
 1

 
Translation with notes of Euler’s paper 

 
Sur quelques proprietes des Sections coniques qui conviennent a un infinite d'autres 

lignes courbes 
 

ON SOME PROPERTIES OF CONIC SECTIONS THAT ARE 
SHARED WITH INFINITELY MANY OTHER CURVED LINES (E083) 

 
L. EULER 

 

Originally published in Memoires de l'academie des sciences de Berlin 1, 1746, pp. 71-98 

Opera Omnia: Series 1, Volume 27, pp. 51 - 73 

 
Translated by 

Edward Greve and Thomas J Osler 
Mathematics Department 

Rowan University 
Glassboro, NJ 08028 

 
Osler@rowan.edu

 
Introduction to the translation and notes: 

 
This translation is the result of a fortunate collaboration between student and professor. Edward 

Greve was an undergraduate mathematics major when he made this translation. Tom Osler has been a 
mathematics professor for 46 years. Together we struggled to understand this brilliant work. 

 
When translating Euler’s words, we tried to imagine how he would have written had he been 

fluent in modern English and familiar with today’s mathematical jargon. Often he used very long sentences, 
and we frequently converted these to several shorter ones. However, in almost all cases we kept his original 
notation, even though some is very dated.  We thought this added to the charm of the paper. Also, in the 
original paper, almost none of the equations are “displayed”, but appear written linearly in the sentences. 
We chose to display them here so that they are easier to read. 

 
 Euler was very careful in proof reading his work, and we found few typos. When we found an 

error, we called attention to it (in parenthesis using bold type and underlining) in the body of the 
translation. Other errors are probably ours. We also made a few comments of our own within the translation 
identifying our words in the same way. 

 
The notes that follow this translation are a collection of material that we accumulated while trying 

to understand and appreciate Euler’s ideas. In these notes we completed some steps that Euler omitted,  
introduced some modern notation and elaborated on a few of Euler’s proofs that we found too brief.  We 
also added a few simple ideas and comments of our own not found in the text. 

 
It is not surprising that the paper has moments where the reader gets a “WOW”, how did Euler 

think of that? In this regard, look at section 10 where he introduces a differential equation of infinite order, 
section 11 where he finds an unexpected geometric proof of a remarkable result, and section 13 where he 
applies the ODE of infinite order. 
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Section 1 

Conic sections have several properties that are shared only among themselves; but 

they also have several properties in common with infinitely many other curves. For 

instance, the axis that cuts the plane in two, with the origin placed at the vertex of the 

curve, is shared with infinitely many curves, both algebraic and transcendental. This is 

obvious to anyone who looks at the nature of curves. But geometry has shown other 

properties, which at first glance seem to be unique to conic sections, that are also shared 

with other curves. It is evident that the properties, by which conic sections are defined, 

are really their own, and that they cannot be shared with any other curve.  However 

beyond these we encounter other properties, some of which are not easily seen to be 

unique, or not, to conic sections. To remove this confusion, we must analytically find all 

curves that may have a certain property, and if we find that conic sections are the only 

curves satisfying that property, we will be certain that the property is unique to conic 

sections. Geometry has already given solutions to several questions of an applied nature; 

solutions that have considerably extended the art of mathematical analysis. We propose, 

thus, to add here some other similar questions, taken from the idea of oblique-angled 

diameters, that are shared principally with conic sections. 
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Section 2 

We consider the following property of parabolas: any straight line parallel to the 

major axis is an oblique-angled diameter. These bisect all parallel lines drawn with a 

special angle inside of the parabola. Indeed, if AMFm is a parabola with major axis AD, 

and if we draw FG parallel to the major axis with F on the parabola, we know that FG 

bisects at E any chord Mm parallel to the tangent of the curve at F. We can define the 

orientation of these chords as "parallel to the tangent at F “, but this condition is true for 

all bisections. For, if in any curve whatsoever, the line FG meets all chords Mm making 

the given angle GEm, then the tangent to the curve at F is always parallel to these chords. 

Consider that the lines very near the point T ( error, should be F) are parallel to the 

tangent. To see that this property is unique to the parabola, we turn to the following 

problem. 

Section 3 

To describe a curve AMFm  over the  axis AD, which has the diameter FEG 

parallel to the axis AD at the distance given DE from the axis, and which bisects all 

chords Mm which make (a fixed) angle at T with the axis.  
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Call the distance of the diameter to the axis DE = a and call the sine of the angle 

MTA  m, while the cosine is called 1n m= − m . If from any point T of the extended axis 

AD, we draw with the given angle the straight line TMm, it will cut the curve that we are 

looking for in two points M and m. This is why if we let AT = t and TM = z, the relation 

between t and z is given by an equation, with the property that for each value of t there 

are two values for z. Thus this equation will be a quadratic of the form ,  

with P and Q any functions of t.  Given any value of t we can determine two values of z 

which identify the double intersection of the straight line Tm and the curve. 

2zz Pz Q= −

Section 4 

The line segments TM and Tm represent the two roots of z from the equation 

2 0zz Pz Q− + = . 

We have 

2TM Tm P+ =  

and consequently 

2
TM Tm P+

= . 

Because E is the midpoint of the line segment Mm, we have 

2
TM Tm TE+

=  and thus P TE= . 

But because  and siDE a= n( )DTE m= , it follows that a m
TE

=  or aTE P
m

= = . Thus 

the equation between z and t becomes 2azzz Q
m

= − , where Q is any function of t. 

Suppose the equation for our curve  AMm uses coordinates with the abscissa AP = x and 
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corresponding ordinate PM = y Then  will be = m and :y z t x n
z
+

= , from which we get 

yz
m

=  and nyt nz x x
m

= − = − . The curve AMm will have the property previously 

required, if 2yy ay
mm
−  is equal to any function whatsoever of ny x

m
− . 

Section 5 

We set ny  and mx X− = 2yy ay Y− = and then form the general equation 

between X and Y, that is to say 

2 2 3 20 & .X Y X XY Y X X Y cα β γ δ ε ζ η θ= + + + + + + + + . 

In this general equation we find all possible relations between X and Y 

and thus we have Y = to any function of X, so that 2yy ay−  will be = to 

any function of  as required by our analysis. This is why to completely solve the 

proposed problem, we form any equation between the two variables X and Y and then we 

put in place of X and 

ny mx−

ny mx− 2yy ay−  in place of Y . In this way we obtain an equation 

between x and y for the curve AMm. This equation has the property that the parallel FG to 

the axis AD which is the distance DE a=  from this axis,  will be the oblique-angled 

diameter of the curve. This  bisects all chords Mm, that make with it the angle mEG, 

whose sine is = m, the cosine = n. 

Section 6 

Thus there are an infinite number of curves, which have the property that was 

described previously in the problem. In other words, at a given distance from the axis AD, 

the parallel diameter to the axis bisects all curves parallel to the tangent at F. In addition 

to this property, in the parabola, all straight lines parallel to the axis are at the same time 
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the diameter.  In the curve we have found, only a single straight line parallel to the axis 

has this property. We now ask if there are curves other than the parabola, in which two or 

more straight lines parallel to the axis are diameters. To simplify our search, we ask if 

among the curves found, besides the parabola, there is any other, in which the axis Ad is 

at least the orthogonal diameter. For this purpose the following problem is proposed. 

Section 7 

Among all curves AMm, with the line AD as an axis of symmetry, in other words, 

it  divides the curve into  two similar and equal parts, to determine those that at a given 

distance  on both sides of the axis AD have two oblique-angled diameters, like FG, that 

cut in two all chords Mm making the (fixed) angle with the axis AD. 

Because the axis AD divides the curve in two similar and equal parts, it is 

evident, if the straight line FG parallel to the axis AD is the diameter, that then 

in the other part of the curve at the same distance from the axis there must be 

a diameter parallel to the axis. But for the axis AD to be a similar orthogonal 

diameter, it is necessary that in the equation between x and y the variable y has 

only even powers and never an odd powers. Thus we must exclude from the general 

equation found for the solution of the preceding problem all cases in which the exponents 

of  y are odd. But as X is and ny mx= − 2Y yy ay= − ,  y  has in both variables the 

exponent one, and consequently it is odd. We can form a new variable Z from the two 

variables X and Y, in which there will not be an odd power of y, and this selection is 

 2 2aX m a xZ Y yy
n n

= + = − . 

We will also satisfy the preceding problem by the general equation between Y and Z, 

which is: 
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  2 2 3 20 .Y Z Y YZ Z Y Y Z etcα β γ δ ε ς η θ= + + + + + + + +

Setting 

   and  2Y yy ay= −
2m a xZ yy

n
= − , 

this contains all curves that are suitable. 

Section 8 

Hence it appears that in all terms that do not contain Y , we do not find odd 

powers of y and that consequently these terms, 2, , , 3Z Z Zα γ ς χ etc. must 

be distinguished because they are special. But the term Y must be excluded, 

since it contains , this power can’t be subtracted by any of the following terms, and for 

the same reason we exclude the terms etc. What is more, if 

1y

2, ,YZ YZ YZ 3

2

we allow the term , because in contains the power , we will be obliged 2Y 3y

to use at the same time  so that we can subtract . But  contains  that we can 

not subtract without  . So it follows that any power of Y containing an odd power of y, 

that is not in the preceding terms,  must be removed by the following terms, from which 

emerges a progression ad infinitum. The same must be said of the terms , etc. 

of which none are to be used, without allowing an infinitely many terms. We will thus 

satisfy the requirements only by the equation 

3Y 3y 3Y 5y

4Y

2 3,Y Z Y Z

2 30 Z Z Zα γ ς χ= + + + + etc 

that contains no Y . And for this equation Z will be = to a constant, that is to say 

  2m a xyy C
n

− = , 

This is a parabola, and all other (algebraic) curves are excluded. 



 8

Section 9. 

Beyond the parabola of Apollonius, there are thus other curves (which are 

transcendental) with an axis of symmetry, that have at least one diameter parallel to the 

axis, so that this property does not belong only to the parabola. But by virtue of the 

equation 

 0ma xyy
n

− =  

 (we can make the constant C equal to zero) it seems that not only at the 

distance given by a, but at all distances from the axis, we find a diameter parallel to the 

axis. If we set 2ma c
n

= , for the equation 0yy cx− = , that is the equation for any 

parabola, if at any distance = a, we construct a line parallel to the axis, it will be the 

diameter and it will bisect all the chords, that make with the axis an angle, whose tangent  

is = 
2

m c
n a
=  . With the exception of  the axis of symmetry, there need not be any 

oblique-angled diameters,  and thus no straight lines parallel to the axis are at the same 

time diameters. But this analysis must be restricted only to algebraic curves, for the 

transcendents are not excluded by this progression of terms  , etc. ad infinitum. 

We can produce many transcendent curves, that have many parallel diameters between 

them. 

2, ,Y Y Y 3

Section 10. 

Our plan does not allow us to continue examining these transcendental 

curves, since in this memoir we have in mind  algebraic curves. However, until 
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we discover that similar transcendent curves that satisfy the present problem actually 

exist,  we give a general equation, that incorporates in it all transcendent curves. Set 

,  and we search for the value of the function T  that satisfies this infinite 

differential equation,  

2Y yy ay= −

2 3 4 2 5 6 3 7

3 5 7

4 16 640 &
1.2.3. 1.2.3.4.5 1.2....7

dT a Yd T a Y d T a Y d T c
dY dY dY dY

= + + + + . 

Then T which is a function of Y  is thereby a function of y, in which we find no odd 

powers of y. This is why, if we take W to be any function of T  and 2 2ma xZ y
n

= − , the 

equation W = 0 gives all curves that have the proposed property; that is to say, that 

beyond the axis AD which is an orthogonal diameter, we have on both sides at a given 

distance  = a from the axis the oblique-angled diameters parallel to the axis. 
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Section 11 

In the following  we are concerned with a general law, that all curves which have 

two parallel diameters, have an infinity of similar diameters, equally distant from one 

another. Given that the curve  mABC has two parallel diameters Aa, Bb, of which Aa cuts 

in two all chords Mm parallel to the tangent at A, and Bb cuts likewise MN, mn parallel to 

the tangent at B. The terminal points M and m of any chord Mm are divided in two by the 

diameter Aa, and if we take the chords MN and mn parallel to the tangent at B, we have 

MQ = NQ and mT = nT.  Now we draw the chord Nn, and it will make a (well defined) 

angle with the diameters Aa or Bb, because (it is one) of all angles  from the given 
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quadrangle MNnm. If we take PSR parallel to MN, mn, then this new chord Nn is bisected 

at R and the point R   always lies on the straight line Cc parallel to Aa and Bb and its 

distance from the diameter Bb is equal to the distance from the diameter Bb to the 

diameter Aa. Thus this line Cc  bisects all chords Nn and is consequently a diameter. 

Section 12 

Hence the angle NRc is completely determined by the given angles MQb 

and mPa, since 

  is cot cotmPa NRc+ 2cot MQb=  

and consequently 

cot 2cot cotNRc MQb mPa= − . 

The cotangents of the angles mPa, MQb, NRc constitute an arithmetic progression. But as 

we have demonstrated that the (existence of)  two diameters Aa, Bb (implies the 

existence of) a third Cc, likewise if we have two adjacent diameters then it follows that 

we have an infinity of distant diameters with equal intervals between them. If the 

cotangent of the angle mPa, by which the first diameter cuts in two the chords is = p and 

the cotangent of the angle MQb, for the second diameter Bb is = q , then the cotangent of 

the angle NRc, by which the third diameter cuts in two the chords, will be  and 

the following cotangent of the angle, under which the fourth diameter cuts in two all 

chords, , the cotangent for the fifth diameter 

2q p= −

3 2q= − p p4 3q= −  and so it goes.  Thus the 

cotangents of all the angles, by which the diameters that follow in order cut the chords in 

two,  constitute an arithmetic progression. The transcendent curves, in which we find 

three diameters, and where the one in the middle is orthogonal, have at the same time an 

infinity of diameters. 
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Section 13 

From this we can now demonstrate with full mathematical rigor, that 

the parabola is the only curve, in which all the lines without exception, that are 

parallel to the axis, are at the same time diameters. To attribute this property 

to a curve, it suffices that it has two diameters that approach infinitely; then, by the 

preceding demonstrations, it must be that all lines which are parallel 

to them are diameters. Hence in (§10) we set the distance separating two adjacent 

diameters = a, and this is why this distance a must be vanishing. That being done, the 

equation of (§10) becomes 

0 dT
dY

= ; 

and consequently 

T = to a constant. 

If thus W = 0 gives the general equation for all curves, of which all straight lines 

parallel to the axis are diameters, W will be any function of T or of a constant 

quantity, and of 

 2ma xZ yy
n

= −  

Thus from this equation Z = to a constant, and so 

 2ma xyy C
n

− = . 

This equation contains in itself no other curve than the parabola. 

Section 14 

After having easily completed  the discussion of parallel diameters, those which 

are generalizations of the parabola, we now examine the diameters that converge at a 
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point, to understand more completely the nature of the ellipse and the hyperbola, curves 

in which all straight lines through their center are diameters. Reasoning in the same 

manner, we will determine, if this property is not found in any other curves. There is truly 

not any doubt, that it is an attribute of conic sections, that all straight lines without 

exception, that pass through the center, are at the same time diameters. However, there 

may exist other curves, that do not have an infinity of diameters which meet at the same 

point, but have two or three. To discover this, we propose to solve the following problem. 

 

 

 

Section 15 

Find all curves (Fig 3) (Should be Fig 2.) AMm  constructed above an axis AC 

with the following condition, that emerging from the point C the straight line CF, that 

makes the angle ACF with the axis, this line bisects at E all chords Mm parallel to the 

tangent at F. 

To begin it is apparent, that if all chords that the line CF cuts in two, are parallel 

to each other, the tangent to the point F must also be parallel to them. Thus the angle ETC 

is constant, so we put 
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the sine of the angle ETC = m, 

the cosine 1n m= = − m , 

and also 

the sine of the angle ACF is = p, 

the cosine 1q p= = − p . 

The sine of the angle CEm, at which the diameter CF cuts in two the chords 

Mm, will be = mq+np and the cosine = nq-mp. Because the point T is variable, 

we set CT = t and when moving  the line TMm keeping the constant angle CTE, this line 

will cut the curve in two points M and m. Thus  the variable which is = z, describing the 

intersections of the line  TM, will have two values, one for TM, another for Tm. This is 

why z, a function of t,  will be determined by a quadratic equation, which is 

     2zz Pz Q= − . 

Here P and Q are functions of t and therefore TM will be P PP Q= − −  and 

Tm P PP Q= + − . 

 

Section 16 

Thus TM + Tm will be = 2P and because E is the mid-point of the 

chord Mm, TE will be = P. But from the angles given in the triangle 

CTE, we will have 

CT : TE = sin A.CET : sin A. TCE, 

(Here Euler writes sin A.CET  to mean sine of the angle CET.) 
 

t : P = mq + np : p, 



 15

from which we get 

     ptP
mq np

=
+

 

and thus we have between z and t the equation: 

     2 ptzzz Q
mq np

= −
+

, 

where Q  is any function of t. Now to determine the curve, we set (CP = x) 

PM = y, and we get 

    y PM m
z TM
= = , 

and consequently 

   yz
m

=  and nyPT t x nz
m

= − = = , 

so that 

    mx nyt
m
+

= . (Euler does not write the “t”.) 

From this the desired equation for the curve is  

    2 ( )
( )

yy p mx ny y Q
mm mm mq np

+
= −

+
, 

Q being any function of 

    mx nyt
m
−

= . (The minus sign should be plus.) 

This is why we will have 
 

   2 ( )
( )

pmxy np mq yy
mm mq np

+ −
+

 or  2mpxyyy
np mq

+
−

 

as any function of  nyx
m

−  . (The minus sign should be plus.)  
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Or if we set 

   nyx X
m

− =  (The minus sign should be plus.) 

                             and  2mpxyyy Y
np mq

+ =
−

,  

and let W be any function of X and Y , then the equation W = 0 will express the family 

of all curves, that we desire. 

Section 17 

This analysis is incomplete, for it contains only the curves, that have but one 

oblique-angled diameter.  Here the intersection C is fully arbitrary, and depends on the 

position of the axis AC which is also arbitrary. We continue our search by selecting from 

these many curves, those that the axis AC divides in two similar and equal parts.  In other 

words, look for curves for which the axis AC is an orthogonal diameter (i.e. an axis of 

symmetry). We thus require that in the equation found below, the powers of y are 

everywhere  even exponents. This can occur if  the odd powers of y are cancelled by later 

terms from the series.  Thus in the general equation sought, we put 

    nyX x
m

= +  and  2mpxyY yy
np mq

= +
−

, 

and get 

  2 2 30 .X Y X XY Y X etα β γ δ ε ζ η= + + + + + + + c , 

where the coefficients must be determined so that the odd powers of y vanish. 

Section 18 

At once we see that β  must be = 0, because the term ny
m

 cannot be cancelled by 

any of the following terms.  On the other hand, we see that γ   and δ  can be 
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determined such that the terms 2Y Xα γ δ+ +  have no odd powers of y: if we put 

   np mqγ = −   and  mmp
n

δ = − , 

we get   

2( ) mmp mmpxxnp mq Y X mqyy
n n

− − = − − . 

Therefore we let 

   2 ( )n np mqZ nqyy mpxx mpX Y
m
−

= + = − , 

and observe that Z is a function, in which y  has only even powers. This is why, if W 

is any arbitrary function of 

  Z nqyy mpxx= +   and  X mx ny= + , 

then the equation W = 0 will contain solutions to the previous problem, and beyond 

that we will want to throw out the odd powers of y. 

Section 19 

Therefore we set 

X = mx + ny and Z = mpxx + nqyy , 

in the equation for the curves, in which the straight line CF is a diameter, and get 

  2 2 30 .X Z X XZ Z X etα β γ δ ε ζ η= + + + + + + + c  

If all the terms, in which X appears vanish, then every appearance of the variable y has 

even powers and the resulting curve is simultaneously divided by the axis AC in two 

similar and equal parts. Then Z  will be = C  (Euler means “is a constant”) or aa = 
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mpxx+nqyy. This equation contains conic sections with center C and with principal axis 

AC. Writing  bb in place of aa
nq

, we get  

mpyy bb xx
nq

= −  . 

At present we have the general equation for conic sections yy bb kxx= −  and it 

seems we should be able to determine more from this. Here lines CF  passing through the 

center  make an angle FCA with the axis, with tangent  = p
q

. This straight line bisects all 

chords Mm, that extended make the angle MTC with the axis AC, with tangent  m qk
n p
= . 

So the tangent of the angle CEm, under which the chords Mm are cut in two by the 

diameter CF, will be 

  
(1 )
pp kqq

k pq
+

=
−

. 

From this we see that the tangent p
q

 is not a fixed number, but can be an arbitrary value, 

so that every straight line CF emerging from the center is a diameter. If k = t  (this 

should by k = 1), then all of these lines are orthogonal diameters and it is clear that the 

curve is a circle. 

Section 20 

We can find other curves, in which AC is the orthogonal diameter, if we 

determine the coefficients of the terms, in which X is found, such that no y 

term has an odd power. Initially we see that neither X  nor  can occur, 2X

because y and xy are not subtracted by any following terms. Otherwise, if y does not 
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enter in by X, it must be that n is = 0 and so that the term xy is not in XX, mn should be = 

0. But the terms  and XZ generate homogeneous terms, from which the terms  and 

xxy can be removed, if np is = 3mq. In a similar way, from the terms ,  and , 

which are homogeneous, we can remove the odd terms, if we take  

3X 3y

5X 3X Z 2XZ

np
mq

 is = 3 or 5 2 5np
mq

= + . 

In the same manner there must always be a certain relation between the 

tangents m
n

 and p
q

, so that the powers occur as required. If these relations are not found, 

it is impossible to produce other curves that are satisfied besides the conic sections. 

Section 21 

To investigate special cases, in which m
n

 has a certain relation with p
q

, 

we write 

  m g
n
=  and  mp k

nq
= , 

so that 

X is = gx + y and Z = kxx + yy. 

Taking homogeneous terms of order three, that is 3X XZα β+ ; and after substitution we 

get 

 

3 2

3 2 2

3 3g g g
3x x y xy y

gk k g

α α α α

β β β β

+ + + +

+ + + +
 

(The above notation is a convenient shorthand. For the expression 
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...)()( 2 ++++++ xfexdcba , Euler will write    
...

...
2

+++

+++

fdb
xx

eca
.) 

in which the terms, that contain the odd dimensions of y, must vanish. Thus α β+  will 

be = 0 and . Therefore 23 g kα β+ = 0

  β α= −  and k = 3gg or 3mp mm
nq nn

= , 

and it follows that 3p m
q n
= . Hence 3X XZα β+  changes into ( )3 32 gxyy g xα −  or  

3 3

32 m m xxyy
n n

α
⎛ ⎞

−⎜ ⎟
⎝ ⎠

. 

Section 22 

Thus if the tangent of the angle ACF = p
q

, is three times bigger than the 

tangent of the angle CTE = m
n

, then we will be able to find infinitely many 

curves AMm, in which AC is the orthogonal diameter and CF is the oblique-angled 

diameter. Further, if we let the tangent of the angle ACE = θ , we will have 

p
q

θ=   and  1
3

m
n

θ= , 

and the tangent of the angle CEM will be = 4
3

θ
θθ−

. Then write 

  1
3

Z yy xxθθ= +   and  3 31 1
3 27

V xyy xθ θ= − , 

and if W denotes any function of Z and V , then the equation W = 0 will express 

the curve, that possesses the aforementioned property. Hence it is obvious, with 
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AC being the orthogonal diameter, then the straight line from C passing under AC,  will 

make with AC an angle below the axis, of which the tangent is = θ . This will be an 

oblique-angled diameter, of the same type as CF  at the top. Therefore the curves with 

this property  are contained in the general equation: 

  2 2 30 .Z V Z ZV V Z etα β γ δ ε ζ η= + + + + + + + c  

Section 23 

From the infinity of curves of this nature we select the curves of  third order, that 

are contained in the equation: 

3 31 1 1
3 3 27

a byy xx xyy x3θθζ θ θ= + + −   

(In the second term on the right ζ should be b.) 

or 

  
3 31 1

3 27
1
3

a bxx
yy

b x

θθ θ

θ

− +
=

+

3x
. 

These curves are examples of the redundant hyperbolas of Newton, that have only 

one orthogonal diameter. The general equation for these is 

  
3 2Av Bv Cv Dyy

v
+ + +

= . 

Here the origin of the abscissa is the point of the axis, where the asymptote is parallel to 

the direction of y. (This asymptote is the y-axis.) Among these curves, those that will 

satisfy our requirements have C (this is C from the above equation) equal to 
4
BB

A
. So 

then,  
6
Bv
A

= − , is the  point C, (on the axis)  from which the straight line CF, makes 
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with the axis the angle FCA, for which the tangent is = 3 A . This straight line will be 

the oblique-angled diameter, cutting in two the chords Mm, that make with the axis CA 

an angle, whose tangent = A . The tangent of the angle, made where these chords meet 

the diameter is = 4
1 3

A
A−

. 
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Section 24 

Therefore, (Fig. 6) MMmm is a similar redundant hyperbola, having the axis 

AP, that is at the same time an orthogonal diameter, such that in taking the abscissa 

AP = v and in letting the ordinate PM = y, yy is 

  
3 2 2(2 )

4
Av Bv Cv D Av B D

v A
+ + + +

= =
v

+ . 

Here C is = 
2

4
B

A
. The straight line LAL normal to the axis will be an asymptote of the 

curve and the two other asymptotes HDG will cross at the point D of the axis, such 

that AD is = 
2
B .  The tangent of the angle HDA will be = A  and the whole curve 

will be composed of three parts in hyperbola like form MBM, mKm, and mKm. Now take  

AC = 
6
B
A

and construct above and below the lines CF, CF, such that the tangent of the 

angle FCA is =3 A , these two diameters will bisect all chords Mm, that were extend to 

make with the axis the angle MTA, with tangent = A . Those bisected straight lines Mm 

will therefore be parallel to one of these diameters. As for the rest this curve, it 

can take many different shapes, depending on the value of B, seeing that A is an 

affirmative (positive) number. The one intersection of the axis at B  shown in the figure 

is not the only possible case.  It can occur that the curve cuts the axis in three points and 

this happens if we let AB = a, and we take 
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Section 25 

The same values (§22) 

   1
3

Z yy xxθθ= +   and  3 31 1
3 27

V xyy xθ θ= − , 

can be made to find infinitely many curves of higher order, that in addition to the 

orthogonal diameter, have two or more oblique-angled diameters. But like the 

formula V found by 3X XZα β+  (§21) when making the odd powers of y vanish, 

seemingly we can do the same thing with greater powers. For example, let 

4 2V X Xα β= + Z  

and setting 

m g
n
=  and  mp k

nq
= , 

we get 

4 3 2

4 3 3

2 2 2

4 4

2 2

g g g g
x x y xy

g k gk k x y g y
gg

4

α α ζα α α

β β β β
β

+ + + +

+ + + + +
+

ζ

+

k

 

Thus 22 gα β+  must be = 0 and 2 0α β+ = : from which we get  

  2β α= −  and k = gg  or  mp mm
nq nn

= . 

Thus m p
n q
=  and if we set as before  p

q
θ= , this will make  
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m
n

θ= , g θ= , k θθ= ; 

and like this V will be 

4 4 2 2 2 42x x y yαθ αθ α= − + − or  ( )22V xxα θ= − − yy . 

This is why if W is taken as any function of 

2Z xx yyθ= −  and ( )22V xx yyθ= −  

and we set W = 0, the curve, besides the orthogonal diameter CA, will have 

oblique-angled diameters emerging from C, that make with CA an angle, whose  

tangent θ= , and these diameters will cut in two the chords Mm inclined at the axis 

CA under the angle, of which the tangent θ= . Among these curves, the simplest is that 

which is given by the equation 

4 4 4 4x yα θ= . 

In addion to all these curves, besides the orthogonal diameter CA, many also have an 

orthogonal diameter that is vertical at C; for these the equations have not only y, but also 

x, with only even powers. 
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Section 26 

Using the same method we can go further  by studying homogeneous expressions 

of higher powers to eliminate odd powers that must be thrown away.  We find  

other functions for V , that require other relations between 

m
n

 and p
q

. 

We will not stop there however, but we bring back a property of very grand 

importance regarding diameters, that can be accommodated by all the curves 

that we find. Here is the question. If the curve ABC (Fig. 5) has two diameters AO, BO, 

that intersect at O, this same curve will have many more diameters, that meet at the point 

O.  Sometimes an infinite number occur,  if new diameters do not coincide with previous 

ones. To see this, consider that the curve has two diameters AO and BO,  where AO 

bisects all chords Mm making angle mPO and BO intersects likewise the chord MN with 

the angle MQO. From points M and m of any chord Mm bisected by the diameter 
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AO, we extend cords through the other diameter BO, that are MN and Mn. These are 

bisected by the diameter BO at Q and q. After connecting the chord Nn, all the angles will 

be known in the quadrilateral MNnm. If from P we extend PR parallel to MN, mn, this 

line will intersect the chord Nn at R. Now construct ORC, the angles BOC and NRC will 

also be defined, from which it follows that the line OC will be again a diameter, that 

bisects the chord Nn making given angle NRO. 

Section 27 

To understand more fully the above phenomenon, let the tangent of 

the angle mPO  = α , the tangent of the angle AOB = B and the tangent of the 

angle MQO = β . It follows from this that the cotangent of the angle BOC 

= 1 2
B β
+ , 

and consequently the tangent of the angle BOC, that is = C = 
2
B

B
β

β +
.  If we let the 

tangent of the angle NRO = γ  ,  γ  will be 

2

2 2

(1 )
2 4 2 4 4

BB
B B B BB BB

αβ
αβ α αβ β β ββ

+
=

+ − − − − −
. 

Now it follows that if the tangents of the next angles in the same order are called D 

and δ , 

D will be = 
2
C

C
γ

γ +
  

and 

  
2

2 2

(1 )
2 2 2 4 4

CC
C C C CC C

βγδ
βγ ζ ζ γ γ γ γγ

+
=

+ − − − − − C
. 
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(In the numerator the original has (1 )CCβγ + . Also the second term in the 

denominator should be 4 Cζ .)) 

In some cases we can continue to infinity, at least for those (diameters) that do not 

coincide exactly with the first. 

Section 28 

To these problems on parallel diameters, or those that intersect at a 

given point, I will add another that is closely related and which the skilled 

Mr. Clairaut  mentions in one of the letters he has done me the honor of 

writing. The origin of this problem comes from the property of the ellipse, in 

which the inscribed parallelograms around the two conjugate diameters, encompass 

everywhere the same area. Since all the lines in the other curves intersecting at a fixed 

point, as from a center, are not diameters, we will not pay attention in 

this research to the conditions, that define diameters and we propose only the 

following problem. 

 

 

We seek a curve AMamB that has two orthogonal diameters ACB and aC that are 

perpendicular to each other. Thus  the center of this curve is at C.  Like the ellipse, it 
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must have the following  property: that extending from the center C any ray CM and at 

the same time another ray Cm parallel to the tangent MT at the point M, the area of the 

triangle MCm is always constant , and is equal to the area of the triangle ACa. 

Section 29 

To solve this problem, let, after having dropped a perpendicular MP from the 

point M on the axis AC, we let the abscissa CP = x and the ordinate PM = y. First the 

equation for the curve, that is W = 0, will necessarily be such that x and 

y have on both sides even power. Letting x or y or both be negative, 

the equation remains always the same. Thus W will be any function of xx and yy.  

This condition follows from the above property, in virtue of which, the lines 

AC and aC must be orthogonal diameters of the curve. Now from the 

point m we construct on the axis AB the perpendicular mp. We say that 

Cp = t and pm = u. It follows from the continuity of the curve that the 

same equation is found between t and u, that is between x and y.  If in the 

equation W = 0 in place of xx we put tt, the value of yy changes into uu. 

Section 30 

We introduce a new variable (parameter) z, from which we can determines the 

values xx and yy, such that when z is eliminated, we arrive at the equation for the curve W 

= 0. We conceives some quantity z,  which when made negative, xx changes into tt and yy 

to uu.  Thus it is obvious that in eliminating z, the equation between tt and 

uu must be the same as that between xx and yy, as the law of continuity requires. 

Suppose we are given  P and R as even functions of z, that remain the same in setting  z−  

in the place of +z, and given Q and S as functions of odd powers of z, that change 
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into their negatives, if we set  -z in the place of +z. Thus if we set xx = P + Q 

and yy = R + S, then when making z negative, we will have tt = P - Q and uu = R - S. 

By these manipulations we arrive at a curve that continuous connects the parts AMa and 

amB and where both AC and aC are orthogonal diameters. 

Section 31 

What is more, because the straight line Cm must be parallel to the tangent MT, 

the undertangent  PT = 
dy
ydx

− . This will make PT : PM = Cp : pm or 

-dx : dy = t : u, from which we get 

udx + tdy = 0 . 

Finally since the area of the triangle MCm must be constant, we calculate this  

area and get 

1 sin
2

CM Cm A MCm= ⋅ ⋅ ⋅ .  

(Recall that Euler writes “sin A.MCm” to mean sine of angle MCm.) 

But 

sin sin ( ) PM Cp CP pmA MCm A MCP mCp
CM Cm
⋅ + ⋅

⋅ = ⋅ + =
⋅

, 

from which we find that the area of the triangle MCm is 
2

ty ux+
= . Consequently the 

value of 
2

ty ux+  must be constant and so its differential is equal to zero. Therefore 

ydt + tdy + udx + xdu = 0 . 

Since udx + tdy is = 0,  this makes 

ydt + xdu = 0 . 
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From this equation we read that the tangent mt is parallel to the ray CM 

and that the rays CM and Cm are reciprocally parallel to their tangents MT and mt. 

Section 32 

We let ty + ux = 2cc and since 

x is QP += , SRy += , QPt −=  and SRu −= , 

we get after making substitutions  

ccSRQPSRQP 2))(())(( =+−+−+ . 

Suppose V denotes any odd functions of z and that we let 

VccSRQP +=−+ ))(( . 

If we make z negative, ))(( SRQP −+  changes to ))(( SRQP +−  so that  

))(( SRQP +− is = cc - V , 

as it is required by the nature of the given conditions. One can thus infer that 

  
2(cc VR S

P Q
−

+ =
−

)  and  
2( )cc VR S

P Q
+

− =
+

. 

So 

x is QP += , QPt −=  , cc Vy
P Q
−

=
−

and cc Vu
P Q
+

=
+

. 

From these we have 

2
dP dQdx

P Q
+

=
+

 and 
QPQP

dQdPVcc
QP

dVdy
−−
−−

−
−

−=
)(2

))((  , 

and thus 
QP

dQdPVccdV
QP

dQdPVcctdyudx
+

−−
−−

+
++

=+
(2

))((
)(2

))(( . 
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(This last expression should be 

)(2
))((

)(2
))((

QP
dQdPVccdV

QP
dQdPVcctdyudx

−
−−

−−
+

++
=+ .) 

 

Since udx + tdy must be = 0, 

0 will be = (PP - QQ) dV - V (PdP  - QdQ) - cc (PdQ - QdP) . 

Section 33 

We divide this equation by  and we get 3/ 2(PP QQ− )

2/3222/322 )(
)(

)(
)(

QP
QdPPdQcc

QP
QdQPdPV

QQPP
dV

−
−

=
−
−

−
−

. 

After integration have 

3/ 2

( )
( )

V cc PdQ Q
PP QQPP QQ

−
=

−−
⌠
⎮
⌡

dP . 

Now let Q = Pz , and because P is an even function, Pz is an odd function,  

as is Q . Because  dQ = Pdz + zdP , we have 

3/ 2(1 )1
V ccd

P zzP zz
=

−−
⌠
⎮
⌡

z . 

This must be an integrable formula, if we want to discover algebraic curves.  We write 

  3/ 2(1 ) 1
ccdz Z

P zz zz
=

− −
⌠
⎮
⌡

, 

so that V becomes = PZ.  We see that Z is an odd function of z, because V was defined as 

an odd function. From this we get 

(1 )ccdz zz dZ Zzdz
P

= − +  and 
(1 )

ccdzP
zz dZ Zzdz

=
− +

. 

Section 34 
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Now let Z be an arbitrary odd function of z, then 

  
(1 )

ccdzP
zz dZ Zzdz

=
− +

, 

is an even function.  Thus 

Q = Pz = 
ZzdzdZzz

cczdz
+− )1(

 and V = PZ =
ZzdzdZzz

ccZdz
+− )1(

. 

Thus we arrive at the complete solution of the problem by this method in the following 

way. Let x and y be determined by taking Z as an arbitrary odd function of z, and get (the 

parametric equations)  

xx is = (1 )
(1 )

cc z dz
zz dZ Zzdz

+
− +

and 
2(1 )((1 ) )

((1 ) )
cc z z dZ Zdz dzyy

zz dZ Zzdz dz
− + −

=
− +

. 

Hence virtue of the previous argument, by making z and Z  negative we get  tt and uu  

 

 

(1 )
(1 )

cc z dztt
zz dZ Zzdz

−
=

− +
and  

2(1 )((1 ) )
((1 ) )

cc z z dZ Zdz dzuu
zz dZ Zzdz dz

+ − +
=

− +
. 

Thus we get from these an infinite number of curves endowed with the proposed 

properties, First they have symmetry around the principal axes aC and AC. Next, 

extending from the center C the two rays CM and Cm, to the tangents of the curve at M 

and m reciprocally parallel, we get for the area of the triangle MCm = cc . 

Section 35 

Thus we find the equation for the curve in x and y, if we eliminate  

the variable Z from the two equations : 
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  (1 )
(1 )

cc z dzxx
zz dZ Zzdz

+
=

− +
 

and 

  
2(1 )((1 ) )

((1 ) )
cc z z dZ Zdz dzyy

zz dZ Zzdz dz
− + −

=
− +

. 

Dividing the one by the other we get 

  
2

2

(1 )((1 ) )
(1 )

yy z z dZ Zdz dz
xx z dz

− + −
=

+
 

and 

  ((1 ) ) 1
(1 )

y z dZ Zdz
x z dz

+ − −
=

+
zz , 

and the product is 

  ((1 ) ) 1
(1 )

cc z dZ Zdz zzyx
zz dZ Zzdz

+ − −
=

− +
. 

But if we do not desire the equation between x and y, the same discovered formulas  

give a convenient construction. Taking any value for Z, by which z is at the same time 

determined, we find the values for xx and yy and they determine one point of the curve. 

We are also able  to create a geometric construction, if select a curve, with the 

coordinates  z and Z  that has this property, that in making z negative, the other Z 

becomes negative as well. The relation between dZ and dz is defined by the tangent of 

this curve. 

Section 36 

Because Z must be some function of z that  changes to -Z, when using  -z in 

place of z, we take the simplest case Z zα=  and get 
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  (1 )cc zxx
α
+

= and (1 )yy cc zα= − ; 

from which we have 

  1 xxz
cc
α

+ =  and 1 2 xxz
cc
α

− = − . 

Thus 

2yy cc xxα αα= − , 

the equation for the ellipse, which obviously satisfies our problem. 

Section 37 

Now we let nZ zα= , where n is an odd number, so that Z  becomes an odd 

function of z. Also 

  dZ
dz

 will be  1nnzα −=  

and 

 1(1 ) ( ( 1) )nz dZ Zdz z dz n n zα −+ − = + −  

and 

 ( )1 1 1(1 ) ( 1) ( ( 1) )n n nzz dZ Zzdz nz n z dz nz dz n n zzα α α− + −− + = − − = − −  

from which we find 

1

(1 )
( ( 1)n

cc zxx
)z n n zzα −

+
=

− −
, 

and 

  
1 2(1 ) ( ( 1) )

( 1)

ncc z z n n zyy
n n zz

α −− + −
=

− −
. 

Thus 
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2

4
2

( ( 1) )(1 )
( ( 1) )

n n zxxyy c zz
n n zz
+ −

= −
− −

; 

from which by eliminating z there results an algebraic equation of higher degree. 

If we let 
1

zZ
zz

α
=

−
, 

 xx is (1 )(1 )
(1 2 )

cc z zz
zzα

+ −
=

+
and 

2(1 2 )
(1 2 )(1 )(1 )

cc z zzyy
zz zz z

α − +
=

+ − −
. 

We can in the same manner substitute infinitely many functions of z in place of Z, that 

will always generate equations for the curves, that satisfy that our requirements.  I have 

found no selections among them, that lead to a simpler equation between x and y, 

however  they are all easy to construct. 

Translators Notes 

The following notes are keyed to E083 by section number. 

Notes for Section 1 

 

 
  Figure 1.1 
Euler wrote of “oblique-angled diameters” and “orthogonal diameters” without explanation.  
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Definition: Given a curve ACTDB shown in figure 1.1. The line ET , which intersects the curve at T, is 

called an oblique-angled diameter if it bisects all chords (such as AB  and CD), that are parallel to the 

tangent line at T.  

In other words AM = MB and CN = ND  since the chords AB and CD are parallel to the tangent line at the 

point T where the oblique-angled diameter ET  intersects the curve ACTDB.  

 
    Figure 1.2 

 Many curves possess an oblique-angled diameter. For example, any curve that is symmetric about 

an axis has this property. In Figure 1.2 we see a curve that is symmetric about the line OY. Clearly this line 

bisects all horizontal chords. In this special case we call OY  and orthogonal diameter. It is also clear that 

every diameter of a circle is an orthogonal diameter.  

 While many curves possess one oblique-angled diameter, in the case of the conic sections all 

appropriately defined diameters have this property. For the parabola, we define a “diameter” as any line 

parallel to the axis of the parabola. In this case, all diameters are oblique-angled diameters. We will prove 

this below. For the ellipse and the hyperbola, we define a “diameter” as any line that passes through the 

center of the curve. All such diameters are oblique-angled diameters.  

 
     Figure 1.3 



 38

Theorem 1.  Let ATB be a parabolic curve and let ET be any line parallel to the axis of the parabola. Let 

AB be any chord parallel to the tangent line at T. Then ET bisects the chord AB at the point of intersection 

M.  

Proof  Since all parabolas are similar, without loss of generality, we can call the equation of the parabola 

. Call the coordinates of the point T, 2y x= ( ),T Tx y  and the slope at this point is 2 T
dy m x
dx

= = . The 

line AB has the equation  and intersects the parabola at the points where . 

The solutions of this equation are 

y mx b= + 2 0x mx b− − =

2
24

2 2 T T
m m b x x b+
± = ± + . Thus the x coordinate of the point A 

is 2
T Tx x b− + , and the x coordinate of the point B is 2

T Tx x b+ + . Since the point M has x 

coordinate Tx  it is clear from this result that the point M  bisects the line segment AB. 

Notes for Section 10 

 

While Euler will not pursue transcendental curves further, he indicates a method for finding them. 

With  and 2Y yy ay= − 2 2ma xZ y
n

= −  we seek a function of Y and Z with no odd powers of y , since 

the curve is symmetric about the x axis. Euler asks us, without explanation, to find a function  

satisfying the infinite differential equation 

( )T Y

  
2 3 4 2 5 6 3 7

3 5

4 16 640
1.2.3. 1.2.3.4.5 1.2....7

dT a Yd T a Y d T a Y d T
dY dY dY dY

= + + + +7    .                          .       (1) 

He claims that this function T has no odd powers of y . With  an arbitrary function, the equation 

is a transcendental curve with axis of symmetry and oblique-angled diameter(s). 

( , )W T Z

( , ) 0W T Z =

Derivation of the differential equation of infinite order:  

We give our derivation of (1). Using Taylor’s theorem we have 

 
2

2

0

( ) ( 2 )( ) ( 2 )
!

n n

n
n

d T y ayT Y T y ay
dY n

∞

=

−
= − =∑ . 

Separating even and odd powers we have 

 
2 2 2 2 1 2 2

2 2 1
0 0

( ) ( 2 ) ( ) ( 2 )( )
(2 )! (2 1)!

n n n

n n
n n

d T y ay d T y ayT Y
dY n dY n

1n+ +∞ ∞

+
= =

− −
= +

+∑ ∑ . 

The first series above is a function of only even powers of y , while the second series has both even and odd 

powers. Thus we set this second series equal to zero and after dividing by 2ay  we get 

 
2 1 2 2 2

2 1
0

( ) 40
(2 1)!

n n n

n
n

d T y a y
dY n

+∞

+
=

=
+∑

n

. 
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Since we are using this differential equation to solve for T , we can replace by the dummy variable Y 

and we have derived Euler’s relation (1). 

2y

 

Does the differential equation of infinite order have solutions? 

In this segment we will try to find a solution of (1) in the form of a power series in Y. We obtain 

the general form of series but are unable to verify that it converges. However, numerical results suggest that 

it does converge.  

  Let us try to find a solution of (1) in the form 

 . 
0

( ) k
k

k
T Y b Y

∞

=

=∑
Now 

 
2 1 2 1 2 1

2 1 2 1
0 0

( ) !
( 2 1)

n n k

k kn n
k k

d T Y d Y k Yb b
dY dY k n

+ +∞ ∞

+ +
= =

= =
!

k n− −

− −∑ ∑ , 

and (1) becomes 

 
2 1

0 0

(4 ) ! 0
(2 1)! ( 2 1)!

n k n

k
n k

aY k Yb
n k n

− −∞ ∞

= =

=
+ − −∑ ∑ . 

We write this as 

 
1

0 2 1

(4 ) ! 0
(2 1)! ( 2 1)!

n k n

k
n k n

a k Yb
n k n

− −∞ ∞

= = +

=
+ − −∑ ∑ . 

Now let  and get 2j k n= − −1

 2 1
0 0

(4 ) ( 2 1)! 0
(2 1)! !

n j

j n
n j

a j n Yb
n j

+∞ ∞

+ +
= =

+ + n

=
+∑ ∑ . 

We can write this double sum as 

 2 1

0 0

(4 )( 2 1)! 0
(2 1)! !

n
j n j n

j n

a bj n Y
n j

∞ ∞
+ + +

= =

+ +
=

+∑∑ , 

which is 

 2 1
0 0

2 1
(4 ) 0n j n

j n
j n

j n
a b Y

j

∞ ∞
+

+ +
= =

+ +⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑∑ . 

Let  p j n= + and get 

 1
0 0

1
(4 ) 0

p
n p

p n
p n

p n
a b Y

p n

∞

+ +
= =

+ +⎛ ⎞
=⎜ ⎟−⎝ ⎠

∑∑ . 

Thus the coefficients of Y must vanish and we have  
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 1
0

1
(4 ) 0

p
n

p n
n

p n
a b

p n + +
=

+ +⎛ ⎞
=⎜ ⎟−⎝ ⎠

∑ , 

for . We get 0, 1, 2,p =

For p = 0,  . 1

1
0

0
b⎛ ⎞
=⎜ ⎟

⎝ ⎠

  p = 1,   , 2 3

2 3
(4 ) 0

1 0
b a b⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

  p = 2,   , 2
3 4

3 4 5
(4 ) (4 ) 0

2 1 0
b a b a b⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
5 =

7 =

9 =

=

  p = 3,   , 2 3
4 5 6

4 5 6 7
(4 ) (4 ) (4 ) 0

3 2 1 0
b a b a b a b⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  p = 4,   , 2 3 4
5 6 7 8

5 6 7 8 9
(4 ) (4 ) (4 ) (4 ) 0

4 3 2 1 0
b a b a b a b a b⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  p = 5,   . 2 3 4 5
6 7 8 9 10 11

6 7 8 9 10 11
(4 ) (4 ) (4 ) (4 ) (4 ) 0

5 4 3 2 1 0
b a b a b a b a b a b⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

We see at once from the first of these equations that 1 0b = . Let  be given, then from the second 

equation we have 

2b

` 
2

2
3

2
1

3 2
(4 )

0

b
bb
a

a

⎛ ⎞
⎜ ⎟
⎝ ⎠= − = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

From now we will take  for n = 2, 3, 4, … .From the third equation we get 2 0nb =

 
3

3 2
5 22 3 3

2

3 3
2 23 32 0.09375

5 (4 ) (4 ) 32
(4 )

0

b
b bb b
a a a

a

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= − = − = = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

2 3b
a

. 

From the fourth equation we get 

 
5

5 2
7 2 22 5 5

3

5 3 5
(4 )

2 2 210 152 0.05659375
7 (4 ) (4 ) 256

(4 )
0

a b
b bb b b
a a a

a

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠= − = − = − = − = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

5a
. 

From the fifth equation we get 



 41

 

2
5 7

2
9 2 27 7

4

5 7 3 5 3 5 7
(4 )

4 2 2 4 2 2 2 6152 0.0750732
9 (4 ) 8192

(4 )
0

b a b
bb b

a a
a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
+ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠= − = − = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

7b
a

. 

From the sixth equation we have 

 

3
7 9

11 2 29 9
5

2
9

3 5 7 9 3 5 3 5 77 9
(4 ) (4 )

2 2 4 2 2 4 2 2 24 2 210902
11 (4 ) 131072

(4 )
0

0.16090393

a b a b
b b

a a
a

b
a

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ + −+ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠= − = = =
⎛ ⎞
⎜ ⎟
⎝ ⎠

−

b

. 

Thus we have 

2 3 5 7 9 11
2 3 5 7 9

0.5 0.09375 0.05659375 0.0750732 0.16090393( )T Y b Y Y Y Y Y Y
a a a a a

⎛ ⎞= − + − + − +⎜ ⎟
⎝ ⎠

. 

This last result suggests that this series converges, possibly for  aY <  and thus we conjecture that 

nontrivial solutions exist for Euler’s differential equation of  infinite order. It remains to prove that this last 

equation really converges. 

Notes for Section 11 

We repeat Euler’s proof that two parallel diameters implies infinitely many, giving more details. 

 

M

m

N

n

A a

B b

C c
R

S

P

TQ
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                                                    Figure 11.1 
Theorem: Given a curve with both  Aa and Bb as two parallel oblique-angled diameters separated by the 

distance a. Then that curve has infinitely many parallel oblique-angled diameters all separated by the same 

distance a. 

Proof: Let mAMBNCn be the given curve as shown in Figure 11.1. The chord Mm is parallel to the tangent 

at A and thus is bisected at point P. Both chords MN and mn are parallel to the tangent at B and are thus 

bisected at Q and T. Now consider the chord Nn, Construct the line PSR parallel to MN.  Clearly point R 

bisects chord Nn. Also since PS = RS, the distance a  between lines Aa and Bb equals the distance between 

lines Bb and Cc. 

We must now show that for any other parallelogram N’M’m’n’ formed in the same way as parallelogram 

NMmn, the lines N’n’ and Nn are parallel. See Figure 2. We construct N’M’ parallel to NM,  M’m’ parallel 

to Mm, and m’n’ parallel to mn. By the previous reasoning the line Cc bisects the chord m’n’. Since the line 

Bb bisects the line αβ  and the line M’N’, it is clear that 'N 'Mα β= . For the same reason, 

''n mδ= '. Since M’m’ is parallel to Mm, 'M mβ δ= . Thus 'Nγ 'nα γ=  and the chords Nn and N’n’ 

are parallel. It follows that Cc is an oblique-angled diameter, and by repeating this argument again and 

again, there are infinitely many diameters. The theorem is proved. 

 

 

Figure 11.2 
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Notes for Section 12 

 

                         
 `   Figure 12.1 

  

 

Lemma: In the above figure, the curve AMBNC has oblique-angled diameters AA’,  MM’, BB’, NN’, and 

CC’. All these parallel diameters are separated by the distance a. Chord BC is bisected by and makes angle 

α  with diameter NN’, chord AC is bisected by and makes angle β  with diameter BB’, and chord AB is 

bisected by and makes angle γ  with diameter MM’. Then it follows that  

 cot cot 2cotα γ β+ = . 

Proof:  Notice that 2 cotCE a α= , 2 cotEF a γ= , and 4 cotCF a β= . Since CF = CE + EF, the 

result follows at once. 

 To understand the relation between the angles obtained by Euler, we use the following notation for 

the angles made by chords with successive diameters. Referring to the figure we will use 1θ α= , the 

angle made by the chord BC  with the first diameter NN’, 2θ β= , the angle made by the chord AC with 

the second diameter BB’, etc. Then we have shown that 

3 2cot 2cot cot 1θ θ θ= − , 

and it follows that ( )4 3 2 2 1cot 2cot cot 2 2cot cot cot 2θ θ θ θ θ= − = − − θ

1

.  

23cot 2cotθ θ= − We now have  

 4 2cot 3cot 2cot 1θ θ θ= − . 

Now we have ( ) ( )5 4 3 2 1 2cot 2cot cot 2 3cot 2cot 2cot cot 1θ θ θ θ θ θ θ= − = − − −  

24cot 3cot 1θ θ= − . Thus we have 
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 5 2cot 4cot 3cot 1θ θ θ= − , 

And in general 

 2 1cot ( 1)cot ( 2)cotn n nθ θ θ= − − − . 

Notes for Section 13 

 Euler’s conclusion, that he can take the limit as  in his differential equation of infinite 

order does not seem valid by modern standards. A more careful examination is called for. 

0→a

 Euler does not give any examples of specific transcendental curves with parallel diameters. One 

easy example is the curve 
 yx cos=  

which has orthogonal diameters  given by ny π=  for all integer n. 

 

We found a simple theorem which helps us find additional curves of this type. 

 

Theorem: Let the curves  and )(1 yfx = )(2 yfx =  both have an oblique angled diameter at . 

Then the curve 

dy =

)()()( 213 yfbyfayfx +== , where a and b are any constants,  also has the line 

as an oblique angled diameter. dy =

Proof:  The value of 
dy
dx

 at the point where the diameter dy = intersects the curve  is 

. Therefore values of y  at the points where the  line 

)(1 yfx =

)('1 df cydfx += )('1 intersects the curve 

 are the roots of the equation  )(1 yfx =

  0)(')( 11 =−− cydfyf . 

Because the resulting chord is bisected, these roots are of the form )(1 cdy Δ±= . Here  is the 

vertical distance from the diameter to the ends of the chord, and is obviously a function of c. Another way 

of looking at this is say that if   takes the value c for 

)(1 cΔ

ydfyf )(')( 11 − Δ+= dy , then it takes on the 

same value c for . Similar results hold for the curve Δ−= dy )(2 yfx = .   

 Now consider the curve )()()( 213 yfbyfayfx +== . The value of 
dy
dx

 at the point where 

the diameter intersects is curve is dy = )(')(' 21 dbfdaf + . Thus we must examine the intersections of 

the line  with this curve to determine if the chord is bisected. The values 

of y  where this intersection occurs are the roots of the equation  

Cydbfdafx ++= ))(')('( 21

Cydbfdafyfbyfa ++=+ ))(')('()()( 2121 . This equation can be written as 
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Cydfyfbydfyfa =−+− ))(')(())(')(( 2211 . Suppose Δ+= dy  is a root of this equation. Is 

then also a root? The answer is yes because both of the terms in brackets have the same value 

for   as was just shown. Thus the theorem is proved. 

Δ−= dy

Δ±= dy

 As an example of this theorem, take yyf cos)(1 = and . Both curves have the lines 2
2 )( yyf =

ny π=  for integer n,  as diameters. Thus the curves  have these same lines as 

diameters. 

2cos byyax +=

Notes for Section 23 and 24 

Euler has shown that an arbitrary function 0),( =VZW  of the variables 

  2 21
3

2Z y xθ= +   and  2 31 1
3 27

V xy 3xθ θ= − , 

will be symmetric about the y axis and possess an oblique angled diameter making angle  with the 

negative x axis. The chords that this diameter bisects make angle . He calls the curves given 

by the special case 

θ1tan −

)3/(tan 1 θ−

   3),( aVbZVZW −+=

redundant hyperbolas of Newton. These reduce to 

3 2 2 2 2 31 1 1
3 3 27

a by bx xy x3θ θ θ= + + − . 
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  Figure 23.1  

 

Example 23.1:  Let a = b = 1=θ  and get  

 

y2 + x2/3 + (x y2)/3 - x3/27 = 1, 
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shown in Figure 23.1. The diameter is the line y = -x and three corresponding bisected chords with slope 

1/3 are shown. In Figure 23/2 we see the same curve and diameter over a wider range of x and y. 
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   Figure 23.2 

Example 23.2  Now consider  which reduces to 01),( 22 =−= VZVZW

    0- /27)x-)/3y((x  /3)x(y 232222 =1+

with 1=θ . In Figure 23.3 we see the curve with the diameter xy −=  and three chords with the 

corresponding slope 1/3 that are bisected. 
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   Figure 23.3 

 

Example 23.3  Finally we examine the transcendental function 

01)sin(3),( =−++= ZVVZVZW , 

which simplifies to 

(y2 + x2/3) + 3 ((x y2) / 3 - x3 / 27) + sin[(y2 +x2/3) ((x y2) / 3 - x3/27) – 1 = 0. 

Again we take 1=θ . In Figure 23.4 we see the curve with the diameter xy −=  and three chords with 

the corresponding slope 1/3 that are bisected. 
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   Figure 23.4 

 

Notes for Section 26 

 
     Figure 26.1 
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We have modified Euler’s figure by adding several points and line to help in the proof of the following 

theorem: 

Theorem 26.1: If a curve has two oblique angled diameters OA and OB that meet at the point O, then it 

has an additional diameter OC. 

Proof:  Let mM  be a chord that is bisected by the diameter OA. From the points m and M extend parallel 

chords mn and MN that are bisected by the diameter OB. Now draw the line nN.  From the point P at which 

OA bisects mM, extend a line parallel to mn and MN that intersects nN at R. It is clear that the chord nN is 

also bisected at R. Now draw the line ORC.   

We must now show that ORC is a diameter. We have already shown that it bisects the chord nN. Now 

starting at the point m’, we construct the quadrilateral m’M’N’n’ in the same way that we constructed the 

quadrilateral mMNn. We must show that [1] the chord n’N’ is parallel to nN, and that [2] this chord is 

bisected by OC.  

 [1] From the figure and our constructions it is clear that MQ = QN, M’Q’ = Q’N’, and M’’Q’ = 

Q’N’’. It now follows that M’M’’ = N’’N’, and in the same way we see that m’m’’=n’’n’. But m’m’’ = 

M’M’’ because mM and m’M’ are parallel. It is now clear that the chord n’N’ is parallel to nN. 

 [2] Notice that PS = SR and P’S’ = S’R’. It follows then that the point R’ must be on the line OC 

since any line parallel to mn joining OA and OC is bisected by OB. This completes the proof. 

Theorem 26.2:  Let OA, OB and OC be consecutive oblique angled diameters, where the points A, B and C 

are on the curve. Then the chord AC is parallel to mn and is bisected by the diameter OB. 

 

Proof: Using the notation defined in the above theorem, imagine the points m’ and M” converging to the 

point A. Then the quadrilateral m’M’N’n’ degenerates into the line AC, and the theorem is proved. 

 
    Figure 26.2 

Using this last theorem we have now a neat way of constructing new diameters, once two are 

known.  In Figure 26,2 we see a curve ABC with two given oblique angled diameters OA and OB. From 
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point A draw the chord AC whose slope equals the tangent to the curve at B. By Theorem 26.2, OC is a new 

oblique angled diameter. 

 

Notes for Section 27 

We give derivations of Euler’s equations which he only states in this section. 

 

 

 
 

Figure 27.1 

 

In the above Figure 26.2, OA, OB and OC are consecutive oblique angled diameters. By Theorem 

26.2, the chord AC is bisected by the diameter OB. (The diameter OB is shown as a horizontal line in this 

figure, but this is only for convenience. It is not the axis of symmetry.) All the angles shown in the figure 

are indicated with a “prime”. We use the convention that xx ='tan . This now integrates nicely with 

Euler’s notation in this section.  

We are now ready to prove Euler’s relation that the “cotangent of the angle BOC  =
1 2
B β
+ ”.  

From the figure we see that 'cot2'cot'cot βzBzCz += . Thus it follows immediately that 

β
2

B
11
+=

C
. 
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Figure 27.2 

 

Figure 27.2 shows five consecutive oblique angled diameters, OW, OA, OB, OC and OD. By 

Theorem 26.2, the chord WB is bisected by the diameter OA, and likewise the chord BC is bisected by the 

diameter OC. In the same way  the chord WD is bisected by the diameter OB. (The diameter OB is shown 

horizontal in the figure, but this is only for convenience. It is not the axis of symmetry.) Five horizontal 

dashed lines are shown in the figure. The top one passes through the point W. The middle one passes 

through B and the bottom one through D. The other two pass through the points where the diameters OA 

and OC intersect the chords WB and BD respectively. It now follows that all these lines are equidistant and 

the distance separating them is shown as z. 

From Figure 27.2 we see immediately that 

)''cot(2)''cot(2'cot4 CzBzz ++−= γαβ . 

Thus we have 

 C
C

B
B

+
−

+
−
+

=
γ

γ
α

α
β

112
. 
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This simplifies to Euler’s relation 

22222

22

44242
)1(

BBBBB
B

βββαβααβ
αβγ

−−−−−+
+

= . 

 

Notes for Section 28 

28.1 Reciprocal diameters 

 

 
    Figure 28.1 

 

 The above figure shows an ellipse. Draw any diameter MM’. We say that the diameter mm’ is 

reciprocal to diameter MM’ if it is parallel to the tangent line to the ellipse at M. If we started with diameter 

mm’, then MM’ would be the reciprocal diameter. Euler assumes that we are familiar with reciprocal 

diameters and that  the area of the parallelogram MmM’m’ is constant, regardless of the choice of the initial 

diameter, and is equal to 2ab. The area of the triangle CMm is also constant and equals ab/2. In the 

following sections Euler will look for other curves in which a similar triangular area is constant. 

28.2 Parametric equations for the ellipse 

 These reciprocal diameters have an interesting relation to the parametric form of the equation of 

the ellipse given by the equations 

(28.1) θsinax =  and θsinby = . 
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   Figure 28.2 

 

In Figure 28.2 we see two circles centered at point C with radii b and a. The ray CRS  makes angle θ  with 

the x-axis and intersects the smaller circle at R and the larger circle at S. From R extend a horizontal line 

and from S drop a vertical line. These two lines intersect at the point M. This point M is on the ellipse given 

by the parametric equations given above. As the angle θ  varies between 0 and π2 , the point M generates 

the entire ellipse. Notice that the ray CM which identifies the point  differs from the ray CS that is 

made by the parameter 

),( yx

θ . The angle θ  is known historically as the “eccentric anomaly”. 

 

28.3 Reciprocal diameters and the eccentric anomaly 
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   Figure 28.3 

 

To see the relation between the reciprocal diameters and the eccentric anomaly, consider Figure 

28.3.  Start with the radius CR making eccentric anomaly θ , to identify the point on the ellipse M. Now 

increase the eccentric anomaly by 2/π  to identify the radius ray CS and corresponding point on the 

ellipse m. This point m is reciprocal to M.  Thus reciprocal points on the ellipse have their related eccentric 

anomalies separated by the angle 2/π . 

To see that this is true, we see that the slope of the tangent at M  is given by 

cos cot
sin

dy b d
dx a d

θ θ ϑ
θ θ

= = −
−

. 

Therefore the slope of the ray CS is given by cot tan( / 2)θ θ π− = +  which demonstrates the truth of 

the relation between M and m just stated. Thus the coordinates of  the point m are given by 

(28.2)   θπθ sin)2/cos( aat −=+=  and θπθ cos)2/sin( bbu =+= . 

28.4  The area of the triangle CMm  is constant. 
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   Figure 28.4 

 The area of the parallelogram ABMm shown in Figure 28.4 is )(
2

txuy
−⎟

⎠
⎞

⎜
⎝
⎛ +

. Subtracting the 

areas of triangles ACm and CBM we get the area of the triangle CMm 

 Area CMm = 
22

)()(
2

xyuttxuy
−

−
−−⎟

⎠
⎞

⎜
⎝
⎛ +

. 

This simplifies to 
2

tyxu −
.  Substituting the values of these variables in terms of θ  from (28.1) and (28.2) 

we get  

 Area CMm = 
22

sincos 22 ababab
=

+ θθ
. 

This proves that the area of the triangle CMm is constant.  
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