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I. Introduction 
 

In a portion of a letter sent to Christian Goldbach on December 9, 1741, Leonard Euler 
writes (see [8]): 
 

I have lately also found a remarkable paradox. Namely that the value of the 

expression 
1 12 2
2

+ − − −+ is approximately equal to 10/13 and that this fraction 

differs only in parts per million from the truth.  The true value of this expression 
however is the cosine of the arc .6931471805599 or the arc of 39 degrees 42 min. 
51 sec. 52 tenths of sec. and 9 hundredths of sec. in a circle of radius one.  

 
This paradox can be seen more clearly if we compare numerically the two quantities mentioned 
by Euler (in modern notation): 
 

 

  

2i + 2− i

2
= cos(ln2) = 0.7692389...

10
13

= 0.7692307...
 

 
Of course, Euler’s paradox can be resolved by considering the continued fraction 

expansion of  cos(ln2) = [0;1,3,2,1,726,1,...]  or in fraction form: 

 

 

cos(ln2) = 1

1+ 1

3+ 1

2+ 1

1+ 1

726+ 1
1+ ...

 (1.1) 

 
It is well known that truncations of a continued fraction α , called convergents (or partial 
quotients), provide rational approximations of α , and if a convergent precedes a large quotient 
in the continued fraction, then it gives a close approximation (see Kruschev [5] for an 
introduction to continued fractions based on Euler’s point of view).  This explains Euler’s 
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paradox since 10/13 is the fifth convergent preceding the quotient 1/726 in the continued fraction 
(1.1)1: 

 

10
13

= 1

1+ 1

3+ 1

2+ 1
1

 

 
On February 13, 1742, Goldbach replies to Euler and poses the following problem in 

relation to the paradox raised in Euler’s letter: 
 

With the observation as it was communicated to me that 
1 12 2
2

+ − − −+  is 

approximately equal to 10/13 I have noticed that if you wanted to make it so that 
1 12 2 0p p− − −+ =  then p would have to be smaller than 3 and larger than 2. I 

confess that these limits are large but I do not have the curiosity to determine 
them any closer. 

 
Euler’s replies back to Goldbach on March 6, 1742, providing him with the exact solution for p: 
 

Now that I have the curiosity to investigate when 1 12 2 0p p− − −+ =  it has given 
me the opportunity to remark that such an infinite mode could happen. First 
observed that p is between 2 and 3, namely 2.26618021. The true value is 

2 2
p

l
π=  where 3.14159265 π =  and 1 1 1

2 3 42 1 .l etc= − + − + =.6931471803. All 

following values are derived out of this in that you multiply these with 3,5,7,9 etc. 
 

Euler and Goldbach would exchange four more letters on this topic with portions in each 
letter discussing their own approaches and generalizations to the above problem, although they 
never resolve Euler’s paradox.  What makes these letters interesting, besides the mathematics 
contained in them, is that they seem to indicate Euler’s earliest application of his famous formula 
 cos sinixe x i x= + , (1.2) 
which was first published by Euler in 1748 in his pre-calculus textbook, Introductio in analysin 
infinitorum [3].  Although (1.2) never appears explicitly in Euler’s letters, it is not farfetched to 
conclude from his use of the formula ( ) / 2 cos( ln )ix ixa a x a−+ =  that Euler certainly knew of 
(1.2) as early as 1741 (if not earlier).2  Moreover, in reading these letters one recognizes many of 
Euler’s trademark techniques for exploring and generalizing mathematical problems.  He is 
clearly considered the master in comparison to Goldbach, answering all of Goldbach’s questions 
at depth and even pointing out some of Goldbach’s mathematical mistakes. 

                                                
1 Euler most likely derived 10/13 in this manner since he had previously developed the modern theory of continued 
fractions in his work De Fractionlous Continious published in 1737. 
2 Roger Cotes had discovered the inverse formula   log(cos x + i sin x) = ix  in 1714 (see http://www-history.mcs.st-
and.ac.uk/Biographies/Cotes.html)  



3 
 

 
In this paper we explain the mathematics stemming from Euler and Goldbach’s 

consideration of the equation 2 2 0i i−+ =  and show how it leads to connections with certain 
exact values of trigonometric functions in terms of Fibonacci-Lucas sequences.  In particular, 
given pi pia a b−+ = , Euler claims that for any real value r, 

 
2 24 4
2 2

r r

rpi rpi b b b ba a−
⎛ ⎞ ⎛ ⎞+ − − −+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (1.3) 

Following up on Euler’s result, if we now define 
 cos( log )npi npi

nx a a np a−= + =  (1.4) 
for all positive integers n, then nx  satisfies the second-order linear recurrence 
 2 1n n nx bx x+ += − , (1.5) 
with 0 0x =  and 1x b= .  Thus, (1.4) and (1.5) provide us with a recursive formula for calculating 
the values cos( log )np a .  We mention that analogous formulas involving hyperbolic 
trigonometric functions were derived by T. Osler in [6] and [7].  
 
II. Fibonacci Sequence and Binet’s Formula 
 

Recall that it is Goldbach who initiates the problem of finding solutions to 
1 12 2 0p p− − −+ = .  Since cos( ) (2 2 ) / 2,pi pip −= +  it follows thatcos( ) 0pi = , which forces  

 2 1
2
np π+= , 

where n is an integer.  This is the solution given by Euler in his reply to Goldbach. 
 

Goldbach next considers solutions to the equation 
 1 12 2 3p p− − −+ =  (1.6) 
and without explicitly mentioning the solution for p, he states the formula below without proof: 

 
2 1 2 1 2 1 2 1

1 1
2 1 2 1

(1 5) ( 1 5) (1 5) ( 1 5)2 2
2 2

x x x x
xp xp

x x

+ + − −
− − −

+ −

+ − − + + − − ++ = − . (1.7) 

This formula Goldbach considers remarkable and it unclear how he obtains it or why he 

considers it.  One way to derive (1.7) is to solve (1.6) for 12p − , which equals 3 5
2
± , and then 

use algebra to manipulate the expression 

 

1 1

2 1 2 1 2 1 2 1

2 1 2 1

3 5 3 52 2 ( ) ( )
2 2

(1 5) ( 1 5) (1 5) ( 1 5)
2 2

xp xp x x

x x x x

x x

− − −

+ + − −

+ −

+ −+ = +

+ − − + + − − += −

 

Observe that the left hand side of (1.7) resembles Binet’s formula for Fibonacci numbers nF : 

 1 1 5 1 5
2 25

n n

nF
⎡ ⎤⎛ ⎞ ⎛ ⎞+ −⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, (1.8) 



4 
 

where nF  satisfies the recurrence 2 1n n nF F F+ += +  with 0 0F =  and 1 1F = .  Indeed, the following 
identities hold for any integer n: 

 

2 1 2 1

2 2 12 1

2 1 2 1

2 2 12 1

(1 5) ( 1 5) 2 ,
2

(1 5) ( 1 5)2 .
2

n n

n nn

n n

n nn

F F

F F

+ +

++

− −

−−

+ − − + − =

+ − − +− =

 (1.9) 

It follows from adding the two equations in (1.9) and equating with (1.7) that 
1 1

2 1 2 12 2np np
n n nx F F− − −

+ −= + = + , 
i.e., each nx  is a sum of Fibonacci numbers (or a bisection of Lucas numbers)3.  Here are the first 
few values of nx : 

 0 1 1 1 3 1

2 5 3 3 7 5

1 1 2, 2 1 3
5 2 7, 13 5 18

x F F x F F
x F F x F F

−= + = + = = + = + =
= + = + = = + = + =

 

 
We note that Euler never mentions to Goldbach the connection between (1.7) and the 

Fibonacci numbers.  This is surprising given the recursive nature of the Fibonacci numbers and 
the circumstances suggesting that Euler knew of formula (1.8) before then.  In particular, Daniel 
Bernoulli had published formula (1.8) in 1728 in [2] (Section 7) and Bernoulli is known to have 
had many correspondences with Euler during the period 1728-1742.  Euler himself published a 
variation of (1.8), but much later in 1748, in [3] and well before Binet’s independently discovery 
of it in 1843 in [1].  In fact, De Moivre seems to be the first person to have discovered this 
formula.  In his 1722 paper [4], he implicitly derives the following well-known power series 
expansion for the reciprocal of 21 x x− −  by partial fraction decomposition: 

 12
0

1
1

n
n

n
F x

x x

∞

+
=

=
− − ∑ . 

The bridge connecting the two sides of this equation is of course (1.8). 
 
II. Linear Recurrences and Special Values of Trigonometric Functions 
 

In response to Goldbach’s solution of the equation 1 12 2 3p p− − −+ = , Euler considers the 
more general situation: If pi pia a b−+ = , then 

 
2 24 4
2 2

r r

rpi rpi b b b ba a−
⎛ ⎞ ⎛ ⎞+ − − −+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

This follows from solving the quadratic equation pi pia a b−+ =  for pia : 

 
2 4
2

pi b ba ± −=  

If we define npi npi
nx a a−= + , where n is a non-negative integer, then nx  satisfies the linear 

recurrence 

                                                
3 Sequence A005248 in The Online Encyclopedia of Integer Sequences: http://oeis.org  
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 2 1

0 1

,
2,

n n nx bx x
x x b

+ += −
= =

 (1.10) 

To prove this, we first show that the elementary solution npi
ny a=  satisfies the same recurrence.  

This follows from multiplying the identity pi pia a b−+ =  by ( 1)n pia +  to obtain 
 ( 2) ( 1)n pi n pi npia ba a+ += − , 
or equivalently, 
 2 1n n ny by y+ += − . (1.11) 
It is easy to check that the other elementary solution npia−  also satisfies the same recurrence.  By 
linearity, the sequence npi npi

nx a a−= +  satisfies the recurrence as well.  Thus, 

 
2 24 4
2 2

n n

n
b b b bx

⎛ ⎞ ⎛ ⎞+ − − −= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

Since nx  can be written in the trigonometric form 
 2cos[ ln ]npi npi

nx a a np a−= + = , 
we obtain as a result the following formula for special values of cosine: 

 
2 21 4 4cos[ ln ]

2 2 2

n n
b b b bnp a

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − − −⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (1.12) 

 
It is not difficult to show that a corresponding formula holds for the sine function as well.  

In particular, if the equation pi pia a b−− =  holds, then  

 
2 24 4( 1) ( 1)
2 2

r r

rpi r rpi rb b b ba a−
⎛ ⎞ ⎛ ⎞+ + − + ++ − = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

. 

We claim that ( 1)npi n npi
nx a a−= + −  satisfies the following recurrence for integer values of n: 

 2 1

0 1

,
0,

n n nx bx x
x x b

+ += +
= =

 (1.13) 

which is analogous to (1.10).  This follows from the fact that npi
ny a=  and ( 1)n npi

nz a−= −  are 
both elementary solutions of the same recurrence.  For ny , this can be proven using the same 
argument as that used to establish (1.11).  For nz , we multiply pi pia a b−− =  by 1 ( 1)( 1)n n pia+ − +−  to 
obtain 
 1 1 ( 2) 1 ( 1)( 1) ( 1) ( 1)n npi n n pi n n pia a b a+ − + − + + − +− − − = − , 
or equivalently, 
 2 1n n nz bz z+ += + . 
Thus, by linearity the general solution n n nx y z= +  satisfies the same recurrence as well, which 
we write in the trigonometric form 

 
2cos[ ln ] if  even

( 1)
2sin[ ln ] if  odd

npi n npi
n

np a n
x a a

np a n
− ⎧

= + − = ⎨
⎩

 

This results in the following formula for special values of sine for n an odd integer: 
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2 21 4 4sin[ ln ]

2 2 2

n n
b b b bnp a

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − +⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
. (1.14) 

We leave it for the reader to show that for n an even integer, 

 
2 21 4 4sin[ ln ]

2 2 2

n n
b b b bnp a

⎡ ⎤⎛ ⎞ ⎛ ⎞+ + − +⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
. (1.15) 

We conclude by observing that Osler’s hyperbolic version of formulas (1.14) and (1.15) derived 
in [6] can be obtained by replacing the quantities pia  and b by a and M, respectively.   
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