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Introduction 

 
Euler wrote of “oblique-angled diameters” and “orthogonal diameters” without 

explanation.  
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Figure 1:
ET is an oblique-angled diameter

M
N

Definition: Given a curve ACTDB shown in figure 1. The line ET , which intersects the 

curve at T, is called an oblique-angled diameter if it bisects all chords (such as AB  and 

CD), that are parallel to the tangent line at T.  
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In other words AM = MB and CN = ND  since the chords AB and CD are parallel to the 

tangent line at the point T where the oblique-angled diameter ET  intersects the curve 

ACTDB.  

Part I:  Curves with parallel diameters 

Section 1.  We will examine the concept of  oblique-angled diameters, which applies to 

the conic sections, and try to find other curves with that property or a similar property. 

 

    Figure 3.1 

Section 2. Euler reminds us that any line parallel to the axis of a parabola is an oblique-

angled diameter. 

Section 3. We now study the following problem: 

 To describe a curve AMFm  over the  axis AD, which has the diameter FEG parallel to 

the axis AD at the given distance DE from the axis, and which bisects all chords Mm 

which make (a fixed) angle β  at T with the axis.  
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With the notation shown in Figure 3.1, and with sinn β=  and cosm β= , Euler reasons 

that . Here  and  are arbitrary functions of t. (Notice that the 

letters m and P have ambiguous meanings. Euler does this frequently.) 

2 2 ( ) ( )z P t z Q= − t ( )P t ( )Q t

Section 4. Call Mz  and  the roots of the equation . Using mz 2 2 ( ) ( )z P t z Q= − t

2 ( ) M mP t z z= +  and simple reasoning from the geometry of Figure 1, Euler concludes 

that the equation of the curve AMFm is , where the function f is 

arbitrary. 

2 2 (y ay f ny mx− = − )

YSection 5. We set  and ny mx X− = 2 2y ay− = and form the general equation between 

X and Y, by writing 

2 2 3 20 X Y X XY Y X X Yα β γ δ ε ζ η θ= + + + + + + + + .                             (1) 

In this general equation we find all possible relations between X and Y 

and thus we have Y = to any function of X, so that  will be equal to 2 2y a− y

any function of  as required by our analysis.  ny mx−

Section 6. When the curve is a parabola, all lines parallel to the axis are oblique-angled 

diameters, while in the family of curves we found, only one line (at distance a from the 

axis) is an oblique-angled diameter. 

Section 7. Now Euler considers curves that are symmetrical about the axis. He poses the 

problem: 

Among all curves AMm, with the line AD as an axis of symmetry,  to determine those that 

at a given distance  on both sides of the axis AD have two oblique-angled diameters. 

Because of the symmetry, the variable y cannot occur to an odd power in the 

equation of the curve. But because both X ny mx= −  and feature y to the 2 2Y y ay= −
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first power, Euler seeks  new variables without odd powers.  He selects 

22 2aX m a xZ Y y
n n

= + = − . 

 He notes that the preceding problem (without symmetry) is solved by the general 

equation between Y and Z, that is to say: 

 .                                     (2) 2 2 3 20 Y Z Y YZ Z Y Y Zα β γ δ ε ς η θ= + + + + + + + +

Section 8. Because the variable Y contains y to the first power, our second problem, with 

axis of symmetry, can only be satisfied if terms involving odd powers of y are eliminated. 

Euler argues that the removal of odd powers of y requires the use of infinitely many terms 

involving . Thus if we restrict ourselves to algebraic equations, (finitely 

many terms), equation (2) must reduce to 

2 3 5, , ,...Y Y Y

2 30 qZ Z Z Zα γ ς χ ω= + + + + + , 

that contains no Y. It follows that Z is a constant 

  2 2m a xy C
n

− = . 

This is the parabola, and therefore all other algebraic curves are excluded. 

Section 9.  While the only algebraic equations  with an axis of symmetry and oblique-

angled diameters are parabolas, there may be many transcendental curves with this 

property.  

Section 10.  While Euler will not pursue transcendental curves further, he indicates a 

method for finding them. With  and 2 2Y y ay= − 2 2ma xZ y
n

= −  we seek a function of Y 

and Z with no odd powers of y , since the curve is symmetric about the x axis. Euler asks 
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us, without explanation, to find a function  satisfying the infinite differential 

equation 

( )T Y

  
3 4 2 5 6 3 7

3 5

4 16 640
1.2.3. 1.2.3.4.5 1.2....7

dT aYd T a Y d T a Y d T
dY dY dY dY

= + + + +7    .                          .       (3) 

He claims that this function T has no odd powers of y . With   an arbitrary 

function, the equation is a transcendental curve with axis of symmetry and 

oblique-angled diameter(s). We show our derivation of (3) in the notes. 

),( ZTW

( , ) 0W T Z =

Section 11.  Euler gives a neat, simple geometric argument to prove the following 

theorem. We redo this proof in the notes with more details than given by Euler. 

Theorem If a curve has two parallel oblique-angled diameters, separated by the distance 

a, then that curve has infinitely many parallel oblique-angled diameters, all separated by 

the same distance a. 

Section 12. The figure shows a curve with oblique-angled diameters Aa, Bb, Cc and 

corresponding angles , ,α β γ . From the previous section we know that there are 

infinitely many diameters all equally spaced by the distance a. Referring to the figure we 

will use 1θ α= , the angle made by the chord Mm with the first diameter Aa, 2θ β= , the 

angle made by the chord MN with the second diameter Bb, etc. Then Euler states without 

proof that 

3 2cot 2cot cot 1θ θ θ= − . 
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   Figure 12.1 

(We show why this is true in the notes that follow the translation.) It follows that.  

 4 2cot 3cot 2cot 1θ θ θ= − . 

 5 2cot 4cot 3cot 1θ θ θ= − , 

And in general 

 2 1cot ( 1) cot ( 2) cotn n nθ θ θ= − − − . 

Section 13. Euler argues that the only curve in which all parallel lines are diameters is the 

parabola. He does this with the help of the remarkable differential equation of infinite 

order introduced in section 10. 

Part II: Curves with diameters passing through a central point 

Section 14.  Having completed the discussion of parallel diameters like those found in 

parabolas, he turns to diameters that intersect at a common point, as with the ellipse and 

hyperbola. In the case of these curves, all straight lines that pass through their center are  
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oblique angled diameters. However, are there other curves that have only one, two, three, 

etc. such diameters? 

 

    Figure 15.1 

Section 15.  Euler now presents the following problem: 

Find all curves (Fig 15.1 above) AMm  constructed above an axis AC such that the line 

CF emerging from the point C, making angle ACF with the axis, bisects at E all chords 

Mm parallel to the tangent line at F. 

Euler now introduces the following notations: 

 t = CT  and z = TM  or Tm,  

 m = sine of angle ETC, and n = cosine of angle ETC, 

 p = sine  of angle ECT, and q = cosine of angle ECT. 

Euler then argues that z, the intersection of all lines TE with the curve, satisfies a 

quadratic equation 

 , 2 2z Pz= −Q

where P and Q are functions of t, and the angle ETC  is constant. 
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Section 16.   Setting  x = CP and y = PM  Euler gives an easy argument using simple 

trigonometry that mx nyt
m
+

=  and that the family of desired curves is given by the 

equation 

  2 2mp mx nyy xy f
np mq m

+⎛ ⎞+ = ⎜ ⎟− ⎝ ⎠
. 

where  f  is an arbitrary function.  If we let nyX x
m

= +  and  2 2mpY y xy
np mq

= +
−

, Then it 

follows that this family of curves is given by ( , ) 0W X Y = , where W is an arbitrary 

function of X  and Y  

  . 2 2( , )W X Y X Y X XY Y Xα β γ δ ε ζ η= + + + + + + +3

Section 17.  This family of solutions has only one guaranteed oblique angled diameter 

passing through the point C. Euler now wishes to find the subset of the above curves that 

are symmetric about the axis AC. In this case AC  is an orthogonal diameter. Now only 

even powers of  y  are allowed. Thus the coefficients , , ,α β γ , must be determined so 

that no odd powers of y remain in the equation. 

Section 18.  First we see that 0β =  because no following terms can remove by 

subtraction  ny
m

. However we can remove odd powers of y  from the next two terms 

   2Y Xγ δ+

by taking  np mqγ = −   and  
2m p
n

δ = − , so that our expression becomes 

 2Y Xγ δ+
2 2

2 2( ) m p m pxnp mq Y X mqy
n n

= − − = − −
2

. 

Thus Euler lets  
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 2 2 2 ( )n np mqZ nqy mpx mpX Y
m
−

= + = − , 

which has only even powers of y.  

Section 19.  Now consider the arbitrary function of X and Z: 

 . 2 2( , )W X Z X Z X XZ Z Xα β γ δ ε ζ η= + + + + + + +3

2

Set , and this curve has an oblique angled diameter passing through the 

point C on the x- axis. If all the terms in which X appears vanish, then no odd powers of y 

occur and the x- axis is an axis of symmetry for our curve. In this case Z is a constant, and 

Euler writes   . These are all conic sections with center at the origin. 

( , ) 0W X Z =

2 2mpx nqy a+ =

Let 
2

2 ab
nq

=  and get   

 , 2 2y b kx= − 2

where mpk
nq

= . This means that tan tank ETC ECT= . Thus the angle ECT  is 

arbitrary, and can be any value. Any line passing through the origin is an oblique angled 

diameter for these curves. If k = 1, the angle TEC is a right angle and the equation is 

therefore a circle. 

Section 20.  Euler now tries to remove odd powers of y from the equation 

 . 2 2 3( , ) 0W X Z X Z X XZ Z Xα β γ δ ε ζ η= + + + + + + + =

He first observes that we must take 0β δ= = , since the terms involving y and xy cannot 

be removed by following terms. Next he groups together terms that are homogeneous. He 

starts with  and XZ, which are homogenous of degree 3, and states (without showing 

details), that if 

3X

3mp
nq

= , then the terms involving 2x y  and  disappear. He also states 3y
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without proof, that the terms ,  and , which are homogeneous of degree 5, 

can be removed if we take  

5X 3X Z 2XZ

 np
mq

 = 3 or 5 2 5np
mq

= + . 

Section 21 and 22.  Euler gives algebraic details of his derivation from the homogenous 

curves of order 3 discussed in the previous section. He lets 

p
q

θ=   and  1
3

m
n

θ= , 

and concludes that if we write 

  2 21
3

2Z y θ= + x   and  2 31 1
3 27

V xy 3xθ θ= − , 

and if W denotes any function of Z and V , then the equation W = 0 has the desired 

properties. The equation is 

 . 2 20 Z V Z ZV V Zα β γ δ ε ζ η= + + + + + + +3

This equation has three diameters, the x-axis which is an orthogonal diameter, and the 

two lines from the origin making angles 1tan θ−±  with the negative x-axis. 

Section 23 and 24. Now Euler considers the special case of the above equation  

  3a bZ V= +

which is 

 3 2 2 2 2 31 1 1
3 3 27

a by bx xy x3θ θ θ= + + − , or 

 
3 2 2 3

2

1 1
3 27

1
3

a bx
y

b x

θ θ

θ

− +
=

+

3x
. 

These curves are examples of what Euler calls the redundant hyperbolas of Newton,  
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v
DCvBvAvy +++

=
23

2 . 

Here  1
3

v b xθ= +  and 
2

4
BC

A
= . This curve in Figure 24.1 has four oblique angled 

diameters all denoted by the same letters  CE. The point C on the v-axis where these 

diameters meet has value 
6
Bv
A

= − .  Euler finds other values significant in the graph. 

 

    Figure 24.1 
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This is Euler’s graph to which we have added the v and y axies. Notice that Euler takes 

the v axis directed to the left. 

Section 25. Euler has examined curves obtained by starting with 

 nyX x
m

= + ,  2 21
3

2Z y xθ= +    

and studying the expression of third order . He obtained finally the curves XZX βα +3

21 1
3 27

V xy 3 3xθ θ= − , which satisfied his problem. 

In this section he studies the expression of fourth order 

 . 4 2V X Xα β= + Z

He finds that in this case we must take  
q
p

p
m
=  to remove odd powers of y. He calls 

m
n

θ =  and gets ( )22 2 2V xα θ= − − y . Now any function ( , ) 0W Z V =  will have the x axis 

as an orthogonal diameter and at least two oblique angled diameters. The simplest such 

curve is given by 4 4 4 4x yα θ= . 
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Section 26. Using the figure 

 

   Figure 26.1 

Euler proves that if we have two oblique angled diameters that meet at the point O, Then 

we have more diameters that meet at O. This is a remarkably simple geometric proof, 

much like the proof found in section 11. (We give a more detailed proof in the notes.) 

Section 27.  Euler gives formulas for important angles in the above figure. The 

calculations are left out, and our detailed derivations of these can be found in the notes. 

Using the notation that all angles are “primed” and xx ='tan  he gets the relations 

 
β
2

B
11
+=

C
,   and   C

C
B
B

+
−

+
−
+

=
γ

γ
α

α
β

112
. 

Part III: An area problem 
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    Figure 28.1 

Section 28. Euler now begins a new problem: 

We seek a curve AMamB that has two orthogonal diameters ACB and aC that are 

perpendicular to each other. Thus  the center of this curve is at C.  Like the ellipse, it 

must have the following  property: that extending from the center C any ray CM and at 

the same time another ray Cm parallel to the tangent MT at the point M, the area of the 

triangle MCm is always constant , and is equal to the area of the triangle ACa. 

Section 29. Euler notes that the equation we seek 0),( =yxW  , has, in terms of the 

variables x and y, only even powers of both variables. This follows from the fact that the 

curve is symmetric about both the x and y axies. Denote the point M by  and the 

point m  If we replace x by t, then y is replaced by u. In this sense, the two points 

 and are “reciprocal”. 

),( yx

),( ut

),( yx ),( ut

Section 30.  Euler will try to find the solution in parametric equations 

   and  )(2 zfx = )(2 zgy =
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where z is the parameter. He imposes the condition that changing z to –z changes x to t 

and changes y to u. Thus  

   and . )(2 zft −= )(2 zgu −=

Euler uses P to denote  the even part of f  and Q to denote the odd part. In the same way R 

and S denote the even and odd parts of g. Thus we have 

   and , )()(2 zQzPx += )()(2 zSzRy +=

and replacing z by –z we get 

   and . )()(2 zQzPt −= )()(2 zSzRu −=

Section 31.  From the fact that the ray Cm has the same slope as the tangent line at M we 

get  
dx
dy

t
u

−= , and therefore  

  udx + tdy = 0 . 

An easy calculation shows that area of the triangle MCm is 
2

ty ux+
= . Since the area is 

constant, its differential is zero and we get  

ydt + tdy + udx + xdu = 0 . 

Since udx + tdy is = 0,  this makes 

ydt + xdu = 0 . 

Section 32. Euler denotes  the area of triangle MCm by  so that we have  ty + ux = 

2cc. Substituting   

2c

 x QP += , SRy += , QPt −=  and SRu −= , 

we get 

  ccSRQPSRQP 2))(())(( =+−+−+ . 
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Euler now introduces V as an odd function of z such that VccSRQP +=−+ ))(( . An 

easy argument now leads to 

x QP += , QPt −=  , cc Vy
P Q
−

=
−

and cc Vu
P Q
+

=
+

. 

From these we have after  some manipulations 

 
)(2

))((
)(2

))((
QP

dQdPVccdV
QP

dQdPVcctdyudx
−

−−
−−

+
++

=+ , 

and since this is zero we get  

dVQP )( 22 −  - V (PdP  - QdQ) - cc (PdQ - QdP) = 0 . 

Section 33.  Dividing the above equation by  and integrating we get 2/322 )( QP −

  ⎮⌡
⌠

−
−

=
−

2/32222 )(
)(

QP
QdPPdQcc

QP
V . 

So far, we have arbitrary even functions P and Q and odd function R, S and V. Euler now 

begins to specify some of these by trying Q = Pz. Now the above equation is 

  ⎮⌡
⌠

−
=

−
2/32

2

2 )1(1 zP
dzc

zP
V . 

To get an algebraic solution, we must be able to integrate. Euler writes 
P
VZ = , and by 

differentiating the above equation he gets 

 
2

2(1 )
c dzP

z dZ Zzdz
=

− +
. 

Sections 34 and 35.  Euler now gets expressions for the main parametric equations 

  
2

2
2

(1 )
(1 )

c z dzx
z dZ Zzdz

+
=

− +
and 

2 2
2

2

(1 )((1 ) )
((1 ) )

c z z dZ Zdz dzy
z dZ Zzdz dz

− + −
=

− +
, 

also 
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2
2

2

(1 )
(1 )

c z dzt
z dZ Zzdz

−
=

− +
and  

2 2
2

2

(1 )((1 ) )
((1 ) )

c z z dZ Zdz dzu
z dZ Zzdz dz

+ − +
=

− +
. 

Here Z is an arbitrary odd function of z. 

Section 36. Euler now considers the simplest case Z zα=  and gets 

  
α

)1(2
2 zcx +
= and  ; )1(22 zcy −=α

from which we get , which is an ellipse. 2 2 22y cα α= − 2x

Section 37. Now we let nZ zα= , where n is an odd number, from which we find the 

parametric equations 

2
1 2

(1 )
( ( 1)n

cc zx
z n n zα −

+
=

− − )
, 

and 

  
2 1

2
2

(1 ) ( ( 1) )
( 1)

nc z z n n zy
n n z

α −− + −
=

− −

2

. 

If we let 
1

zZ
zz

α
=

−
, we get 

 
2 2

2
2

(1 )(1 )
(1 2 )

c z zx
zα

+ −
=

+
and 

2 2
2

2 2

(1 2 )
(1 2 )(1 )(1 )

c z zy
z z z

α − +
=

2

+ − −
. 
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