

PHYSICAL PROPERTIES OF AGGREGATES

4 Steps of Superpave Mix Design

1. Materials Selection

3. Design Binder Content

Physical Properties of Aggregates

2. Design Aggregate Structure

Aggregate Properties

- Consensus Properties required
 - coarse aggregate angularity (CAA)
 - fine aggregate angularity (FAA)
 - flat, elongated particles
 - clay content
- Source Properties agency option
 - toughness
 - soundness
 - deleterious materials

<u>Coarse Aggregate</u> <u>Angularity</u>

- Measured on + 4.75 mm material
- Based on fractured faces
 - fractured surface larger than 25% of aspect ratio
- ASTM D 5821
- Specification requirements depend on:
 - depth of layer within pavement
 - traffic level

Coarse Aggregate Angularity

Traffic	Depth from	Depth from Surface		
ESALs	<u>< 100 mm</u>	<u>> 100 mm</u>		
10 - 30 x 10 9	· · 95/90	80/75 Minimum		
•		•		
95% one fractu 90	ured face			

Contrasting Stone Skeletons

Cubical Aggregate

Rounded Aggregate

Shearing Behavior of Aggregate

shear plane

Before Load

After Load

Fine Aggregate Angularity

- Measured on 2.36 mm material
- Based on air voids in loosely compacted sample
- AASHTO T 304, Method A
 - Standard Grading: +1.18 mm to +0.150 mm
- Requirements depend on
 - depth of layer within pavement
 - traffic level

Fine Aggregate Angularity

> Rounded particles pack tighter together -- less air

What Affect Does FAA Have on Performance?

- FAA and restricted zone used to limit the amount of rounded natural sands
- National Rutting Study initiated in 1987 by NCAT evaluated 42 pavements in 14 states. The study identified a minimum FAA value of 43.3% to resist rutting.

Flat, Elongated Particles

- Measured on + 4.75 mm material
- Based on dimensional ratio of particles
 - ratio of max to min dimension < 5</p>
- ASTM D 4791
- Requirements depend on traffic level

Flat, Elongated Particles

Flat & Elongated Particles

What Affect Does F&E Have on Performance?

- Tend to break under the roller exposing uncoated faces which may lead to stripping of the asphalt film off the aggregate in the presence of moisture
- Particles tend to orient flat under traffic, reducing pavement voids. May lead to flushing
- Change in shape affects mixture volumetrics

Clay Content

- Measured on 4.75 mm material
- Based on sand equivalent value
- AASHTO T176
- Requirements depend on traffic level

> How dirty is the sand ?

Clay Content

Clay Content

Aggregate Source Properties

- Toughness
 - AASHTO T96 (LA abrasion)
- Soundness
 - AASHTO T104 (Na or Mg sulfate soundness)
- Deleterious materials
 - AASHTO T112 (clay lumps and friable particles)
- Others selected by agency
 - > Used in Mix Design or for Acceptance Control

Superpave Aggregate Specifications

Required on total aggregate <u>blend</u>

Not individual aggregate stockpiles

4 Steps of Superpave Mix Design

1. Materials Selection

3. Design Binder Content

Physical Properties of Aggregates

2. Design Aggregate Structure

Superpave Aggregate Gradation

- Use 0.45 power gradation chart
- Blend size definitions
 - maximum size
 - nominal maximum size
- Gradation limits
 - control points
 - restricted zone

0.45 Power Grading Chart

Standard Aggregate Sieves

50 mm 37.5 mm 25 mm 19 mm 12.5 mm 9.5 mm 4.75 mm

2.36 mm 1.18 mm 0.6 mm 0.3 mm 0.15 mm 0.075 mm

0.45 Power Grading Chart

Percent Passing

Aggregate Size Definitions Nominal Maximum Aggregate Size - one size larger than the first sieve to retain more than 10% Maximum Aggregate Size - one size larger than nominal maximum size

Percent Passing

Sieve Size (mm) Raised to 0.45 Power

Types Of Gradations

- Open graded
 - Few points of contact
 - Stone-on-stone contact
 - High permeability
- Well graded
 - Good interlock
 - Low permeability
- Gap graded
 - Lacks intermediate sizes
 - Good interlock
 - Permeability varies

Superpave Aggregate Gradation

Percent Passing

Superpave Mix Size Designations

Superpave Designation	Nom Max Size	Max Size
		()
37.5 mm	37.5	50
25 mm	25	37.5
19 mm	19	25
12.5 mm	12.5	19
9.5 mm	9.5	12.5

Superpave Aggregate Tests and Blend Selection

- Aggregate tests
 - Consensus properties required
 - Source properties optional
- Aggregate criteria
 - Based on aggregate blend
 - Based on traffic and depth into pavement
- Design aggregate structure
 - 0.45 power chart
 - Controls points and restricted zone

Effect of Physical Properties on Performance

- Size
- Higher size
 - greater bearing capacity
 - toughness critical to performance
 - poor packing characteristics

Effect of Physical Properties on Performance

- Shape and Texture
- Flat and elongated versus cubical

 Cubical: better interlocking and stability
- Rounded versus angular

 Rounded: poor shear resistance, poor interlocking
 - Angular: low workability

