.0%	36 to 76
No. 16	7	3.5%	88	44.0%	47.5%	
No. 30	3	1.5%	47	23.5%	25.0%	
No. 50	1	0.5%	32	16.0%	16.5%	
No. 100	0	0.0%	24	12.0%	12.0%	
No. 200	0	0.0%	10	5.0%	5.0%	2 to 10

Classroom Problem

	Aggre	gate 1	Aggre	gate 2	Aggregate 3			
% Agg Used:								
	%	%	%	%	%	%		
Sieve Size	Pass	Batch	Pass	Batch	Pass	Batch	Blend	Specification
3/8	100		100		100			
No. 4	87		100		100			90 to 100
No. 8	63		100		100			36 to 76
No. 16	19		93		100			
No. 30	8		88		100			
No. 50	5		55		100			
No. 100	3		36		97			
No. 200	2		3		88			2 to 10

Batching of Aggregate Blends

- Why Batch?
 - We Want To Reproduce the Desired Gradation for Mix Design

Batching

- Things We Need To Know To Batch
 - % of Each Stockpile in Blend
 - % Retained For Each Sieve of Each Stockpile

Batching

M_{per sieve} = %Ret * %Agg * M_{batch}

M_{per sieve} = Mass of one aggregate in the blend for one sieve size

%Ret = Percent retained on the sieve expressed in *decimal* form

%Agg = The percent of the stock pile to being used in the blend in *decimal* form

EXAMPLE:

How much 1.18 mm material do I need from Aggregate #1 for a 4,000 gram batch given the following:

% Retained on 1.18 mm sieve = 23.0 % % Agg. #1 Used in Blend = 30.0 % Total Batch wt. = 4000 grams

Mass of 1.18 mm material = 0.230 * 0.300 * 4000 = 276.0 grams

Example Problem

Batching of Aggregates

Total Batch Size: 4600.0 grams

Material	Aggregate		Aggre	egate	Mass of	Mass of
	No.	1	No. 2			Agg
% Used	50	.0%	50	.0%	# 1	# 2
Sieve	% %		%	% %		
	Passing	Passing Retained		Retained		
3/8	100.0	0.0	100.0	0.0	0.0	0.0
No. 4	90.0 10.0		100.0	0.0	230.0	0.0
No. 8	30.0	60.0	100.0	0.0	1380.0	0.0
No. 16	7.0	23.0	88.0	12.0	529.0	276.0
No. 30	3.0	4.0	47.0	41.0	92.0	943.0
No. 50	1.0	2.0	32.0	15.0	46.0	345.0
No. 100	0.0 1.0		24.0	8.0	23.0	184.0
No. 200	0.0	0.0		14.0	0.0	322.0
Passing 200	0.0 0.0		0.0	10.0	0.0	230.0
Total Mass					2300.0	2300.0

Classroom Problem

Batching of Aggregates

Total Batch Size: 4600.0 grams

Material	Aggregate		Aggre	egate	Mass of	Mass of
	No.	1	No. 2		Agg	Agg
% Used	30	.0%	70	70.0%		# 2
Sieve	%	%	%	% %		
	Passing	Retained	Passing	Retained		
3/8	100.0		100.0			
No. 4	90.0		100.0			
No. 8	30.0		100.0			
No. 16	7.0		88.0			
No. 30	3.0		47.0			
No. 50	1.0		32.0			
No. 100	0.0		24.0			
No. 200	0.0		10.0			
Passing 200	0.0		0.0			
Total Mass						

Combined Specific Gravity

$$\mathbf{G}_{sb} = \frac{(\mathbf{P}_{A} + \mathbf{P}_{B} + \mathbf{P}_{C})}{\frac{\mathbf{P}_{A}}{\mathbf{G}_{A}} + \frac{\mathbf{P}_{B}}{\mathbf{G}_{B}} + \frac{\mathbf{P}_{C}}{\mathbf{G}_{C}}}$$

Where: P_A , P_B & P_C = percent by mass of each aggregate in blend

G_A, G_B & G_C = Bulk Specific Gravity of each aggregate

- Example Problem -

$$G_{sb} = \frac{(P_A + P_B + P_C)}{\begin{bmatrix} P_A + P_B + P_C \end{bmatrix}}$$
$$G_{sb} = \frac{(P_A + P_B + P_C)}{G_A G_B}$$

 $G_{sb} = \frac{(P_A + P_B + P_C)}{\begin{bmatrix} P_A + P_B + P_C \end{bmatrix}}$ Where: P_A , P_B & P_C = percent by mass of each aggregate in blend G_A , G_B & G_C = Bulk Specific Gravity of each aggregate

Based on the information given:

$$\begin{split} P_A &= 50\% & G_A = 2.695 \\ P_B &= 25\% & G_B = 2.711 \\ P_C &= 25\% & G_C = 2.721 \\ & \\ G_{sb} &= \frac{(50 + 25 + 25)}{\left[\frac{50}{2.695} + \frac{25}{2.711} + \frac{25}{2.721}\right]} = 2.705 \end{split}$$

Questions – does it all make sense?

