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L.

If celestial bodies were perfectly spherical, or their moments of inertia compared to their

principal axes were equivalent, then some rotational movement they had once received
would always be conserved without changing either their speed or rotational axis, which
would always stay directed toward the same points in the sky. In addition, the attractive
forces exerted on some body from other celestial bodies would not at all disrupt its
rotational movement, since the resultant average force would pass through the inertial
center of the body, as I demonstrated in a preceding Memoir. But if a celestial body is
not spherical, or its moments of inertia compared to its three principal axes are not equal,
and it began to turn around a different axis from its principal axes, then still there would
not be applied forces, its rotational movement would be disturbed, and the rotational axis
would change direction, as I demonstrated in another Memoir that preceded this one.

2. From this, it follows that if the rotational movement of a celestial body is not
uniform, or the rotational axis is not always found to be directed toward the same points
in the sky, then this body certainly does not have this property, that its moments of inertia
compared to its principal axes are equivalent, but there will be an inequality between its
principal moments of inertia. Therefore, since Earth’s axis is not always directed toward
the same points in the sky, although the diurnal movement seems uniform, we must
conclude that Earth’s moments of inertia are not equivalent. A similar inequality must
take place in the Moon, since its rotational movement is not uniform, and a change in the
position of its rotational axis has been observed.

3. On the matter of Earth’s movement, it is necessary to observe that Earth’s axis
is different than its rotational axis. Since Earth’s axis is in continuous movement due to
its nutation and the precession of equinoxes, it never aligns with the rotational axis,
which at each instant is absolutely stationary disregarding annual movement. To make
this distinction clearer, let us consider a sphere around Earth’s center on whose surface is
Earth’s pole A, which advances during a small time dt to a, creating the infinitely small
angle APa = dw around a fixed point P, but Earth nevertheless turns around the pole A by
the small angle ZAz = d¢. With that established, there will be a point O on the arc PA
that, by this dual movement, will stay at rest, because, by virtue of the pole, it describes
the arc Ow = dwsin PO and because of the diurnal movement, the arc Oo = a@sin AO .

Let wus therefore call these two arcs equivalent, and we will find

tan AO = dasin AP , where O will be the point on Earth which, for this instant,

dp+dwcos AP
stays at rest.




4. This therefore is not Earth’s pole A, but another point O that is stationary
during an instant, and hence the right line drawn to Earth’s center from this point O will
be the rotational axis and not Earth’s axis, which passes through point A. It is certainly
true that the difference, or the arc AO, is so small that it would not enter into any of our
considerations, since the comparison of dw to dp is 50" to 365),*360° or

o =;, and since sin AP is about?, tan AO =;, so that the
dp 25920*365), 64800 *365 /,

interval AO is only Y5 of a second, or about a half of a sixtieth of a second. But, if the

movement of the pole were more rapid compared to the diurnal movement, which could
occur in other planets, then it would be necessary to carefully distinguish the planet’s
rotational axis. Because Earth’s axis is a fixed line in Earth’s body, but mobile with
respect to the sky, the rotational axis is not a fixed line in Earth, but after time dr the
rotational axis, currently the line derived from the center of Earth to the point O, will be
the line derived to the point @ so that that the rotational axis continually changes both
with regard to Earth and the sky.

5. There are then two manners of representing the diurnal movement of Earth.
The first is the one used in Astronomy where a fixed line is conceived in Earth, called its
axis, around which Earth turns while this line moves around the ecliptic poles, which are
regarded as fixed points in the sky. The other manner is most appropriate for the
Mechanical where the points in the sky are marked for each time while Earth turns
around them; this manner is the only one of its kind and is perfectly determined by
Earth’s movement, yet the same movement could be represented by an infinity of
different manners. Instead of the axis, some other line fixed anywhere in Earth could be
considered and its movement assigned in the sky, then it would be necessary to define the
movement by which Earth would turn around this line. But it is necessary to admit that
the manner actually used is the simplest of its kind, which most reasonably represents to
us the movement of Earth: it seems clearer than the other based on the rotational axis,
although I was obliged to follow this one in the present studies.

6. Before examining to what degree the rotational movement of a celestial body is
disturbed by the forces applied on it by the other celestial bodies, it will be good to
explain what their rotational movement must be if they had not been subjected to such
forces. I therefore present the case where all of a celestial body’s moments of inertia are
equivalent, since then not only the rotational movement would be uniform and the
rotational axis stationary, but the applied forces would never be disrupted. I view the
celestial body, for which we are determining the rotational movement, as having its
moments of inertia compared to its three principal axes to be inequivalent. Firstly, I
remark that if this body had once received a rotational movement around one of its
principal axes, then this axis would stay constantly directed toward the same points in the
sky, and the angular speed would always stay the same. It is apparent that if Earth were
not subjected to solar and lunar forces, then its rotational axis would stay at rest, from
which it must conclude that the right line we call its axis is one of its three principal axes.

7. This observation leads me to a thought that seems important. Since the inertial
center of Earth is situated on its axis, it is still undecided if it is found at the middle of the
axis, if it is close to one or the other pole, or rather if it falls in the equatorial plane or
some other parallel circle. It is easily understood that common phenomena would not
provide the knowledge to decide the above, but maybe some effects of the action of the
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Moon will be able to give us some clarity. Mr. Meyer, the talented Astronomer of
Gottingen to whom Astronomy is indebted for many important discoveries, believes to
have strong supporting evidence that the inertial center of Earth is not found at the middle
of the axis or in the equatorial plane, but in a certain parallel circle whose determination
merits, without doubt, all the possible cares of Astronomers. It is in this parallel circle
that the other two principal axes of Earth must exist.

8. But, if Earth had not received a rotational movement around one of its three
principal axes, the phenomenon of its diurnal movement would no longer be so simple
and would demand addressing to justly represent it; even so, there would not be forces
disturbing it. Although this case likely has not taken place in Earth, it could very well
exist in some other planet, therefore meriting a more careful development; maybe this is
the cause of the irregularities noted in the rotational movement of Venus; and hence it
would be good to treat this more particularly, all as if it had taken place in Earth. In this
case, it would not be a question of Earth’s axis since some stationary points, around
which the sky would seem to turn, would be seen in the sky for some time, but these
points would continually change place, and the rotational movement would not even be
uniform. These irregularities would, without doubt, hinder most Astronomers.

9. Let us return to the beginning, or to a fixed epoch, where the three principal

axes of Earth had been directed toward the points in the sky A, %, & . Let us also
suppose then that Earth had had a rotational movement around the point #7 in the
direction A# & with an angular speed #. Arcs of great circles are derived from the point
77 to the points A, %, &, and let us call ZA = &, #43 = Ir, and /& = r. For the
constitution of Earth, its moment of inertia compared to the axis A = Maa, compared to
the axis #7= Mbb, and to the axis & = Mcc, which I assume are known. Now, to most

simply represent that the rotational movement, by which Earth will subsequently be
carried, would be feasible, it must always be compared to a sure point fixed in the sky

from which are derived the arcs of great circles to points A, #, &

£cccosr

- VG

cosAp= _Laa 205 a : cos 7P = rbb Z:;os 17;
where VG = £\(a* cos a? + b* cos 1 + ¢* cos r?).
10. To better understand this important point in the sky P, knowing the position of
the principal axes A, %, @ at this instant with respect to axis 1, we will have

cos P =

_ bb cos It
cos AP = T I 5—, and
(b" coslr” + ¢ cosr”)
sin ZZAP = — CCZ Cosf 5—, so that
V(B cos 2 + ¢* cos )
_ —cccoss _
tan ZZAP = having
bb cos fr
P aa cos i
cosAP =

V(a®* cos a? + b* cos r* + ¢* cos %)’



from where the position of point P is most conveniently determined. Here it is necessary
to note that if the principal moments of Earth were equivalent, or aa = bb = cc, because

of VG = raa, since cosa? + cos 1% + cosr? = 1, then we would have cos AP = cos &,
cos 74P = cos 11, and cos P = cos r; and hence the point P would coincide with point #7
Therefore, if Earth’s moments of inertia are approximately equal, then we would know
that the point P will not be very far from point #7 this is why it is necessary to conceive
the point P placed inside of the triangle A containing point # because since the
principal axes pass through two opposed points of the sphere, we can always form a
triangle A7 containing the point 77,

11. Let us introduce this point P in the calculation, and let us establish for the
beginning, or our epoch, the arcs

PA=[,P#=nr,and BC = n,

and let G=a* cosa®+b* cos r* + ¢* cos 2, so that VG = £+ (5, and

/ aa cos & bb cos Ir cccosr
cosl= ——; cos = ————; costt= ———,
\ & \ G \ &
cos [* cos [* cos [* _ _
and p + p + 7 =1; logically, for the rotational pole #7 at
the same time:
cos &= cos/; cos lr= cos 11 cos I = cos 11,
aa Bb cc

and for the angle P A%, if we wanted to use it:

_ cos 1t ] N cos 1t
cosPA# = ———— and sin PAH =——
sin / sin /
cos it

so that in calling this angle PA# = 1, we have tanz =-— These quantities

cosnr’
are for the initial state, or the fixed epoch, and depend on the position of the rotational
axis 77 compared to the body’s principal axes. Next, I assume that the body had turned

then in the direction AZ € with angular speed £, where # marks the described angle in
one second.

12. Having established these elements, the state and movement of the body after
some time has passed, which I call 7 seconds, will be investigated. The principal axes
will then have reached some A, B, C, and the body will presently turn around the
rotational axis O in the direction ABC with angular speed & To this effect, let us, for

brevity, call bb = cc =A; ce-ad B; aa—Dbb = C, as in the preceding Memoir, where I
aa bb cc

had given the solution to this problem, but instead of the letter u,  use Gv here. Firstly, it
is necessary to construct this differential equation:




aabbcce dv
V((cos 2 + 2Aa*v)( cos mt? + 2Bb*v)( cos 1% + 2Ccty))

pdit\ 6=

so that for each proposed time, the quantity v, which disappears at time ¢ = 0, can be
assigned. It is noticed that for the letters A, B, C, at least one must be a negative value,
and hence this construction can be derived from the movement of a pendulum that is
driven in a circle. At the least, it will not be difficult for each case to fill the tables for the
values of v at each time.

13. Then, calling the angle APA = A, which marks how much the principal axis A
has advanced since the beginning in the opposite direction of the rotational movement,

we have
bb cos 1% + cc cos 111> — 2Aaabbccy
di=rdt\NG — - :
bbcc (sin!” - 2Aa’v)

so that the angular speed by which point A presently advances around the fixed point P is:

bb cos 1% + cc cos 11> — 2Aaabbccy

NG ,
bbcc (sin % — 2Aa*)

which had been at the beginning:

bb cos 1% + cc cos nt?
bbcc sin 1*

In the same manner, we could assign how much the other two principal axes B and C will
have advanced around the fixed point P since their initial positions % and . Now then,
we will have for the arcs PA, PB, PC
cos PA = \/(cos I+ 2Aa4v); cos PB = \/(cos wr’ + ZBb4v); cos PC = \/(cos n’+ 2Cc4v),
sin PA = \/(sin > - 2Aa4v); sin PB = \/(sin1172 — ZBb4v); sin PC = \/(sinn2 — 2Cc4v),
from which the true position of the three principal axes A, B, C will be known.

14. But, having found this for a single axis A, the other two will be more easily
determined by the angle PAB, which gives us:

J cos 111> + 2Bb*y

sin/? = 2Aa’y

NG

cos PAB = , and

J cos ut? +2Ccty

sin PAB = — .
sin/? = 2Aa’y
Therefore, this angle is variable; its increment for the element of time df is found to be

dPAB — e\ B (Cc* cos m? — Bb* cos 1) \(cos 1% + 2Aa’y)

dt aabbce (sin [? - 2Aa*)
which is the angular speed by which the angle PAB decreases, so that at the beginning,
the angular speed by which the angle PAB diminished was

9

N B (Cc* cosr® — Bb* cos11?) cos /

aabbcc sin 1?
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It is necessary to note here that because of the assumed values of the letters A, B, C, both
Aa’ +Bb*> +Cc*> =0 and Aa* + Bb* +Cc* =0 are true.

15. This could suffice to know the movement, having determined the angle APA,
the arc PA, and the angle PAB, from where it would be known for each proposed time the
position of the body with regard to the sky, and hence reciprocally, the apparent position
of the sky. But this observation can be furthered. The body will then turn with angular
speed &= ¢ \/(1 + 2(A + B + C) 3v) in the direction ABC around the rotational axis
whose position is such that

\ B (cos I* + 2Aa™y) \(cos a? + 24 Bv)
cos AO = =
aa V(1 +2(A + B + C) Bv) V(1 - 2ABC Gv)
\ B (cos nr* + 2Bb*v) \(cos &% + 2B G5 v)
cos BO = =
bbN(1 +2(A + B + C) Bv) V(1 - 2ABC Gv)
\ B (cos 1% + 2Ccty) V(cos % +2C G v)
cos CO = =

ccN(1 +2(A + B+ C) Bv) V(1 —= 2ABC Gv)

where O will be the point in the sky that appears to stay at rest for this instant.
16. This representation of the movement becomes much simpler if the body’s
moments of inertia compared to the two axes B and C are equivalent, or cc =bb, since

then A=0, B=-C = 1—%, and B=a'cosa’ + b4(cos I’+cos 1‘2) = a’cos &% + b*sin a?

cos [* sin /* , , .
% ( p + = ) =1, thearc PA= & always remains the same quantity,

NG
or PA = P A turns around the point P uniformly with angular speed b in the

or

direction AA. Furthermore, the speed at which the arc AB nevertheless turns around the
point A, by which the angle PAB decreases, is also constant:

NG 4 NG cos! s aa
_ | = _
aab Bb" cos aa (bb 1)'

Logically, the angular speed of the arc PA = / around the fixed point P in the direction
A is the angular speed by which the body nevertheless turns around the point A in a

bb

) cos/. Here then this movement

contrary direction to BP between 1 and (1 -

is represented in the same manner that we are accustomed to see from Earth in that the
axis of Earth is mobile around the ecliptic poles.

17. One such movement could be represented by the motion of a Machine of the
following manner. Let PQRS be a circle freely moving around some diametrically
opposed pivots P and R. In this circle is set, at A and D, an axis AD of a body asdg,
around which the body can freely turn while the same circle turns around the pivots P and

1 This reference is missing in the original text.



R. Now to represent the movement from the preceding §, both rotational movements
must be uniform, but in such a way that one is directed in a contrary direction in regard to
the other. Assuming aa > bb and the angular speed of the circle around the pivots P and

bb
R is like that of the body around the axis AD by the ratio 1 to (1 - —) cos PA.

aa
From this, it is seen that the movement of the body is much slower than that of the axis
AD, and would completely disappear in the case where aa =bb. Now in the case that
aa < bb, both movements would be directed in the same fashion. One such movement
would be self-sustained and would not need outside forces.

18. Using a similar machine, the movement of a body, as determined above, could
also be represented in general where all of the principal moments of inertia are
inequivalent, but then the axis AD must be set in the circle such that the points A and D
can be moved closer or farther from the pivots P and R. Furthermore, neither rotational
movement will be uniform but must be determined by the above formulas. To this effect,
the minimum and maximum of v must be considered. Assuming aa > bb and bb > cc,
since these three formulas must be real and not surpass unity,

V(cos I* + 2aa(bb — cc)v);  N(cosnr® —2bb(aa —cc)v);  (cos1t” + 2cc(aa — bb)v),
the most positive value +v is equal to the least of these three formulas

sin/? cosur® sin 12°
2aa(bb — cc)’ 2bb(aa — cc)’ 2cc(aa — bb)’
and the most negative value —v equals the least of these three formulas

cosl* sinzr® cos 11
2aa(bb — cc)’ 2bb(aa — cc)’ 2cc(aa — bb)’

19. It would therefore be possible that Earth had one such complicated rotational
movement without which it would be necessary to find the cause in outside forces. But,
although Earth’s axis actually moves around the ecliptic poles, this movement is much
different than that which I just described, because in Earth the movement of the axis is
extremely slow with regard to the movement around the axis, whereas the described
movement of the axis is much faster than that of the body around the axis. This
observation suffices to assure us that the movement of Earth’s axis, or its nutation, with
the precession of the equinoxes, is the effect of an outside cause without which Earth’s
axis would stay absolutely stationary disregarding the annual movement. From this, it is
also evident that the line we called Earth’s axis is certainly one of its three principal axes.
But maybe, in the planet Venus, it is completely different.

20. Let us see now how a celestial body’s rotational movement will be disturbed
by some outside force, which comes from the attraction of another celestial body, that I
will call a center of force. Since here it is solely a matter of rotational movement, and I
assume the inertial center of the proposed body is at rest, the center of force will describe
around it a certain orbit, which is compared to a fixed sphere described around an inertial
center of the body; let the directed line QFS follow the order of the celestial signs. The
center of force attracts proportionally by the reciprocal of the square of the distances, and
at the distance e, the force by which a body is pushed is precisely equal to the weight that
this body would have on Earth. Now, since gravity is not the same everywhere, it is
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necessary to this effect to choose a certain place where the height by which a body
undoubtedly falls in one second is exactly known. The letter g will constantly mark this
height.

21. The point P and the circle PQR are considered fixed terms, the letter ¢
corresponds to how many seconds have passed, the center of force corresponds to the
point F, and let the arc PF = p and the angle QPF = ¢. In addition, s expresses the
distance from the center of forces to the inertial center of the proposed body. The
quantities p, ¢, s can be considered functions of the time . At the same instant, the
principal axes of the body correspond to the points A, B, C, compared to which the
body’s moments of inertia are Maa, Mbb, Mcc, where M is the mass, and having derived
from these three points the arcs of great circles to both point F and the fixed point P, let
us call these arcs FA ={, FB=1n, FC =0, and PA = [, PB =m, PC = n. In addition, let us
call the angles QPA = A, QPB = i, QPC = v, which must be considered as negatives with
regard to those that I had introduced in the general solution, where I had taken them from
the opposite circle PSR. Finally, the body presently turns around the point O in the
direction ABC with angular speed &. Let us call the arcs OA = a, OB = 8, OC =y and call
Hcosa=x, Ycos f=y,and Hcos y =z.

22. Now the attractive force of point F provides us with the following moments of
forces.

I. The moment of force compared to the axis /A in the direction
3Mee

3
S

BC = (cc—bb)cosncosf = P.

II. The moment of force compared to the axis /B in the direction

3Mee
CA = 5 (aa—cc)cos{ cos@=Q.
III. The moment of force compared to the axis /C in the direction
3Mee
AB = 5 (bb—aa)cos{ cosn = R.
Therefore, if we call bb = cc = A; ce-aa B; aa—bb = C, we will have the following
aa bb cc
differential equations:
L dx — Ayzdt + 6A§ee dtcosmcosé =0.
s
II.  dy—Bxzdt+ 6B(g3'ee dtcos ¢ cos@ =0.
s
II.  dz—Cxydt+ 6C(g3'ee dtcos ¢ cosn =0.
s

IV. dlsinl =dt(ycosn—zcosm).
V. dmsinm =dt(zcosl— xcosn).
VI. dnsinn =dt(xcosm— ycosl).

VIL. dAsinl? = dt(ycosm+ zcosn).
VIIL. dusinm® = dt(zcosn+ xcosl).
IX. dvsinn® =dt(xcosl+ ycosm).



23. The arcs (, 5, € can be expressed by the other quantities, of which the
differentials are determined by these equations, because the principles of Spherical
Trigonometry provide:

cos ¢ = cos(A—gq)sinlsin p+coslcos p,

cosn = cos(i —q)sinmsin p + cosmcos p,

cos @ = cos(V — g)sinnsin p +cosncos p.
But it is easily understood that this substitution would not be of use and that the general
solution of the formulas we just found is too difficult to be of practical use past here. The
large number of variable quantities that enter here do not allow us any foresight into what
methods would be necessary to follow. For this reason, I see myself obliged to confine
my studies to some particular cases in which I can hope for some success. At the least,
the case of Earth is not subject to such great difficulties that we can not surmount them.

24. To apply these derived formulas to the movement of Earth, I make the
following assumptions:

I. Tassume that the rotational axis O is very close to the principal axis A, so that the
arc OA = & can be regarded as extremely small.
II. I assume that the moments of inertia compared to the two other principal axes B and C

are equivalent so that cc =bb, and hence A=0, and B=1- %, C= ad_ 1,

bb bb
therefore C =—-B.

It seems certain that these two assumptions take place in Earth, having noted that if Earth
were not subject to the action of the solar and lunar forces, then it would turn uniformly
around its axis, which would stay fixed. Therefore, actually the rotational axis O never
noticeably differs from the principal axis A that we call by excellence Earth’s axis. Now,
it would seem equally certain that the moments of inertia compared to the other two
principal axes are equivalent because of the roundness of Earth around its axis A.

25. Since it is convenient to compare everything to pole A, let us call the angle
PAB = r, and we will have cosm =sin/cosr and cosn =—sin/cosr. Then, since the arc
AO = ¢ is almost infinitely small, having derived from O on the arcs AB and AC the
perpendiculars Ob, Oc, let us call the angle OAb = p,and we will have Ab = @ cos p and
Ac = asin p, therefore BO = =90°-acospand CO =y =90°—-asin p. From that,
we derive x = &, y = ad cos p, and z = adfsin p, neglecting the terms where o would have
more than one dimension. Now the equations IV, V, VI will give
IV. dl sin [ = — addt sin [ sin(r + p), or dl = — aédt sin(r + p),
V. —dl cos [ cos r+dr sin [ sin r = &dt (o cos [ sin p + sin [ sin 7),
VI. dl cos I sin r + dr sin [ cos r = &dt (sin [ cos r — a cos [ cos p),
from where the combination V sin r + VI cos r provides
dr sin [ = &dt (sin [ — o cos [ cos(r + p))

addt cos(r + p)
tan [

or better yet dr = &dt

and hence we will have almost exactly dr = &dt.
26. From the last three equations, it suffices to take
VIL d) sin I* = a&dt sin [ cos(r + p), or



addt cos(r + p)

di = -~ , because the angles x« and v depend on 4:
sin
Cos(l_ﬂ):_c?slc?sm; COS(/I_V):_C(.)SZC‘OSI’Z,
sin/sinm sin/sinn
sin(/i—,u)=—&; sin(A-v)=———""
sin/sinm sin/sinn

From this, sinceg4—g=A—-q)—(A—p) and v—qg=(A—q)—(1—V), we derive:
coslcosmcos(A—q) —cosnsin(A —q)

cos(U—q)=— 4.
sin/sinm
__coslcosrcos(Ad—g)+sinrsin(d-¢q)
sinm
cos(V—q) =— cos/cosncos(4 —g) +cos msin(A — q)

sin/sinn
cos!sinrcos(A—¢q)+ cosrsin(Ad —q)

B sinn
and as a result we obtain:
cos¢ =sinlsin pcos(A—¢q)+coslcos p
cos7n) =—coslsin pcosrcos(A—gq)+sin psinrsin(A—gq) +sinlcos pcosr
cos @ = +cos!sin psinrcos(A—¢g)+sin pcosrsin(A—¢g)—sinlcos psinr.
27. The first equation, because A = 0, first gives dx = d¥ = 0, hence the angular
speed will always be the same, which will be called &, from which x = & = ¢, and

hence dI =—eadtsin(r + p); dA = ead C(,)S(r *P) ; and dr=é&dt— £adi cos(r + p) It
sin/ tan/
follows that since y = £ cos p and z = €asin p, equations II and III will become:
II. &dacos p—eadpsin p— Begodt sin p + 6B§ee dtcos{ cos@=0.
s
Il. &asin p + eadp cos p+ Beeaodt cos p — 6Bg3fee dtcos{cosn=0.
s

It is good to observe that the solution of these gives

sin rcos7 + cos r cos @ = sin psin(A — g)

sin 7 cos @ —cos rcosn = coslsin pcos(A—gq)—sinlcos p
from which we derive these two other equations

6Bgee

3
N

&ocos(r + p)— eodp sin(r + p) — Begodt sin(r + p) +

dtcos ¢ sin psin(A—q) =0

6Bgee . .
o dt cos § coslsin pcos(A—¢q)—sinlcos p =0

&aosin(r + p) + gadp cos(r + p) + Begodt cos(r + p) +



28. Let us call angle PAO=r+ p=w and A —q = ¢ to have

dl = —eadtsin w ; dﬂzw; d(pzw_dq,
sin/ sin/
dr = gdr = E2UCS DA dp = dar— adr + E0UCS D
tan/ tan/

and our equations when reduced will be:

6Bgee
S3

&dacos w— eadwsin @+ (1 — B)eeodt sin w + dtsin psin @(sin/sin pcos@+coslcos p) =0

6B
&asin o+ eadwcos w—(1— B)eeadt cos o+ g;ee dt(sinl sin p cos ¢+ cosl cos p)(cosl sin pcos@—sinlcos p) =0
s
. . eudt .
Finally, let ¢cos@=u and asinw=v, so that dl =—é&vdt and do = _l —dg , which
sin

will further reduce these equations to:

&du + (1— B)éecudt + 6B§ee dtsin psin @(sin/sin pcos @+ coslcos p) =0
s

&dv — (1- B)eeudt + 6B§ee dt(sinlsin pcos @+ coslcos p)(coslsin pcos@—sinlcos p) =0
s

where it must be noted that 1 — B = % .

29. Since the quantities u and v are nearly infinitely small, we could regard the arc
[ as a constant in these equations and assumed@ =—dq. Then, it will be permitted to
regard the arc PF = p as a constant or small variable depending on the choice of the
point P. Also, the distance from the center of forces s does not ordinarily change so
much that we could not regard it as constant, at least for finding the approaching integrals.
Therefore, for brevity, let:
6Bgee

3
N

our equations by letting:
u=P+Qcos@+Rcosp’, and v=Ssing+Tsin@cosg, so that the letters P, O, R, S

are constants. Now, having substituted these values we will find that:
N sin pcos p(ek cos2l + dcosl) _ Nsin pcos p(ekcosl + Jcos?2l)

=N; % =x;and dg=d&dt, or dep =—Adt, and it is evident that we could satisfy

Q0= ; S =
e(eekk — 00) e(eekk— 00)
R= Nsinlsin p*(excosl +25) : T—_ Nsinlsin p*(ek+ 20 cosl)
e(eexkx—400) e(eexkx—400)
P N sinlsin p*(ek+2dcosl) Nsinlcoslcos p*
eex(eexk —400) eex
and P+ VR = Nsinlcosl(sin p> —2cos p*) .

2EEK



30. Here the average values of [, p, N, and 0 will be given. Having constant

values for the letters P, Q, R, S, T, and then because dt = _d?qp’ we will have

eudg
Jsinl

dl = %algo and do =— —dg, from where we derive by integration, setting / as the
average value of / :

l= 1—%005¢—4—%T0052(p, and

A = Const. — &Py _&sing  ERg _€Rsm2¢.
dsinl  Jsinl  20sinl  40sinl

Now furthering this, we will have @ = 1 —g¢, and then & = V(uu + vv), and tan @ = Y
u

But since dr = &dt _ eudt =&t —dAcosl, it follows that r =& — Acos/, and hence

tan/
p=w-r. Itis seen that if o has a very small value, it will always stay very small, so
that our calculation remains, with the exception of the single case that follows.

31. To simplify the case, since taking into account the irregularity of the
movement of the center of force F is too difficult for our purposes, let us assume that this
point F moves uniformly in the circle QFS, around Earth at the constant distance s. In
addition, let P be the pole of its orbit, so that the arc PF = p =90°, and let us call
dg = &dt, where 0 is a constant quantity marking the angle described in a second by the

point F. Since the arc PA =1 hardly changes, let / be its average value, and our

. . aa
equations reduce to the following, where b =K

du -+ exvdt + 2582 gy sin £ sin 2 = 0,
dv + exudt + 3Bg3ee dt sin/ cos/ (1+cos2¢) =0,
&s
eudt
where dp=-&dt+ i,/

But since u is extremely small and we neglected the terms where u and v would be raised

to more than one dimension, we could take d@ = —&dt, so that dr = _%(‘p.

6Bgee

32. Therefore, let us, as before, call = N, to have

S

EK N
du——vdp———dg@sin! sin2¢ =0,
5 P25 4

du +%de(p—%d(psin1 cos/ (1+cos2¢) =0,

which satisfies, like we just saw, these particular values:
u=P+ YR+ Y,Rcos2¢; v=yTsin2¢.
But, to find the general integrals, let us form these two equations that can be integrated.



+ du sing—K¢+€—Kudqocosz¢—id(o sinlsinzqosin 2¢
o 20¢ o

o o O
+dvcos%(p—%(vd(psin%’((p—%d(p sin / coslcos‘%((p(HcosZ(p) =0
EK EK EK N EK
+d —@¢——ud —@———dg sin/ cos— @sin2
I cos 5 1) 5 ud@cos 5 0 o 10 cos 5 @sin 2¢
—dvsin%’cw—%:ud(pcos%:(p+2—;d(p sin / coslsin%((p(l+c052(p) =0
33. Let us say, for the sake of brevity, — ek _&aa _ and i = SBgfe =n, and
5 b 260 Oes

the integrals will be:
usinme +vcosme—nsinl [dgsinmesin 2p—nsin cos ! [dpcos me(l + cos2¢) = E
ucosm@—vsinm@—nsin! [decosm@sin 29+ n sin lcos ! [ dpsin me(l+ cos2¢) = F .
Now sinm@sin2¢ = )5 cos(m —2)@ — Y5 cos(m+2)¢

cosm@cos2¢ = Y,cos(m—2)¢— Y cos(m+2)@

cosm@sin2¢ = — Y;sin(m —2)@ + Y5 sin(m+2)@

sinm@cos2¢ =+ Y,sin(m—2)¢p+ Y,sin(m+2)@,
from which the integrals are formed.

usinm@+vcosme—Y,n sinl( sin(m=2)¢ _ sin(m + 2)¢

-2 m+2
— Y n sin/ cos/ (251nm¢+Sln(m—2)¢+sm(m+2)¢):E’
m m—2 m+2
veosm@—vsinm@— 4n sinj(cos(m—2)¢_cos(m+2)¢
m—2 m+2
-¥n sinlcosl(Zcosm¢+Cos(m_2)¢’+005(m+2)¢):F'
m m—2 m+2
Where it must be noted that in the case m=2, w — o and w _
m— m —

are constant, and hence contained in F, so that this term can be omitted.

34. Now, multiplying the first by sinm¢ and the other by cosm¢, their sum
gives:

coquJ cos2¢ . 2 cos2¢ cos2yp
sin/ —Ynsin/ cos/ \ —+ +
u=/yen ( m+2) o (m m—2 m+2
—Es1nm¢+Fcosm(p,

Then, multiplying the first by cosm¢, and the other by —sinm¢, we will obtain

v+}/nsm1(sm2¢ Sln2¢)+}/nsmlcosl(smz¢ sm2§
m+

=Ecosm@p—Fsinmg.



Let us change the constants by calling E = Dcosé and F = Dsin& where £ is a constant
angle, and our equations reduce to this:

. 2nsin/cos2p N sin/ cos/_ MmN sin/ cos /cos 2¢ — D sin(mg + &)
mm —4 m mm — 4
mn sin/ sin 2¢ N 2n sin/ cos /sin 2¢p = D cos(mg + &),
mm —4 mm —4
and hence we will have:
Lo n sin/ cos/ + N sin/ cos 2¢ 2+ m cos /) + D sin(mg + )
m mm — 4
e n sin/ sin 2¢ (m + 2 cos /) + D cos(mp + &),

mm—4

35. These equations perfectly agree with those that we had found above, if we set
the constant D = 0, but they are more general for the reason that they still contain the two
constants D and . Nevertheless, the case where m = 2 asks for a particular development
in which it must be derived by the first integrals, which will be:
usin2¢ +vcos2¢— ¥ nsinl (¢ ¥, sin4@)— yynsin/ cos/ (sin2¢+ @+ Y, sindp) = E
ucos2¢—vsin2¢+ % nsin/ cos4@— Y,nsinlcos ! (cos2¢+ Y,cos4p)=G .

From this, we derive these:
u—Y,nsinl @sin2¢ + Y% nsinl cos2¢ — % n sinfcos! ¢sin2¢ — Yyn sin/lcos/

— ¥ n sinfcos/cos2¢ = Esin2¢ + G cos 2¢

v—Yynsinl @cos2¢+ % nsin/sin2¢— ¥ n sin/cos/ ¢cos2¢

— Y% n sin/cos/sin2¢ = Ecos2¢ —Gsin2¢
and hence we will have:
u=Y,nsinlcos!+ Y,nsin{ (1+cos/)@sin2¢+ Esin2¢ + (G % nsin/ (1—cos!))cos2¢

v=Ynsin/ (1+cos!)@pcos2¢+ Ecos2¢—(G+ Y%nsin/ (1—cos/))sin2¢.

. . £ 2bb . o
36. Comparing to this case m = 2 or 5 =——, I notice that the quantities u and v
aa

could grow to infinity since they contain terms multiplied by the arc ¢ that grows
continually with time. Therefore, the arc OA = a = V(uu + vv) would soon be surpassing
the limits of the smallness that I placed on it, and hence our solution absolutely excludes
this case. It is therefore very remarkable that if the movement of the center of force F
were to the diurnal movement of the planet like aa : 2bb, then the diurnal movement
would soon be considerably disturbed, although it had started around a principal axis.
Thus for Earth, where aa is very close to bb, if the Moon achieved its revolutions in two
days, instead of 27, the rotational axis of Earth would suffer terrible perturbations, which
there would hardly be a means to allocate.

37. But it is apparent that such a case exists nowhere in the Universe, or at least in
our planetary system, which is the extent of our studies. I already noted that if the Moon
were two or three times farther from Earth, which it is in fact not, its movement would be
so irregular that it would be nearly impossible for us to acquire even a gross knowledge:
because for a perfect understanding, there is still much required of us that we could never
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acquire. If the Moon were much closer to Earth, we could more exactly determine its
movement, but presently we perceive another inconvenience that renders the nutation of
Earth’s axis indeterminable. From this, it seems to result that Providence saw well to
offer to our studies of such objects, which do not absolutely surpass the threshold of our
spirit, although it was impossible for us to complete our work. Maybe such movements
that would be inaccessible to us are found in other planetary systems where intelligent
creatures are blessed with a higher degree of insight.

38. Let us therefore assume that the square of the number m=% differs

considerably enough from 4 so that the quantities # and v always stay very small and the
smallness hypothesis of the arc OA = a = V(uu + vv) stays unaltered. Then, from the
solution that we just found, we will nearly exactly discover the phenomena of the
rotational movement of the proposed bodies. Because having found

u=-""sin2/+ n (2 +mcos/)sin/ cos2¢+ Dsin(me+ &)
2m mm — 4
n(m+2cosl)sin/
v=— p—) sin2¢ + Dcos(m@+ &)
we will have a = \/(uu + vv) and tana)zl. Then, because dl = &vdg and
u
e sudgz')sinl .
o sin/
en (m+2cos/)sin/ Db .
I=1+ 26 (mm — 4) c052¢+%sm(m¢+§)
2 = Const. - " cos / en(m+2cosl) 5 eD ( 5
= Const. — - sin 29 + ——— cos(mg +
om 7 26 (mm —4) Y smsinl v

and finally » = Const. —Acos/ +¢t and p=w—r.

Application to the rotational movement of Earth.

39. To apply these formulas to Earth, it is advisable to take point P in the ecliptic
pole, so that when F marks the Moon, the arc PF = p is not a quarter circle, and hence it
is necessary to resort to the general formulas from §28. Letting therefore the circle
POLLE be the ecliptic, §2 the ascending node of the moon’s orbit §3FM, and the Moon is
presently found at F at a distance from Earth s, which I regard as a constant. The
attractive force of the Moon at distance e is equal to that of gravity. The fixed point TP is
not the equinox, but rather the first star of Aries, from which the longitude of the
ascending node is T§3 = ¢, and the inclination of the lunar orbit at the ecliptic or the
angle FSRL =y, which I regard as constant, during that the arc { diminishes uniformly, for
which the movement I propose is d{ = -fdt. Then, let the longitude of the Moon counted



since P, or the arc PQL = ¢, which I also assume proportional to time, so that dg = ddt;
since the inequality of the movement hardly influences the movement of Earth’s axis.

40. Therefore, having the arc L = g — { and the angle L§}F = y, since y does not
exceed 5°, we will have approximately sin FL = ysin(¢—¢) and cos FL =1, neglecting
the terms where y would have more that one dimension, so that sin p =1 and
cos p=ysin(q—¢). Currently, let Earth’s axis at A compared to that of the Earth’s
moment of inertia to be equal to Maa and compared to the other principal axes be equal
to Mbb. Let us call the arc PA =1 and the angle PPA = A. Moreover, let AB be the
Prime Meridian derived on Earth and the angle PAB =r. In addition, Earth presently
turns around pole O in the direction PL£X: following the order of the signs with angular
speed &. Let arc AO = &, which I assume is extremely small, and the angle BAO = p .
Now I have set r + p = @ and furthermore acos@ =u and asinw =v.

41. Let us subtract the longitude of the terrestrial pole A from the longitude of the
Moon, and let angle APF = g — A = ¢, which, from before, would be —¢. We will have:

dl=—evdr: dA=2U. ap=gi-"  and dr= edr - 8V
sin [ sin [ sin/
Now everything comes back to the solution of these two equations:
edu + 2% vy - 6gfe (1 ~ 29y gt sin @(sinlcos@+ ycoslsin(g—{)) =0
bb s bb
&dv — SZZa udt + 6g3ee ( —%)dt(sinlcos @+ ycoslsin(g—¢))(coslcos@—ysinlsin(g—{)) =0
s

3gee

e’

Let us, for brevity, call % = u and (% —1)=v, and we will have:

du + pvdt +vdt sin @(sinl cos @ + ycoslsin(g—¢)) =0

dv — pudt — 2vdt(sinl cos @ + y coslsin(qg — {'))(cosl cos ¢ — ysinlsin(g — {)) =0

or when reduced:

du + pvdt +vdt(sinlsin 2+ ycoslcos({ — A) — ycoslcos(2g— ¢ — 1)) =0

dv — pudt —vdt(sinl cosl +sinl coslcos2¢ — ycos2lsin({ — A) + ycos2lsin(2qg— ¢ — A) — yysinlcosl) =0
42. Now, without repeating the general integral, since we know its form, let us say

u=A+Bcos2¢+Csin({ —A)+ Dsin(2qg—¢ — A) + Tsin(ut + &)

v=Esin2¢+ Fcos({ —A)+Gcos(Qq—¢ — A)— Ccos(ut + &)

and sincedp =&t , d{ = pdt, dg=&dt, and dA =0dt , because we neglect the terms

where the small quantities would return, we will have

% =-=2Bdsin2¢p—CBcos({ —A)+ D26+ f)cos(2q— ¢ —A)+ Cucos(ut + &)
t
% =2Edcos2¢+ FBsin({ — A1) -G+ B)sin(Qqg— ¢ — )+ Cusin(ut + &)
t
Now in the differential equations, it is permitted to regard the arc PA =1 as a constant,
and to put in place of [ its average value, which is / like above. It therefore only rests to

substitute these assumed values.
43. Now the first equation divided by dr gives



—2Bosin2¢p—Cpcos({ —A)+ DRI+ B)cos(2qg— ¢ —A)+ Cucos(ut + &)

+Eu +Fu +Gu - Cu
+v sin/ +vy cos / —vy cos/ =0

and the other gives:

+2Ed8cos2¢+ FBsin({ —A) -G+ f)sin(Qqg—¢ — A)+ Cusin(ut + &)
-Au —-Bu —Cu —Du - Cu
—vsin/cos/ —vsin/cos/ +vycos2/ —vy cos2/

Equating all these separate members to zero, we first of all derive:

A=—2 =y sinlcos! =—2—(1-yy) sin2/
u 2u

and then:
—2Bd+ Eu+vsinl =0; —2Bu+2ES6—vsin/cos! =0,
—Cp+Fu+vycos! =0; —Cu+FB+vycos2/=0,
D6+ B)+Gu—vycos! =0; —Du—-GQRdé+ p)—vycos2/=0,

44. The coefficients B, C, D, E, F, G will therefore have the following values:

Be_ vsin/(20 + ucosl) Ee _ vsin/ (26 cos/ + p)
p — 460 ’ i — 400
C=-_ vy (B cos! —ucos2/) : Fe 4 vy (Bcos2! —ucosl)
e —pp w—pp
D=-_ vy ((20+p)cosl +ucos2l) | Ge + vy (26 + B) cos 2/ + i cos!)

=25+ B’ - 25+ B

and like we had found A = —1(1 —yy) sin/cos/, where instead of y we can put siny and

cosy* = Y4+ Y, cos2y instead of 1— ¥y ; now y marks the average inclination of the lunar

orbit at the ecliptic. For the other two constants ’and &, they stay arbitrary as the nature
of complete integrals requires them. This would take place even when the force of the
moon contained in the letter v would vanish.

45. Having found these coefficients, it will no longer be difficult to assign the
other quantities that determine the movement. Firstly the differential dl = —&vdt gives

=1+ %cosZ¢+%sin(§—/i)— 25Gf,3 sinQg—¢ —A)+ sin(ur + &)

from where we would know for each time the distance of Earth’s pole A to the ecliptic
pole P. Then, for the longitude of the terrestrial pole A, or the angle TPA = 4, we will
have

or;




1 = Const Act Be s De ;
=ML F Tiins T 29sing ST B sin/ cos(¢—4) -
De 5 ) Ce
— —{-1)- r+
(20 + p) sin/ cos2q==4) wsin/ cos(ut +<)

Then, for the angle PAB =r, or the movement of the Prime Meridian, we would have
r=é&—Acos/ . Finally, for the rotational pole O, we would have the distance
AO = a = \/(uu + vv), and call the sum of the angles OAB+ BAO =r+ p =@ since

tan =" , we will have the angle BAO=p=w—-r. By this method we acquire a
u

perfect knowledge of the diurnal movement of Earth.

46. Although these formulas properly regard the effect of the Moon, it is easy to
apply them to those of the Sun when calling ¥ =0, and then ¢ will mark the average
movement of the Sun, or the arc described in one second. So as not to confuse these two
effects, let the longitude of the Sun since the first star of Aries = Q and its average
movement, or the angle traveled in its orbit during one second = A. Since 4 marks the
angle PPA, this same letter 4 expresses the longitude of the Summer solstice from the
same term P, therefore 4 —90° signifies the longitude of the Spring equinox and Q — 1 is
the solar longitude since the Summer solstice @. As a result, if we let the solar longitude
since the Spring equinox = ¥, we will have¥ = ® +90°, and hence ® =¥ -90° and
2d =2¥ -180°.

47. Now, if the force of the Sun at the distance e is equal to gravity, at the

assumed distance from Earth s, it will be ce calling gravity 1. Now the speed of Earth in
ss

its orbit isAs, and the height from where a falling body acquires the same speed will

A4ASS , which divided by half the distance % gives the centrifugal force %that must
8 8

be

be equal to the central force €€ from where we derive 2g¢ee = AA. Let N be the value of
s s
. 3AA aa
the letter v for the Sun, and we will have N = Z_(E_l)’ where ¢ marks the angular
€

speed of the diurnal movement of Earth and £ = % . From this we will have:

A=-— 3AA (aa—bb)sinlcos!; or Azﬂsinlcosl,
2&€aa y7j
B= -N 2A + ucos!)sin/ E= ~N 2A cos/ + u) sin/
w — 4AA ’ uu — 4AA ’

andthenC=0,F=0,D=0,G=0.
48. Therefore, for the distance of Earth’s pole A to the ecliptic pole P, we will
have:

Ne (2A cos! + p) sin/
2A (i — 4AA)

PA=1=/+ cos 2¥ +

sin(ut + &)




and for its longitude, or the angle PAA = 4:

4 = Const Net cos / . Ne QA +ucosl) oy Ce Wit d
= Const. — sin 2% — cos
u 2A (uu —4AA) wsin/

The rotational movement of the Prime Meridian AB around the pole A may be regarded
as a constant with angular speed c. Now we would not know the true rotational pole O
without having determined the effect of all the forces that act on Earth, because it is
necessary to find the complete values of the two letters u# and v that resulted from all the

forces, and then we will have AO = \/(uu + vy), tana)zl, and from that the angle
u

BAO = w—r = w—- PAB. Butin Earth, the points A and O are indiscernible.

49. For the Moon, we are uncertain of the distance e where its attractive force
would be equal to gravity, and hence also the value of the letter v. But we can conclude
by comparing the letters v and N of the effects that the Moon and Sun produce in the tides
that they are proportional. Nevertheless, it is uncertain how to carry this conclusion to a
high degree of precision. Newton believed that the value of v referring to the Moon was
about four times greater than that of N referring to the Sun. Now Mr. Daniel Bernoulli
proved that this comparison is not much greater than double. Let us therefore say
v =mN , providing m is a number greater than 2. Then let the lunar longitude since the
Spring equinox be y so that ¢ = —90° and 2¢ = 2y —180°; ¢ is the angle described by
the Moon in one second, and £ the angle by which the lunar nodes decline in the same
time. Let us say longitude of the ascending node since the Spring equinox = 6, and we
will have = —-A1+90°and{ — 1 =6-90°. Therefore, since g=@+ A=y +A1-90°
and { =60+ A1-90°, we will have 2g—{ -4 =2 —-6-90°.

50. Let us introduce these angles that Astronomy reveals for each time, and we
will have the distance of Earth’s pole A to the ecliptic pole P:
mNe (u— 6 cos{) sin/ mNe (u cos ! — f cos 2/) siny

PA=1=1+ cos 2y + 0sf +
20 (up — 99) B (e — Bp)
mNe (u cos ! + (20 + ) cos 31) siny cosQy — ) + sin(ut + &),
(20 + B)(up — (20 + B)°)
and its longitude counted since the first star of Aries
PPA = 4 = Const mNet cosy” cos / . mNe (20 + pcosl) . 5 Ce W+ O
=1 =Const. — sin 2y — ———— cos -
p 20 (u — 400) YT sind
mNe (S cos! —u cos 2 1) siny mNe (ucos 2/ + (26 + f) cos /) siny .
in 0 + sin2y — 0).

B (e~ fp) sin S 20+ Pyt~ 20+ p) sin
Now we only have to combine these anomalies with those that produce the solar force to
have all of the perturbations that disturb Earth’s pole A, both compared to its distance
from the ecliptic pole and its longitude counted since the first star of Aries.

51. Before the effects of the solar and lunar forces are further developed, I would
like to note that even if these forces had not existed, it may have been possible that
Earth’s axis A was still not stationary. This is because setting N = 0O still will give us
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PA=I1=1[+ sin(ut + &), and PPA =1 =Const. — cos(ut + &),

1 sin

where the constant ¢ does not depend on the solar and lunar forces, so that if it were not
0, Earth’s axis would be perturbed by some nutation while Earth would turn uniformly
around it. This is because, taking the arc Pa = [/, Earth’s pole A would uniformly
describe a circle 1, 2, 3, 4 around the fixed point o in the same direction as the

Ce
diurnal movement, and the radius of the circle cA would be u or of an arbitrary

size, the angular speed is u :%8. This case would take place if Earth would have

begun to turn around a different axis than its principal axes. Since we would not know
for sure that the constant ¢ is absolutely 0, it is important to expand on the phenomena
of this axis’s nutation.

52. Earth would therefore uniformly turn around its principal axis A, with angular
speed &, while the axis A would describe around a fixed point a a circle with angular

speed %8 . Let T be the time of one revolution of Earth around the axis, and the time of

) ) ) . ) ) bb )
one revolution of this axis about a fixed point a will be—T7 . If bb = aa, these two times
aa

would be equal and the point in Earth that would have once corresponded to the fixed
point o would always correspond to it. Hence we would take this point o rather than A
for Earth’s pole, and in effect, in this case all the moments of inertia of Earth would be
equivalent. Yet, if the moments of inertia Maa and Mbb are not equal, there is no point
on Earth that would stay at rest, and the movement of the pole A will be the least
complicated, so that in this case we have no reason to rather regard some other point in
Earth as its pole.

53. Let us call the radius of the small circle 1, 2, 3, 4 that describes Earth’s axis A
around a fixed point a, or the arc @A = o, and since the distance of the pole A to the
ecliptic pole P is equal to the obliquity of the ecliptic, and the longitude of the pole A

) ) ) ) . bbb
corresponds to the Summer solstice, it follows that in the interval of time —T7 , the
aa

obliquity of the ecliptic varies by the quantity 20, and the equinoctial points undergo a

=50. Now, during each interval of time @T ,
sin/ aa

change in their longitude of
the same inequalities come back. Since Earth is an elliptic spheroid, with the diameter of
the equator at the axis between approximately 201 and 200, if Earth were homogenous,

bb =1- ), and the period of these inequalities would be 209 * 24 hours, or 23" 53" In

aa
this interval of time, the variations in the obliquity of the ecliptic and the longitude of the
equinoctial points will be all the larger: at its largest, the radius of the circle ¢ will be



much larger, and at its smallest, this radius does not vanish entirely, but it is certainly
extremely small. To discover these inequalities would be a huge problem for
Astronomers.

54. Some may object me for in this case we did not take the extremity of the axis
A for Earth’s pole, but rather the point a, which would effectively be the rotational pole if
aa were equal to bb. But the lesser inequality between aa and bb completely reverses
this idea, because although the point a does not noticeably change place during some
revolutions, it will describe a type of spiral in which the turns become larger and larger,

and if bb =1- )4, , then after 50 revolutions or days, the point a will be found in the
aa

same circle 1, 2, 3, 4, and after 100 days it will describe a circle whose diameter is two
times larger. Then, its turns will retract so that after 200 days, it returns to the center of
the circle 1, 2, 3, 4, from where we see that this point would not at all be proper for
comparing the diurnal movement, so it would be necessary to absolutely hold to Earth’s
true axis A, which describes the circle 1, 2, 3, 4.

55. The inequalities caused by the solar and lunar forces are independent of this,
which would result from the nature of Earth, provided that it was not considerable, as the
original calculation assumed it. We could therefore regard the circle 1, 2, 3, 4 as
completely vanishing, and this all the more likely since there are no observation from
which we may conclude the contrary. Let us therefore examine more carefully the
inequalities that are produced by the solar and lunar forces and perpetuated in the
variations of the arc PA =1/ and the angle PPA = 4. Now the arc [ expresses the
obliquity, and A the longitude of the Summer solstitial point, counted since the first star of
Aries. Therefore A —90° will be the longitude of the Spring equinoctial point, and hence
reciprocally 90° — A is the longitude of the first star of Aries since the Spring equinoctial
point. It is therefore a matter of determining from each proposed time both the longitude
of the first star of Aries since the equinoctial point and the obliquity of the ecliptic.

56. Now the formulas that we just found contain two elements for which we do
not know the exact value. The one is the number m, which marks by how much the lunar
force is greater than that of the Sun in the production of the tides, and we know by the
judicious reflections of Mr. Bernoulli that this number m is about 2 ). The other

) . aa )
element is the fraction b_ , for which we do not absolutely know the value, because the

knowledge of the exterior figure of Earth is not at all determined, just that Earth is not
composed of a homogenous material, in which case we will have approximately

aa . . . .
— =201/, . But, since it is very probable that the material of Earth is not at all less than

bb
homogenous, and we have no knowledge of its distribution, I will call % =n, so that

M1 =é&n, and I will regard the number n as unknown, although we can be assured that it
3(n—-1)AA
2¢e

will be necessary to conclude by the phenomena the exact values of the two numbers m
and n.

does not noticeably differ from unity. From this we will have N = , and it



57. For the angular speeds ¢, A, J, and f, it suffices in knowing the comparisons,
which only enter in our formulas. Let us therefore take their values for a day, where
Earth makes one complete revolution around its axis, so thate = 360° =1296000”. Then
the Astronomical Tables give us, according to the average movements:

the everyday movement of the Sun A= 59, 8" = 3548"
the everyday movement of the Moon 0=13° 10", 35" = 47435"
the everyday movement of the descending node p= 3, 11" = 191"
hence, we will have: or better yet, these proportional fractions
£ =1.0000000; £e =1.0000000
=1296000 ; =1296000 ’
€ H " A =0.0027376; AA =0.0000075
0 =0.0366011; 00 =0.0013396
A=3548; 0 =47435 £ =0.0001474 ; BB = 0.0000000
B=191; 26+ [=95061 26 + =0.0733495; (25 + B)* =0.0053801

The arc PA = / marking the average obliquity of the ecliptic will be / = 23°, 28’, 30",
and the average inclination of the lunar orbit may be called y = 5°, 9".

Of the Variation in the obliquity of the ecliptic.

58. Calling the average obliquity of the ecliptic /, which is for the beginning of
this centuryT = 23°, 28’, 43" and for the end = 23°, 27, 55", the first correction depends
on the longitude of the Sun, which is called = '¥'; the correction will be

3(n—1) A (en +2A cos /) sin/

os 2V,
4(genn — 4AN)

which in substituting the marked values reduces to

0.0020532 (n — 1)(n + 0.0054752 cos {) sin / .
nn — 0.0000300

If the coefficient were = 1, then it would have the value 57°, 17, 45" = 206265";
therefore, reducing this coefficient in minutes and seconds, this connection will be thus
expressed in seconds.

os 2V¥.

(n—1)(n+0.0054752 cos ) sin

os 2V,
nn —0.0000300

+423.503

or using the value for /:

\ 1£0 "IN (n - 1)(n + 000502) e NI annnaa An
nn — 0.00003

59. The second correction depends on the lunar longitude, which is called = y,

and will be
3m (n—1) AA (en + 26 cos /) sin/

40 (eenn — 400)

0s 2y,

which reduces to

" this century is in reference to the 18" century.



0.0001538 (n — 1) m (n + 0.0732022 cos /) sin/ c

0s 2.
nn —0.0253584

This formula is reducible to minutes and seconds and the value of the arc / can be used

to give
m (n—1)(n +0.06710)

nn —0.00536
from where we see that this correction is much smaller than the preceding, since we know
that the number m is certainly less than 4. For that matter, it is also certain that the
number n differs very slightly from unity, so that n — 1 is an extremely small fraction.

60. The third correction depends on the longitude of the ascending node, which is
called 6, this correction will be

3m (n—1) AA (en cos! — B cos 2 /) siny
2p (eenn — pp)

which when reduced to numbers, and then in minutes and seconds, becomes
m (n—1)(n—-0.00011)

nn

+12.618

cos 2y seconds,

os 0,

+ 1295.45 cos 6 minutes and seconds.

Finally, the fourth correction is proportional to the cosine of the angle 2y — 8, and
expressed as such:

3m (n—1) AA (en cos! + (20 + ) cos 2/) siny
2 (26 + B)(eenn — (20 + B)°)
which when reduced to numbers, and then in minutes and seconds, becomes

2.603 m (n—1)(n + 0.05459)
nn —0.00538

cosQy — 0),

cos(2y — 6) minutes and seconds,

so that this correction would nearly vanish compared to the preceding.
61. All these corrections become greatest positively if 2% =0and 2y =8 =180°,
and then they combine together in neglecting the small fractions attached to the numbers

" _1(161.7O+ 1310.671m) seconds. Now, if the same angles 2¥, 2y , and €

n

n and nn,

n—1

are 180°, then it will result in the greatest negative correction: (168.70+1305.465m)

n
seconds. Therefore, the greatest change in the obliquity of the ecliptic will be able to rise
n—1

to (337.40+2616.136m) seconds. Now, by the observations of Mr. Bradley, we

n
know that this change is about 18”, or maybe a little bigger, since all circumstances of
his observations had not attempted to show the greatest change.

Of the Precession of Equinoxes.

62. Here it is necessary to firstly consider the average movement of the
equinoctial points, contained in the proportional terms at the time ¢, which is:



3(n—-1)AA
2éen
from where we see that the longitude of the equinoctial points counted since the first star
of Aries start to diminish, assuming that n > 1, or better yet, the longitude of this star
counted since the equinox increases with the time. Let us therefore find this increase for
the time of one year, and then Ar will have the value 360°, hence the annual precession of
the equinoxes will be

(1+mcosy*)tcos!,

3n-DA (1+mcosy*)360°cos /,

(n-1)

n

which reduces to 0.0037666(1+0.991943m)

360°, or better yet to the form

n—1

(14+0.991943m)4881 Y seconds. Now we know by the observations and the remarks
n

that I made on the planetary action that this precession is 50 4 seconds.

63. Now, if we assume the greatest variation in the obliquity of the ecliptic is 18”
and this difference had been observed at the same season of the year, then the angle ‘P, or
the longitude of the Sun, has no influence here, so we will have these two equations for
determining the two unknown numbers m and n,

22616m

"1 18 and 4881 %(1+0.991943m) !

n n

)
48815(122106'991943"1) =15y, , from where we derive 4881}, =2472.9m and
m

m=1.974. If instead of 18", we would have taken it to be a little bigger, we would have

=50/,

therefore

. . . n—1 .
found m = 2 and, in this case, it would result that: —— = Y5, and n =2%,,. Now it
n

seems that it cannot be the case that m < 2, since Newton found m =4 and Mr. Bernoulli,
after having better examined the same observations, concluded m =2}, .

64. But, since we are not so very assured of the number 18”, which marks the
greatest variation in the obliquity, which we sum from the average precession, let us
n—1_ 1

n 96.98+96.20m’
where the greatest change in the obliquity of the ecliptic instead of 18” will be
2616m

96.98 + 96.20m
hypothesis are given:

consider the number m as given, and we will firstly have from

that is = a for the same season of the year; therefore the following




if we will have

m=2; n;1:289138; n=2%.; a=18), seconds,
. on-l 1 313 8
m=2),; . = e 43; n=3%,; a=18%, seconds,
n—1 1
m=2Y; - = 33 48; n=%¥/; a=19%, seconds,
=2¥: n—1 1, 363/ - 9
m=2%; 36153 %es =199, seconds,
n—1 1
m=3; - = 385 58; n=3%%.; a=20%¥, seconds,
n-1 1 410
m=3); =006 "= Vo a =207, seconds,
n—1 1
m=3); . = 133 68; n=4%.; a=21), seconds.

All the same, m could equal oo, in which case n would equal 1, the largest change of the
obliquity of the ecliptic would not surpass 27 %, seconds.

Some inequalities in the Precession of the Equinoxes.

65. Since 4 marks the longitude of the Summer solstice since the first star of Aries,
A —90° will mark that of the Spring equinox, hence 90°— A is the longitude of the first
star of Aries counted since the Spring equinox. Therefore, having found by the average
movement the average longitude of the first star of Aries, which the Astronomical Tables

show under the heading of the precession of the equinoxes, in counting 50 %, per year,

the other terms that enter in the expression of 4 taken negatively will give the periodical
inequalities that must either be added or subtracted from the average longitude. In this
manner, we will find the true longitude of the first star of Aries since the equinoctial
point for each proposed time. But, if we want to go back several centuries, it is necessary
to take into account the planetary actions of Jupiter and Venus, from where both the
average obliquity and the average precession of equinoxes is changed, as I had made seen
in our Memoirs Vol. X, to which I refer to myself here.

66. The first correction therefore depends on the solar longitude ¥ and is
proportional to the sine of twice this longitude. This correction is contained in this
formula

3(n—1) A (encos! +2A)

- sin 2%,
4(eenn — 4AN)

which in substituting for ¢, A, and /, their values change as such,

(n + 0.0059693)
nn — 0.0000300

—-0.0018833 (n—1) in 2%,



which upon reducing to minutes and seconds gives

~396.60 (n— 1) :nt%%%sogog sin 21 seconds.

Since n =28%, , this correction would never surpass 1} seconds, which is hardly
noticeable. Nevertheless, if we want exact calculations, then this small correction must
not be neglected.

67. The second correction depends on the longitude of the Moon y and is
proportional to sin 2y .

3(n—1)mAA (en cos! +20) .
— sin 2y,
40 (genn — 400)

which by substitution will thus be expressed in minutes and seconds.
n +0.079807
= 29.06m (n=1) = 00053584

sin 2y seconds.

The third equation depends on the longitude of the ascending node € and is proportional
to its sine,

3(n—1) mAA (en cos2/ — S cos /) siny

_ - sin 6,
28 (genn — Bp) sin/
which when reduced to minutes and seconds will be

n—0.000198 .
-2420.4m (n—-1) - —0.000000 S 6 seconds.
Finally, the fourth depends on the angle 2y — 8
3(n—1) mAA (en cos2! + (20 + f) cos /) siny .
- sin(Qy — 0),

2(26 + ) (eenn — (26 + B)*) sin/

and gives in minutes and seconds

n + 0.098557
nn —0.005380

68. Let us now consider the three hypotheses m=2, m=2),, and m=3, and

the corrections for the obliquity of the ecliptic will be:
iftm=2 |itm=2), |if m=3

- 4.86m (n—1) sin(2y — ) seconds.

+ A cos 2¥ A=0"58|A=0"50 |A=0"44
+ B cos 2y B=0.08 | B=0.09 B=0.10
+ Ccos 0 C=89 | C=9.61 C =10.07

+DcosQy—- 60) | D=0.02 | D=0.02 |D=0.02



Now the corrections for the longitude of 1 + P will be

ifm=2 |ifm=2) |if m=3
— Acos 2¥ A=1"37 | A=1".18 | A=1".03
— #cos 2y =020 | #=021 | #=0.22
— Ucos O C=1675| €=1795 | ¢=18.81
— ZcosQy— 0) | 1=0.03 | #7=0.03 | £7=0.04

69. These formulas are perfectly in agreement with those that I had found in our
Memoirs Vol. V, and hence I will no longer keep myself here at their application. I will
only remark that Earth is not a homogenous mass, since then the value of the number n
would need to be 2%, , which is nevertheless according to all observations less than 304, .

From this, it follows that the inequality between the principal moments of inertia is not as
great as if it were homogenous, or better yet it more approaches the nature of a globe by
the distribution of its material than by its figure. It is therefore necessary that Earth
contains inside it a heavier material and is more equally distributed around the inertial
center. Now this is also all that we can conclude. To the rest, if Earth did not turn very
closely around a principal axis and its moments of inertia compared to the two other
principal axes were not equivalent, then it would have been near impossible to determine
its rotational movement.






4l

Moo Ulead L7 5QPLI pugsit | J




Commentary

Notation: §3 - ascending node, the point in the lunar orbit where the Moon crosses
from below to above the ecliptic plane.
P - Aries
£ - Libra
Y - small ou ligature, I used this symbol because it most closely matched
a variable used in the original work, in which I was unsure of its true
nature.
The Greek used in the original work is an alternate alphabet, in which I used their
Modern Greek equivalents.



