Lect 11 – Thermo I – Conservation of Mass & CV 1st Law

1. Able to explain in words and mathematically the conservation of mass.

2. Able to use conservation of mass to account for all mass flows crossing a control surface.

Finishing Thermo I

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>#7</td>
<td>Ch 6 – Conservation of Mass and Energy</td>
</tr>
<tr>
<td>#8</td>
<td>Ch 7 and 8; 2nd Law and Entropy</td>
</tr>
<tr>
<td>#9</td>
<td>Finish Entropy, Review, and Final</td>
</tr>
</tbody>
</table>
Control Volume Analysis

Control Surface

High-pressure steam
Mass rate of flow
\(m_1 \)

Intermediate-pressure steam

Steam turbine

Shaft connecting the turbine to generator

Low-pressure steam
Mass rate of flow
\((m_1)_{\text{low pressure steam}} \)

Steam radiator

Condensate
Mass rate of flow
\((m_1)_{\text{condensate}} \)

\(\dot{Q}_{C.V.} \) = heat transfer rate

No Mass Flow

Air line

R-12
Mass Flow?

Conservation of Mass
Conservation of Mass at the C.S.

Example Problem 1 - TPS

A windmill takes a fraction of the wind kinetic energy out as power on a shaft. In what manner does the temperature and wind velocity influence the power? Hint: write the power as mass flow rate times specific work.
Example Problem 2

Given a water tank with initially 3000 kg of liquid water. Two inlet pipes deliver 0.8 kg/s and 1.3 kg/s of hot and cold water respectively. Water exits the tank at 2.6 kg/s. Find the amount of water after one hour.

Example Problem 3 – Unsteady Flow

Supplementary Problem 1:
Water flows into a tank at a constant flow rate of 14 kg/s.

Water exits the tank with a mass flow rate proportional to the height of liquid inside: \(m_{\text{dot}_e}=15 \, \text{L} \), where L is the instantaneous liquid height.

The base of the tank is 0.3 \(\text{m}^2 \) (A) and the density of water 1000 kg/m\(^3\).

If the tank is initially empty – plot water height vs time.
Example Problem 3

http://en.wikibooks.org/wiki/Differential_Equations/First_Order_Linear_1