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Preface

Mathematics is not a careful march down a well-cleared highway, but a journey into a strange wilderness, where the 
explorers often get lost. Rigour should be a signal to the historian that the maps have been made, and the real 
explorers have gone elsewhere.

W. S. Anglin, "Mathematics and History", Mathematical Intelligencer, v. 4, no. 4.

Welcome to the jungle!   This  book is  an attempt to excite  the reader about  the beauty of  mathematics through exploration and
experimentation with number patterns arising from integer sequences.  It seeks to demonstrate how these fascinating patterns can
be  discovered  with  the  help  technology,  in  particular  computer  algebra  systems  such  as  Stephen  Wolfram's  Mathematica  and
Internet resources such as Neil Sloan's Online Encyclopedia of Integer Sequences (OEIS).  Those who find joy in playing with
integer sequences and hunting for formulas experimentally by computer will hopefully find this book worthwhile to read.

More concretely, this book seeks to expose the reader to a wide range of number patterns that can be extracted from experimental
data and to intuitively convince (or deceive at times) the reader of their validity before subjecting them to rigorous proof.  This
requires very good bookkeeping and presentation of numerical data.  Thus, the author has put considerable effort into grooming
numerical data so that patterns become clear to reader and formulas can be easily conjectured, or if no pattern is evident, then use
tools at our disposable to systematically determine if such a formula exists.

Mathematics by Experiment

Mathematics is not a deductive science -- that's a cliche. When you try to prove a theorem, you don't just list the 
hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork.

Paul R. Halmos, I Want to be a Mathematician, Washington: MAA Spectrum, 1985.

According to the author it seems that little emphasis is placed on exploration and discovery in mathematics education today.  No
systematic approach  is formally taught to our students, who are typically asked to solve problems that have been so well paved or
narrowly constructed that there is little room for creativity and experimentation.  If students are merely taught to prove theorems,
then who will be the explorers of new conjectures?

Mathematical experimentation has largely been overshadowed by mathematical proof.  Certainly, developing students’ ability to
understand  and  formulate  mathematical  arguments  is  a  worthy  goal  in  any  mathematics  course;  unfortunately,  many  students
easily get frustrated when they are first exposed to mathematical proofs and asked to construct them independently on their own.
The road to mathematical “nirvana” can be long arduous for these students.  However, by instilling in them a deep appreciation
and  ownership  of  the  material  through  exploration  and  experimentation,  the  author  believes  that  students  will  be  much  more
motivated to tackle mathematical proofs.  This issue not only affects college students majoring in mathematics, but more broadly
and more importantly, it also affects liberal arts students and high school students alike.

Experimental Mathematics
Fortunately,  there  is  a  new  movement  to  regain  the  flavor  of  mathematical  exploration  and  experimentation  by  computer  as
championed  by  Jonathan  Borwein  and  David  Bailey  in  their  series  of  books  on  experimental  mathematics  [References].   Of
course,  the  intuitive  or  investigative  approach  to  learning  and  discovering  mathematics  is  not  new.   Some  middle-school  text-
books  already  emphasize  such  an  approach,  for  example  the  Connected  Mathematics  curriculum,  and  are  divided  into  units
consisting of  “Investigations”.    However,  the availability  of  powerful  computers,  advanced software such as  computer  algebra
systems, and online mathematical databases to perform numerical experiments and search for deep patterns has given birth to the
digital world of experimental mathematics.  
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Fortunately,  there  is  a  new  movement  to  regain  the  flavor  of  mathematical  exploration  and  experimentation  by  computer  as
championed  by  Jonathan  Borwein  and  David  Bailey  in  their  series  of  books  on  experimental  mathematics  [References].   Of
course,  the  intuitive  or  investigative  approach  to  learning  and  discovering  mathematics  is  not  new.   Some  middle-school  text-
books  already  emphasize  such  an  approach,  for  example  the  Connected  Mathematics  curriculum,  and  are  divided  into  units
consisting of  “Investigations”.    However,  the availability  of  powerful  computers,  advanced software such as  computer  algebra
systems, and online mathematical databases to perform numerical experiments and search for deep patterns has given birth to the
digital world of experimental mathematics.  

It should be emphasized that experimental mathematics is not the same as statistical data analysis or data mining although they do
share  some similarities  and  overlap  in  certain  topics.   To  this  end,  Borwein  and  Bailey  give  an  accurate  working  definition  of
experimental mathematics in [BB]:

Experimental mathematics is the methodology of doing mathematics that includes the use of computations for:

1. Gaining insight and intuition.

2. Discovering new patterns and relationships.

3. Using graphical displays to suggest underlying mathematical principles.

4. Testing and especially falsifying conjectures.

5. Exploring a possible result to see if it is worth formal proof.

6. Suggesting approaches for formal proof.

7. Replacing lengthy hand derivations with computer-based derivations.

8. Confirming analytically derived results.

Thus,  experimental  mathematics  refers  to  an  approach  of  studying  mathematics  where  a  field  can  be  effectively  studied  using
advanced  computing  technology  such  as  computer  algebra  systems.   This  approach  developed  and  grown  so  quickly  as  the
present.   Number  crunching  is  what  computers  do  best;  therefore,  any  field  that  requires  significant  computation  or  symbolic
manipulation  has  or  will  be  touched by  experimental  mathematics.   However,  it  has  not  always  been  this  way,  as  observed by
Borwein and Bailey in [BB]:

One  of  the  greatest  ironies  of  the  information  technology  revolution  is  that  while  the  computer  was
conceived and born in the field of pure mathematics, through the genius of the giants such as John von
Neumann and Alan Turing, until recently this marvelous technology had only a minor impact within the
field that gave it birth.

Aims of This Book

This book provides an introduction to elementary techniques for analyzing integer sequences and extracting patterns from them.
The well-trained student of mathematics will be able to recognize many of the number patterns appearing in this book.  Yet the
author hopes that the wide variety of number patterns will bring a certain amount of joy to all readers regardless of their mathemat-
ical backgrounds.  However, to truly appreciate the full range of techniques discussed in this book, the reader should have a basic
understanding of algorithms and some experience with computer programming and computer algebra systems.

The best way to teach an experimental approach to mathematics is by way of examples; thus, the reader will find this book to be
full of them.  In fact, examples, exercises, and projects form the core material for this book, which was written to be a resource
for  high  school  teachers  and college  professors  who teach discrete  math  courses,  general  education  math  courses,  or  any  math
course where integer sequences make an appearance.

The paper edition of this book is intended for those who prefer to cozy up under a blanket on a cold winter night and read it at
their own leisure.  However, the author hopes that this edition will  then pique your interest in browsing through the interactive
Mathematica  edition,  which  contains  code  for  all  of  the  Mathematica  subroutines  used  to  generate  the  data  sets  and  integer
sequences  discussed  in  this  book,  so  that  you  may  experiment  and  conjure  up  your  own  number  patterns.   Regardless  of  the
edition, what’s important is to follow Paul Halmo’s famous battle cry in his ‘automathography’ (a mathematical autobiography), I
Want to be a Mathematician (see [Ha]):

Don't  just  read  it;  fight  it!  Ask  your  own  questions,  look  for  your  own  examples,  discover  your  own
proofs.  Is  the hypothesis  necessary? Is  the converse true? What  happens in  the classical  special  case?
What about the degenerate cases? Where does the proof use the hypothesis?

Now  that  we’ve  described  what  this  book  is  about,  let  us  say  a  few  words  about  what  it  is  not  about  (of  course  this  can  be
deduced mathematically by taking the complement of what we’ve already mentioned, but to avoid claims of false advertisement,
it’s best to be redundant).  First of all, this book is not intended for the expert mathematician looking to learn the most advanced
techniques  for  analyzing  integer  sequences.    On  the  contrary,  this  book  discusses  only  elementary  techniques  and  does  not
address those such as the partial sums least squares (PSLQ) algorithm (a generalization of Euclid’s algorithm useful for confirm-
ing  whether  a  given  numerical  value  expressed  with  high  precision  is  a  rational  linear  combination  of  known  mathematical
constants) or the Wilf-Zeilberger algorithm (a method for finding closed formulas of hypergeometric sums).  Moreover, statistical
and  data  mining  techniques  will  not  be  found  in  this  book,  although  in  the  last  chapter  we  discuss  a  data  mining  approach  to
discovering new mathematical identities by perfoming a computer-automated analysis of integer sequences.

Mathematics by Experiment
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Now  that  we’ve  described  what  this  book  is  about,  let  us  say  a  few  words  about  what  it  is  not  about  (of  course  this  can  be
deduced mathematically by taking the complement of what we’ve already mentioned, but to avoid claims of false advertisement,
it’s best to be redundant).  First of all, this book is not intended for the expert mathematician looking to learn the most advanced
techniques  for  analyzing  integer  sequences.    On  the  contrary,  this  book  discusses  only  elementary  techniques  and  does  not
address those such as the partial sums least squares (PSLQ) algorithm (a generalization of Euclid’s algorithm useful for confirm-
ing  whether  a  given  numerical  value  expressed  with  high  precision  is  a  rational  linear  combination  of  known  mathematical
constants) or the Wilf-Zeilberger algorithm (a method for finding closed formulas of hypergeometric sums).  Moreover, statistical
and  data  mining  techniques  will  not  be  found  in  this  book,  although  in  the  last  chapter  we  discuss  a  data  mining  approach  to
discovering new mathematical identities by perfoming a computer-automated analysis of integer sequences.

DISCLAIMER: this book is certainly not intended to be an exhaustive collection of integer sequences comparable to the Encyclo-
pedia  of  Integer  Sequences  ([]).   The  online  version,  OEIS,  is  an  extremely  useful  database  for  identifying  whether  a  given
sequence  has  already  been  studied  and  to  provide  formulas  for  generating  it  and  references  to  known  results.   However,  the
author believes that the next step to improving OEIS is to categorize all known number patterns involving an integer sequence, or
more systematically, to develop tools and techniques for generating them automatically, without sending the user on a literature
hunt  for  them.   For  example,  given  the  Fibonacci  sequence  8Fn< = 80, 1, 1, 2, 3, 5, 8, 13, ...<,  it  would  be  useful  to  not  only

identify it  as such and provide formulas,  either as a recurrence Fn+1 = Fn + Fn-1  or  explicitly as Fn =
J1+ 5 Nn

-J1- 5 Nn

2n 5
 (Binet’s

formula),  but  also  to  automatically  generate  other  related  identities,  such  as  Úk=0
n Fk = Fn+2 - 1,  Úm=1

n Fk
2

= Fn Fn+1,  and

Ln = Fn + 2 Fn-1,  where  8Ln<  is  the  Lucas  sequence,  a  cousin  of  the  Fibonacci  sequence  that  satisfies  the  same  recurrence  but
begins with the values L0 = 2 and L1 = 1.  What is needed then is a study of certain relations common to many integer sequences
and program them for detection.

Thus, the last chapter in this book represents an attempt towards this next step, namely to employ a CAS such as Mathematica to
automatically  generate  formulas  and identities  from a given set  of  integer  sequences  and to  employ databases  such as  OEIS to
recognize them.   We believe the perfect technological storm has arrived to achieve through a convergence of powerful comput-
ers, large online databases, and sophisticated computer algebra systems.  These advances will allow us to leapfrog from merely
identifying a single integer sequence to data mining an entire database of integer sequences to reveal all the number patterns and
mathematical identities that lie inside it.  
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Mathematica Notes

This book was completely typeset using Mathematica 8.0, including all the computations and data that appear in it.  Why choose
Mathematica  instead  of  other  computer  algebra  systems  (CAS)  that  are  available,  such  as  Maple,  Matlab,  and  Sage?   In  the
author’s opinion all CAS are essentially comparable in terms of features and their library of mathematical functions.  Each has its
advantages and disadvantages, a debate that the author will not touch on, but refer the reader to Internet discussion boards. The
author has chosen Mathematica  primarily because it is the CAS of choice at his institution and one that he is most comfortable
with, having used it for the last fifteen years.  Most of the examples presented in this textbook can be easily ported over to other
CAS.  The point of this book is to demonstrate that modern computer algebra systems such as Mathematica are powerful experi-
mental tools for investigating number patterns of integer sequences.
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This book was completely typeset using Mathematica 8.0, including all the computations and data that appear in it.  Why choose
Mathematica  instead  of  other  computer  algebra  systems  (CAS)  that  are  available,  such  as  Maple,  Matlab,  and  Sage?   In  the
author’s opinion all CAS are essentially comparable in terms of features and their library of mathematical functions.  Each has its
advantages and disadvantages, a debate that the author will not touch on, but refer the reader to Internet discussion boards. The
author has chosen Mathematica  primarily because it is the CAS of choice at his institution and one that he is most comfortable
with, having used it for the last fifteen years.  Most of the examples presented in this textbook can be easily ported over to other
CAS.  The point of this book is to demonstrate that modern computer algebra systems such as Mathematica are powerful experi-
mental tools for investigating number patterns of integer sequences.

There are two types of Mathematica commands that the reader should be aware of:

 Built-In Commands: These commands are built into Mathematica.   Some commands require that the add-on Mathematica

package Combinatorica be loaded.  This is automatically done when one loads the Mathematica package MathematicsbyExperi-
ment.m created solely for this book, which can also be downloaded from the book’s website at:

http://www.rowan.edu/colleges/las/departments/math/facultystaff/nguyen/experimentalmath/index.html

It is recommended that you save this file to the same location as the Mathematica notebook containing the online edition of this
book.  Then choose ‘Yes’ to evaluate all initialization cells when you first evaluate an input cell in this notebook.

 In-House Commands: These commands were programmed by the author.  Code for these commands (written as Mathemat-

ica  modules)  are  contained in  the  same Mathematica  package,  MathematicsbyExperiment.m.    Follow the same instructions  as
above.

Mathematics by Experiment
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1
The Joy of Number Patterns

Euler's work reminds us of what we should strive for in the teaching of our students and ourselves--to observe, to 
experiment, to search for patterns, and above all, to rejoice not just in the final rigor, but in that wondrous process of 
discovery that must always precede it.

Robert M. Young, Excursions in Calculus, 1992.

1.1 What's the Pattern?

What person isn't fascinated by patterns in nature?  The joy of recognizing patterns begins at an early age when as toddlers we
first  learn  to  recognize  patterns  in  music,  words,  and  of  course  numbers.   Of  course  there  many  different  types  of  patterns;
however, this book celebrates the joy of discovering number patterns of integer sequences.  All of us at some point have played
the game where we were shown a collection of numbers and asked "What's the pattern?"  If not, then this book is your opportu-
nity to play with number patterns and of course learn some fascinating mathematics along the way.  Here's a quickie: 0, 1, 1, 2, 3,
5, 8, 13.  What's the pattern?  What's the next number in the sequence?

A more fundamental question than "What's the pattern?" is "What is a pattern?".  Niles Eldredge, the world reknown paleontolo-
gist and expert on evolutionary theory, posed the following metaphysical question in the his book, The Pattern of Evolution ([El]):

Do patterns just ‘exist’ in nature and simply force themselves on our consciousness?  Or is it true that
we have to learn to see--to become receptive to the pattern before we can even notice it, much less make
some sense of it?  If we have to learn, what sort of factors enter into the process? 

Regarding  number  patterns,  the  answer  to  Eldredge’s  question  is  clear.   Most  scientists  have  a  platonic  view  of  mathematics;
thus, they believe that number patterns exist regardless of perception.  This issue is not important for us.  More important is the
fact that we humans have the ability to detect number patterns at all, and history seems to suggest that our ability to so is limitless.
For example,  there have been mathematicians in the past  who have shown the uncanny ability to recognize some deep number
patterns.  Of course, the computer has become a powerful tool to help us detect patterns.  This book aims to share with the reader
some of the basic tools and techniques available to analyze data and search for number patterns within integer sequences.  It takes
a slightly more serious approach to number patterns than brainteaser books intended for the general  reader,  but  yet  encourages
playfulness and curiosity in hopes that the reader will delve through its pages and explore some of the patterns on his or her own.

1.1.1 Patterns Within Patterns
There  is  much  more  joy  to  be  found  beyond  merely  recognizing  a  number  pattern.   The  story  become  much  more  fascinating
when we learn about  how each pattern arises  (especially  from multiple  contexts),  how each pattern may contain  other  patterns
within it, and the clues by which these patterns reveal themselves to us.  Number patterns take on different forms depending on
the mathematical objects involved.  In this book we primarily deal with integer sequences.  Thus, we explore number patterns that
can  be  described  by  algebraic  formulas,  recurrences,  and  identities.    This  book  aims  to  tell  the  interesting  story  behind  some
fascinating patterns of integer sequences, many well known and some not so well known, and to reveal insights that will help us
lead to their detection.
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There  is  much  more  joy  to  be  found  beyond  merely  recognizing  a  number  pattern.   The  story  become  much  more  fascinating
when we learn about  how each pattern arises  (especially  from multiple  contexts),  how each pattern may contain  other  patterns
within it, and the clues by which these patterns reveal themselves to us.  Number patterns take on different forms depending on
the mathematical objects involved.  In this book we primarily deal with integer sequences.  Thus, we explore number patterns that
can  be  described  by  algebraic  formulas,  recurrences,  and  identities.    This  book  aims  to  tell  the  interesting  story  behind  some
fascinating patterns of integer sequences, many well known and some not so well known, and to reveal insights that will help us
lead to their detection.

1.1.2 Computer Exploration
Computers have become so powerful that they can solve a wide range of problems involving intensive or high-precision computa-
tion.   Of course the solutions obtained by computers  in  many cases  are  not  rigorous and demonstrate  only existence.   Proof  of
uniqueness  may  then  require  human  intervention.   Also,  some  will  argue  that  computer  solutions  yield  little  insight  into  the
problem, especially if they were obtained by brute force methods.  This is a valid point; however, computer solutions should not
be viewed as the end-game of a problem, but the beginning.  In fact, they can provide clues to help us gain insight, something that
the author hopes to forcefully demonstrate through the plethora of examples in this book. 

1.2 The Scientific Method (for Mathematicians)

God forbid that Truth should be confined to Mathematical Demonstration!

Blake
Notes on Reynold's Discourses, c. 1808.

Mathematics  plays  an  important  role  in  the  sciences,  a  notion  that  has  been  firmly  established  since  the  Scientific  Revolution.
Much  has  been  written  about  the  impact  of  mathematics  on  the  sciences.   However,  the  reverse  impact  has  received  far  less
attention.   One aspect  that  the  author  believes  where modern science can help  mathematics  is  through the  former’s  most  basic
creed, the Scientific Method.  Ask a random sample of well educated people to explain the Scientific Method as it was taught to
them school and some might remember it correctly as a systematic approach to performing scientific research.  Then ask the same
group  if  they  recall  such  a  method  for  mathematics.   Most  likely  there  will  be  little  or  no  response.   This  is  because  no  such
method is taught let alone emphasized throughout their childhood instruction of mathematics.  Why is it that scientific experimen-
tation is systemically taught to children in schools at  an early age while mathematical experimentation is largely ignored?  The
instinct  for  mathematical  exploration  remains  undeveloped  and  fails  to  see  light  in  many  children's  minds  even  as  they  reach
adulthood.

1.2.1 The Scientific Method
The Scientific Method outlines a systematic set of principles for investigating physical phenomena through experimentation:

1. Observation

2. Hypothesis - Questions are posed of the observations which lead to a hypothesis for explaining the observation.

3. Testing - A controlled experiment is conducted to test the hypothesis.

The flow chart below demonstrates how one typically follows the Scientific Method:

Mathematics by Experiment 
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Make

Observation

Formulate

Hypothesis

Conduct

Experiment

Accept

Hypothesis

Reject

Hypothesis

Try Again

Scientific Method

1.2.2 The Mathematical Method
Mathematics  should  promulgate  its  own  "scientific"  method,  which  by  analogy  we  shall  refer  to  as  the  Mathematical  Method.
Unfortunately,  it  is  less well  known and rarely emphasized in education in comparison to the Scientific Method.  Based on the
Lakatos viewpoint [Ref], the Mathematical Method is similar to the Scientific Method except that it replaces testing with proof:

1. Observation

2. Conjecture

3. Proof

Here is the corresponding flow chart:

Make

Observation

Formulate

Conjecture

Prove

Conjecture

Proof

Found

Counter-Example

Found

Try Again

Mathematical Method

The emphasis on rigorous proof is what sets mathematics apart from the sciences, the gold standard by which every theorem is
measured by.  While mathematical proof has received much attention in undergraduate education, mathematical experimentation
has been largely ignored in all mathematics courses.  Math instructors spend little time on the discovery aspects of the material
that  they  teach;  most  of  their  time  is  spent  on  proof  demonstrations.   While  the  author  strongly  believes  in  the  importance  of
proof, he also believes in the power of discovery to motivate students.

Chapter 1
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The emphasis on rigorous proof is what sets mathematics apart from the sciences, the gold standard by which every theorem is
measured by.  While mathematical proof has received much attention in undergraduate education, mathematical experimentation
has been largely ignored in all mathematics courses.  Math instructors spend little time on the discovery aspects of the material
that  they  teach;  most  of  their  time  is  spent  on  proof  demonstrations.   While  the  author  strongly  believes  in  the  importance  of
proof, he also believes in the power of discovery to motivate students.

1.2.3 The Process of Mathematical Discovery
The stereotype is that only professional mathematicians are in a position to discover new mathematical results.  In fact, we argue
that in this day and age it is easier for students to make discoveries in mathematics than it is in the sciences.  New discoveries in
fields  such  as  physics,  chemistry  and  biology  today  require  either  advanced  scientific  knowledge,  large  collaborations  and/or
large budgets.  On the other hand, an undergraduate student can make discoveries in certain branches of mathematics by merely
using a personal computer equipped with a computer algebra system.

This book aims to help shift the discussion more on the process of mathematical discovery and address the question: how should
mathematical  students  go about  making observations and asking the  right  questions  to  formulate  a  conjecture?  Of  course,  this
book focuses only on those areas of mathematics that are currently amenable to computation and experimentation.

In their paper [MT], C. L. Mallows and J. W. Tukey describe how success in exploratory investigation is crucially dependent on:

i) a willingness to collect and study the data,

ii) use of diagnostic techniques to show the unexpected,

iii) an ability to recognize striking patterns,

iv) enough understanding of the context of the problem to enable these patterns to be recognized as potentially meaningful,

v) avoidance of precipitate committment to models of clearly inadequate complexity, and

vi) energetic follow up of the clues obtained

These aspects demonstrate that the computer alone is not enough to solve problems; human intuition and insight still play a vital
role in sucessfully leading the mathematical explorer on the path to discovery.

The real danger is not that computers will begin to think like men, but that men will begin to think like computers.

Harris, Sydney J. (In H. Eves, Return to Mathematical Circles, Boston: Prindle, Weber and Schmidt, 1988)

1.3 The Great Bookkeepers

Like a good bookkeeper, the mathematician should make a serious effort to record his data in painstaking detail and to organize
his data in such a manner that allows a pattern to be easily revealed through careful observation.  Some of the greatest mathemati-
cians have been excellent bookkeepers such as John Wallis, Isaac Newton and Carl Friedrich Gauss.  A fine example of Gauss’
outstanding  bookkeeping  is  his  calculation  of  the  frequency  of  primes  among  the  first  50,000  positive  integers  in  intervals  of
1000, which lead to his discovery of the Prime Number Theorem.   In his article A History of the Prime Number Theorem, L. J.
Goldstein describes Gauss’ achievement (see [Go]):

Gauss’  calculations  are  awesome  to  contemplate,  since  they  were  done  long  before  the  days  of  high-
speed computers.  Gauss’ persistence is most impressive...  Modern students of mathematics should take
note of the great care with which data was compiled by such giants as Gauss. Conjectures in those days
were rarely idle guesses. They were usually supported by piles of laboriously gathered evidence. 

However,  the  greatest  bookkeeper  of  them all  must  undoubtedly  be  Leonard  Euler.   In  his  textbook  Induction  and  Analogy  in
Mathematics, George Polya describes Euler regarding his nature into making mathematical discoveries (see [Ref]):

A master of inductive research in mathematics, he made important discoveries (on infinite series, in the
Theory of Numbers, and in other branches of mathematics) by induction, that is, by observation, daring
guess,  and  shrewd  verification.   In  this  respect,  however,  Euler  is  not  unique;  other  mathematicians,
great and small, used induction extensively in their work.
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A master of inductive research in mathematics, he made important discoveries (on infinite series, in the
Theory of Numbers, and in other branches of mathematics) by induction, that is, by observation, daring
guess,  and  shrewd  verification.   In  this  respect,  however,  Euler  is  not  unique;  other  mathematicians,
great and small, used induction extensively in their work.

Yet  Euler  seems  to  me  almost  unique  in  one  aspect:  he  takes  pains  to  present  the  relevant
inductive  evidence  carefully,  in  detail,  in  good  order.   He  presents  it  convincingly  but  honestly,  as  a
genuine scientist should do.  He presentation is "the candid exposition" of the ideas that led him to those
discoveries" and has a distinctive charm.  Naturally enough, as any other author, he tries to impress his
readers,  but,  as  a  really  good  author,  he  tries  to  impress  his  readers  only  by  such  things  as  have
genuinely impressed himself.

In other words Euler had talent for good bookkeeping.  His discovery of the recurrence for the sum of divisors functions and its
connection to the Pentagonal Number Theorem is a classic example of first-rate bookkeeping.  

In addition to good bookkeeping, the ability (or patience) to compute mathematical values to great accuracy is another trademark
of great mathematicians.  Their computations were amazingly done by hand with mere pencil and paper.  Of course these tools
have been replaced by modern calculators and computers, which has allowed even students to compute values quickly and with
extremely high precision.

Each chapter in this book ends with a mathematical story of a great bookkeeper, including the four mentioned above.  The author
hopes  that  the  reader  will  enjoy  these  stories,  revel  in  their  achievements,  and  be  inspired  as  the  author  was  to  explore  the
mathematical jungle of integer sequences.
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Leonard Euler: Sum of Divisors and the Pentagonal Number Theorem

Leonard Euler H1707 - 1783L

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html

Leonard Euler is one of the greatest mathematicians of all time and certainly the most prolific.  His works span over 50 years and
are  accessible  online  at  the  Euler  Archive  (http://www.math.dartmouth.edu/~euler/).    Among  his  many  achievements,  Euler’s
application of the Pentagonal number theorem to the divisor function stands out as a mathematical gem, which he recounts in his
paper  Discovery  of  a  most  extraordinary  law of  the  numbers  concerning the  sum of  their  divisors,  written  in  French and pub-
lished in 1751 (see [Eu]).  We retell the story based on Young’s treatment in [Yo], which includes excerpts of Polya’s translation
of Euler’s paper into English (see [Po]).

First  studied  by  Euler,  the  sum  of  divisors  (or  sigma)  function  is  one  of  the  most  interesting  mathematical  objects  in  number
theory.  Define ΣHnL to be sum of the divisors of n, i.e., ΣHnL = Úd n

� d.  For example, ΣH12L = 1 + 2 + 3 + 4 + 6 + 12 = 28.  Here is

a table listing values for Σ HnL for n = 1, ..., 100:

Sum of Divisors ΣHnL
n ΣHnL
1 1
2 3
3 4
4 7
5 6
6 12
7 8
8 15
9 13
10 18

n ΣHnL
11 12
12 28
13 14
14 24
15 24
16 31
17 18
18 39
19 20
20 42

n ΣHnL
21 32
22 36
23 24
24 60
25 31
26 42
27 40
28 56
29 30
30 72

n ΣHnL
31 32
32 63
33 48
34 54
35 48
36 91
37 38
38 60
39 56
40 90

n ΣHnL
41 42
42 96
43 44
44 84
45 78
46 72
47 48
48 124
49 57
50 93

The tables above show no obvious pattern for the values of ΣHnL,  even for n  prime, and leads Euler to give the following bleak
diagnosis:

If we examine a little the sequence of these numbers, we are almost driven to despair.  We cannot hope to
discover  the  least  order.   The  irregularity  of  the  primes  is  so  deeply  involved  in  it  that  we  must  think  it
impossible  to  disentangle  any  law  governing  this  sequence,  unless  we  know  the  sequence  of  the  primes
itself.   It  could  appear  even  that  the  sequence  before  us  is  still  more  mysterious  than  the  sequence  of  the
primes.

However, after such dire words, Euler, like a mathemagician, reveals that he has cracked the code to the sigma function:

Nevertheless,  I  observed  that  this  sequence  is  subject  to  a  completely  definite  law  and  could  even  be
regarded as  a  recurring sequence.   This  mathematical  expression means  that  each term can be  computed
from the foregoing terms, according to an invariable rule.

To  imitate  Euler’s  discovery,  we  begin  by  exploring  recursive  patterns  between  consecutive  elements  ΣHnL,  ΣHn - 1L,  and
ΣHn - 2L:
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n ΣHnL ΣHn-1L ΣHn-2L
1 1 -- --

2 3 1 --

3 4 3 1
4 7 4 3
5 6 7 4
6 12 6 7
7 8 12 6
8 15 8 12
9 13 15 8
10 18 13 15

Immediately, we see the following sum relations:

ΣH3L = 4 = 3 + 1 = ΣH2L + ΣH1L
ΣH4L = 7 = 4 + 3 = ΣH3L + ΣH2L

Unfortunately, this pattern fails to hold for ΣH5L through ΣH10L.  When a pattern fails, it’s useful to determine the way in which it
failed in hopes of adapting the pattern as Euler did.  In this case we find that

ΣH5L = 6 = 7 + 4 - 5 = ΣH4L + ΣH3L - 5

Does this new pattern hold for ΣH6L by subtracting ΣH5L + ΣH4L by 6?  Unfortunately, no.  However, what we find is that

ΣH6L = 12 = 6 + 7 - 1 = ΣH5L + ΣH4L - ΣH1L
where we have interpreted the subtraction of 1 as subtraction by ΣH1L.
What about ΣH7L?  In this case we observe that

ΣH7L = 8 = 12 + 6 - 10 = ΣH6L + ΣH5L - 10

How  can  we  interpret  the  subtraction  by  10?   It  doesn't  seem  to  follow  either  of  the  previous  patterns  of  subtraction  by  7  or
subtraction by ΣH2L = 3?  Aha!  What about subtraction by both terms:

ΣH7L = 8 = 12 + 6 - 3 - 7 = ΣH6L + ΣH5L - ΣH2L - 7

Examining further values, we discover that

ΣH8L = 15 = 8 + 12 - 4 - 1 = ΣH7L + ΣH6L - ΣH3L - ΣH1L
ΣH9L = 13 = 15 + 8 - 7 - 3 = ΣH8L + ΣH7L - ΣH4L - ΣH2L
ΣH10L = 18 = 13 + 15 - 6 - 4 = ΣH9L + ΣH8L - ΣH5L - ΣH3L

We now seem to be on to something, but in order to confirm this emerging pattern we should experiment on a larger data set that
includes more columns of previous values of Σ: 

n ΣHnL ΣHn-1L ΣHn-2L ΣHn-5L ΣHn-7L
10 18 13 15 6 4
11 12 18 13 12 7
12 28 12 18 8 6
13 14 28 12 15 12
14 24 14 28 13 8
15 24 24 14 18 15

Further  experimentation  shows  that  the  sigma  function  obeys  a  remarkable  recurrence,  which  can  be  inferred  from  the  table
below:

Mathematics by Experiment 

8



ΣH1L = 1

ΣH2L = ΣH1L + 2

ΣH3L = ΣH2L + ΣH1L = 3 + 1 = 4

ΣH4L = ΣH3L + ΣH2L = 4 + 3 = 7

ΣH5L = ΣH4L + ΣH3L - 5 = 7 + 4 - 5 = 6

ΣH6L = ΣH5L + ΣH4L - ΣH1L = 6 + 7 - 1 = 12

ΣH7L = ΣH6L + ΣH5L - ΣH2L - 7 = 12 + 6 - 3 - 7 = 8

ΣH8L = ΣH7L + ΣH6L - ΣH3L - ΣH1L = 8 + 12 - 4 - 1 = 15

ΣH9L = ΣH8L + ΣH7L - ΣH4L - ΣH2L = 15 + 8 - 7 - 3 = 13

ΣH10L = ΣH9L + ΣH8L - ΣH5L - ΣH3L = 13 + 15 - 6 - 4 = 18

ΣH11L = ΣH10L + ΣH9L - ΣH6L - ΣH4L = 18 + 13 - 12 - 7 = 12

ΣH12L = ΣH11L + ΣH10L - ΣH7L - ΣH5L + 12 = 12 + 18 - 8 - 6 + 12 = 28

ΣH13L = ΣH12L + ΣH11L - ΣH8L - ΣH6L + ΣH1L = 28 + 12 - 15 - 12 + 1 = 14

ΣH14L = ΣH13L + ΣH12L - ΣH9L - ΣH7L + ΣH2L = 14 + 28 - 13 - 8 + 3 = 24

ΣH15L = ΣH14L + ΣH13L - ΣH10L - ΣH8L + ΣH3L + 15 = 24 + 14 - 18 - 15 + 4 + 15

Euler actually writes out additional examples, in fact up to ΣH20), and comments “I think these examples are sufficient to discour-
age anyone from imagining that it is by mere chance that my rule is in agreement with the truth”.  So what is the rule that Euler is
referring to here?  Clearly it involves the sequence of values {1,2,5,7,12,15,...}.  In fact, this sequence complete determines the
recurrence pattern for computing ΣHnL as follows:

1. ΣHnL equals the sum of the previous terms ΣHn - 1L, ΣHn - 2L, ΣHn - 5L, ΣHn - 7L, etc., whose signs alternate every second term.

2. If n equals one of the values {1,2,5,7,12,15,...}, then this value is also added to (or subtracted from) ΣHnL according to the same
sign convention.

Is  there  a  pattern  to  the  sequence  {1,2,5,7,12,15,...}?   As  Euler  observes,  this  sequence  is  "a  mixture  of  two sequences  with  a
regular law", namely, the odd terms 1, 5, 12, ..., are in fact pentagonal numbers (discussed in Chapter 3) and follow the formula
nH3 n - 1L �2, whereas the even terms 2, 7, 15, ...,  follow the formula nH3 n + 1L �2 (Euler had written down such formulas in an
earlier work).  Together, both the odd and even terms form the generalized pentagonal numbers:

(1.1)pHnL = : nH3 n - 1L �2, if n is odd
nH3 n + 1L �2, if n is even

The following is Euler’s remarkable explanation on how he recognized the divisor sequence:

I confess that I did not hit on this discovery by mere chance, but another proposition opened the path to this
beautiful property...In considering the partition of numbers, I examined, a long time ago, the expression

H1 - xL I1 - x2M I1 - x3M I1 - x4M I1 - x5M I1 - x6M I1 - x7M I1 - x8M × × ×

in which the product is assumed to be infinite.   In order to see what kind of series will  result,  I  multiplied
actually a great number of factors and found

1 - x - x2
+ x5

+ x7
- x12

- x15
+ x22

+ x26
- x35

- x40
× × ×

The exponents of x are the same which enter into the above formulas; also the signs + and - arise twice in
succession.

This result known as the Pentagonal Number Theorem.  Thus, not only did Euler discover a wonderful pattern involving the sum
of divisors function, but made a profound connection with a generating function for the generalized pentagonal numbers defined
pHnL:
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This result known as the Pentagonal Number Theorem.  Thus, not only did Euler discover a wonderful pattern involving the sum
of divisors function, but made a profound connection with a generating function for the generalized pentagonal numbers defined
pHnL:

Theorem (Sum of Divisors): Let n be a positive integer and p(K) be the largest generalized pentagonal number less than n.  
Then Σ(n) satisfies the recurrence

(1.2)ΣHnL = â
k=1

K H-1LdHk-1L�2D
ΣHn - pHkLL + dHnL

where dHnL = : H-1LdHN-1L�2D n, if n = pHNL
0, otherwise

.

What a remarkable discovery!
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2
Exploring Patterns of Integer Sequences

If mathematics describes an objective world just like physics, there is no reason why inductive methods should not be 
applied in mathematics just the same as in physics.

Kurt Godel, Some Basic Theorems on the Foundations, 1951

The Fibonacci sequence 8Fn< = 80, 1, 1, 2, 3, 5, 8, 13, ...< is one of the most recognized integer sequences in the world (recorded
as  entry  A000045  in  the  Online  Encyclopedia  of  Integer  Sequences  (OEIS)).   It  is  named  after  Fibonacci  (also  known  as
Leonardo of Pisa), who first wrote on such numbers in his most famous work, the Liber Abaci (Book of Calculations), published
in 1202 AD.  However, there is evidence that indicates Fibonacci numbers were studied as early as 700 AD by Indian mathemati-
cians   (see  [Fi]).   It  is  the  only  sequence  to  sport  its  own  publication,  the  48-year  old  journal  The  Fibonacci  Quarterly
(http://www.fq.math.ca/), which publishes mathematical results having connections to the Fibonacci sequence.

The Fibonacci  sequence appears  in  the  Liber  Abaci  [Fi]  as  a  solution to  a  counting problem involving a  population of  rabbits:
How Many Pairs of Rabbits Are Created by One Pair in One Year.

A certain man had one pair  of  rabbits  in a certain enclosed place,  and one wishes to know how many
are created from the  pair  in  one year  when it  is  the  nature  of  them in  a  single  month to  bear  another
pair, and in the second month those born to bear also. Because the abovewritten pair in the first month
bore, you will double it; there will be two pairs in one month. One of these, namely the first, bears in the
second month, and thus there are in the second month 3 pairs; of these in one month two are pregnant,
and in the third month 2 pairs of rabbits are born, and thus there are 5 pairs in the month; in this month
3 pairs are pregnant, and in the fourth month there are 8 pairs, of which 5 pairs bear another 5 pairs;
these  are  added  to  the  8  pairs  making  13  pairs  in  the  fifth  month;  those  5  pairs  that  are  born  in  this
month do not mate in this month, but another 8 pairs are pregnant, and thus there are in the sixth month
21 pairs; to these are added 13 pairs that are born in the seventh month; there will be 34 pairs in this
month;...there  will  be  377  pairs,  and  this  many  pairs  are  produced  from  the  abovewritten  pair  in  the
mentioned place at the end of one year.

You can see in the margin [see below]  how we operated, namely that we added the first number to the
second, namely the 1 to the 2, and the second to the third, and the third to the fourth, and the fourth to
the fifth, and thus one after another until we added the tenth to the eleventh, namely the 144 to the 233,
and  we  had  the  abovewritten  sum  of  rabbits,  namely  377,  and  thus  you  can  in  order  to  find  it  for  an
unending number of months.

beginning 1
first 2
second 3
third 5
fourth 8
fifth 13
sixth 21
seventh 34
eighth 55
ninth 89
tenth 144
eleventh 233
end 377
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beginning 1
first 2
second 3
third 5
fourth 8
fifth 13
sixth 21
seventh 34
eighth 55
ninth 89
tenth 144
eleventh 233
end 377

Thus, Fibonacci recognized the simple recurrence pattern, Fn+1 = Fn + Fn-1,  that governs these numbers.  And yet from simple
recurrence,  thousands  of  number  patterns,  formulas  and  identities  involving  the  Fibonacci  sequence  have  been  discovered,
including the well-known identity discovered by Cassini, 

(2.1)Fn-1 Fn+1 - Fn
2

= H-1Ln

and the remarkable Millin series,

(2.2)â
n=0

¥ 1

F2 n

=

7 - 5

2

Even to this day, the Fibonacci sequence continues to fascinate mathematicians and be a fruitful subject of investigation.

So how doe  one  join  the  hunt  to  experimentally  discover  patterns  of  integer  sequences  such as  the  Fibonacci  sequence?   As  a
start, given a sequence 8an<, one should generate enough data, say be calculating a sufficient number of terms of the sequence, to
allow  a  number  pattern  to  emerge.   If  necessary,  massage  the  data  and  systematically  present  it  in  such  a  way  that  either  an
explicit  formula,  recurrence,  or  algorithm  becomes  evident.   Additional  patterns  can  then  be  obtained  by  considering  subse-
quences and transformations of 8an<.  It is the myriad of such transformations and the creative techniques for exttracting patterns
that will make our exploration interesting.  

Thus, this book discusses methods and tools used to transform integer sequences and analyze them in order to obtain interesting
formulas,  identities  and  connections  to  other  sequences.The  following  algorithm  describes  the  approach  that  we  shall  take  to
explore integer sequences:
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Generate

Sequence

Generate

Subsequence

Apply

Transformation

Analyze

Sequence

Pattern

Found

No Pattern

Found

Number Pattern

Search Algorithm

We demonstrate this with the Fibonacci sequence 8Fn<:
1. Generate Sequence: We generate by computer the first, say, 10 terms of the Fibonacci sequence using its recurrence:

ColumnDisplay@n, Fibonacci@nD, 0, 9, 10, "n", "Fn", ""D

n Fn

0 0
1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34

2.  Generate  Subsequence  and/or  Apply  Transformation:  We  apply  the  partial  sums  transformation  to  8Fn<  to  obtain  a  new
sequence 8Sn< defined by

(2.3)Sn = â
k=0

n

Fk

Thus, S0 = 0, S1 = 0 + 1 = 1, S2 = 0 + 1 + 1 = 2, S3 = 0 + 1 + 1 + 2 = 4, etc. (A000071)

3.   Analyze  Transformed  Sequence:  We  analyze  8Sn<  for  patterns.   Since  8Sn<  can  be  considered  an  offspring  of  the  parent
sequence 8Fn<,  it is natural to make a comparison between the two:
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nMax = 9;

dataFibonaccinumbersandpartialsums =

Table@8n, Fibonacci@nD, Sum@Fibonacci@kD, 8k, 0, n<D<, 8n, 0, nMax<D;

ColumnDataDisplayBdataFibonaccinumbersandpartialsums,

10, :"n", "Fn", "Sn=â
k=0

n

Fn">, ""F

n Fn Sn=Úk=0
n Fn

0 0 0
1 1 1
2 1 2
3 2 4
4 3 7
5 5 12
6 8 20
7 13 33
8 21 54
9 34 88

Unfortunately, the two columns 8Fn< and 8Sn< do not appear to be correlated if we make a direct comparison between the values
in  each  row.   However,  if  we  realign  these  two  rows  by  shifting  8Fn<  up  by  two  rows,  i.e.  replacing  8Fn<  with  8Fn+2<,  then  a
pattern emerges.  Can you describe it?

nMax = 9;

dataFibonaccinumbersandpartialsums =

Table@8n, Fibonacci@n + 2D, Sum@Fibonacci@kD, 8k, 0, n<D<, 8n, 0, nMax<D;

ColumnDataDisplayBdataFibonaccinumbersandpartialsums,

10, :"n", "Fn+2", "Sn=â
k=0

n

Fn">, ""F

n Fn+2 Sn=Úk=0
n Fn

0 1 0
1 2 1
2 3 2
3 5 4
4 8 7
5 13 12
6 21 20
7 34 33
8 55 54
9 89 88

4. Pattern Found or No Pattern Found: In this case, a pattern was found: 8Fn+2< and 8Sn< differ by 1.  Thus, we’ve discovered
the classic identity

(2.4)â
k=0

n

Fk = Fn+2 - 1

Of course, we’ve only experimentally verified that this identity is true and only for a finite number of rows.  It remains to prove
(2.4) deductively, say by mathematical induction.  Those acquainted with techniques of proof should have no difficulty in proving
this  identity.  For  those  new  or  still  transitioning  to  mathematical  proofs  (see  Appendix  A  for  an  introduction  to  techniques  of
proof), below is a proof by mathematical induction.
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Of course, we’ve only experimentally verified that this identity is true and only for a finite number of rows.  It remains to prove
(2.4) deductively, say by mathematical induction.  Those acquainted with techniques of proof should have no difficulty in proving
this  identity.  For  those  new  or  still  transitioning  to  mathematical  proofs  (see  Appendix  A  for  an  introduction  to  techniques  of
proof), below is a proof by mathematical induction.

Proof  of (2.4): The base case n = 0 is clearly true:

â
k=0

0

Fk = F0 = 0

F0+2 - 1 = 1 - 1 = 0

As for the inductive step, assume that the n-th case holds.  Then merely add Fn+1  to both sides of (2.4) and apply the Fibonacci
recurrence Fn+3 = Fn+2 + Fn+1  to demonstrate that the Hn + 1L-th case is true:

â
k=0

n

Fk + Fn+1 = Fn+2 - 1 + Fn+1 Þ â
k=0

n+1

Fk = Fn+3 - 1

This completes the proof and guarantees that (2.4) holds for all n.

A word of caution is in order.  The example presented above involved a pattern that was relatively easy to detect.  However, not
all  patterns  will  be  this  easy.   Some  will  force  us  to  jump  through  many  hoops  and  hurdles  before  revealing  themselves.   Of
course, there will be integer sequences where no patterns exist at all (for now).  Fortunately, there are tools at our disposable to
increase our chances of success.

2.1 Tools of the Trade

Look for  the  obvious.   This  describes  the  best  approach to  discovering patterns.   Unfortunately,  the  difficulty  lies  in  making a
pattern obvious to the observer.  Thus, as in any skilled trade, having the right tools for the job is vital. 

The  toolkit  for  the  experimental  mathematician  has  grown  over  the  last  couple  of  decades  and  to  such  an  extent  that  it  has
become  quite  effective  at  solving  many  mathematical  problems.   New  technological  tools  have  significantly  altered  how  we
perform research in mathematics, tools that we believe will lead to a renaissance in experimental mathematics in the 21st century.

2.1.1 Computer Algebra Systems
Computer algebra systems (CAS) are software tools that perform symbolic and high-precision computation.  They are generally
more  advanced  than  scientific  calculators  in  terms  of  both  computing  power  and  graphics  generation,  although  this  boundary
continues  to  shift  as  personals  computers  and  hand-held  electronic  devices  converge  in  size.   Some  well  known  CAS  include
Mathematica,  Maple,  Matlab  and  Sage.   In  this  book,  we  limit  our  discussion  to  Mathematica,  the  CAS  created  by  Stephen
Wolfram.  However, this book can of course be used with most other CAS since they all possess an equivalent library of mathe-
matical functions. 

2.1.1.1 Mathematica

Mathematica  is  a  powerful  computer  algebra  system capable  of  symbolic  and  high-precision  computation.   Its  large  library  of
built-in  functions,  including many that  are  useful  for  performing numerical  experiments,  makes it  an indispensable  tool  for  the
experimental mathematician.

Below  we  give  a  brief  description  of  some  Mathematica  commands,  based  on  version  8.0,  that  will  be  useful  for  generating
sequence data and detecting their number patterns.  Information about a Mathematica command can be displayed by inserting a
question  mark  (?)  before  the  command  and  evaluating  it  as  input.   Complete  documentation  on  all  Mathematica  commands  is
available through the program’s help menu or online at:

http://reference.wolfram.com/mathematica/guide/Mathematica.html

Those with access to Mathematica will benefit from the Mathematica version of this book, which allows the user to evaluate all
of the Mathematica programs that appear in it.  Please download and run the Mathematica package MathematicsbyExperiment.m
to load those commands not built into Mathematica.  This package is available at http://www.rowan.edu/math/facultystaff/nguyen/-
experimentalmath/index.html.
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Those with access to Mathematica will benefit from the Mathematica version of this book, which allows the user to evaluate all
of the Mathematica programs that appear in it.  Please download and run the Mathematica package MathematicsbyExperiment.m
to load those commands not built into Mathematica.  This package is available at http://www.rowan.edu/math/facultystaff/nguyen/-
experimentalmath/index.html.

 FindInstance

? FindInstance

FindInstance@expr, varsD finds an instance of vars that makes the statement expr be True.

FindInstance@expr, vars, domD finds an instance over the

domain dom. Common choices of dom are Complexes, Reals, Integers and Booleans.

FindInstance@expr, vars, dom, nD finds n instances.  �

NOTE: FindInstance  is  not  the same command as  Solve;  the  former attempts  to  find particular  solutions to  a  set  of  equations
over a specified domain while the latter attempts to find the most general solution.

Example 2.1 - Pell’s Equation

Any Diophantine equation of the form x2
- n × y2

= 1, where n is not a perfect square, is called Pell’s equation.  These equations
were  originally  studied  by  ancient  Greek  and  Indian  mathematicians  who  recognized  their  usefulness  in  approximating  square
roots.  In this example we shall investigate positive integer solutions to the most elementary case, x2

- 2 y2
= 1.  

NOTE: If n = m2 is a perfect square, then x2
- n × y2

= 1 reduces to finding Pythagorean triples of the form H1, my, xL.
a)  Using  Mathematica's  FindInstance  command,  we  find  that  there  are  five  solutions  over  the  domain  0 £ x £ 1000  and
0 £ y £ 1000.

Pellsolutions = Sort@ FindInstance@
x^2 - 2 y^2 == 1 && 0 < x < 1000 && 0 < y < 1000, 8x, y<, Integers, 10DD

88x ® 3, y ® 2<, 8x ® 17, y ® 12<, 8x ® 99, y ® 70<, 8x ® 577, y ® 408<<
Let’s display these solutions in column form to help facilitate our recognition of patterns:

Solutions to Pell's Equation x2-2y2=1

x y

3 2
17 12
99 70
577 408

Do you recognize a pattern for the solutions Hx, yL?  The shrewd pattern hunter might recognize a recurrence formula from just
these four solutions, from which an explicit formula can be obtain by applying the theory of recursive sequences.  For those new
to this game, there is fortunately a Mathematica command that can easily find this explicit formula.

 FindSequenceFunction

? FindSequenceFunction

FindSequenceFunction@8a1, a2, a3, …<D attempts to find a

simple function that yields the sequence an when given successive integer arguments.

FindSequenceFunction@88n1, a1<, 8n2, a2<, …<D attempts to find a simple function that yields ai when given argument ni.

FindSequenceFunction@list, nD gives the function applied to n. �

NOTE: To increase Mathematica’s chances of finding a formula for a given sequence using FindSequenceFunction, it may be
necessary to input  up to ten terms depending on the complexity of  the formula (if  it  exists).   Beware however that  it  may give
incorrect  results;  some  examples  of  this  will  be  discussed  later  in  this  section.   Thus,  it  is  good  practice  to  always  confirms
formulas generated from this command.
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NOTE: To increase Mathematica’s chances of finding a formula for a given sequence using FindSequenceFunction, it may be
necessary to input  up to ten terms depending on the complexity of  the formula (if  it  exists).   Beware however that  it  may give
incorrect  results;  some  examples  of  this  will  be  discussed  later  in  this  section.   Thus,  it  is  good  practice  to  always  confirms
formulas generated from this command.

Example 2.2

a) Consider the finite sequence 81, 4, 9, 16, 25, 36, 49, 64, 81<.  Applying the FindSequenceFunction command to it yields the
formula for the perfect squares, n2 (A000290), as expected.

FindSequenceFunction@81, 4, 9, 16, 25, 36, 49, 64, 81<, nD
n2

b)  However,  Mathematica  does  not  always  produce  a  formula  that  one  expects  from  a  given  pattern.   Consider  the  sequence
consisting  of  all  natural  numbers  NOT divisible  by  3:  8an< = 81, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, ...<  (A001651).   Applying  the
FindSequenceFunction command to the first ten terms of this sequence yields the formula:

FindSequenceFunction@81, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16<, nD
1

4
H-3 - H-1Ln + 6 nL

This formula reveals little of the fact that it excludes multiples of 3, but is in fact correct.  Can you prove that it generates an?

NOTE: Another formula for an is given by

an = n + dHn + 1L �2t - 1

Here,  dxt  refers  to  the  floor  function  (also  called  the  greatest  integer  function),  defined  to  be  the  greatest  integer  less  than  or
equal to x.  Can you prove that this formula and the one given by Mathematica are equivalent?  HINT: Equate the two formulas
and simplify to obtain

SimplifyB 1

4
H-3 - H-1Ln + 6 nL == n + Floor@Hn + 1L � 2D - 1F

H-1Ln + 4 FloorB 1 + n

2
F � 1 + 2 n

Now consider separately the two cases where n is odd and n is even.

à Example 2.1 - Pell’s Equation (continued)

Let’s  go back to the Pell  equation x2
- 2 y2

= 1 and apply the FindSequenceFunction  command to the four solutions obtained
earlier to see if formulas can be gotten for x and y.

FindSequenceFunction@83, 17, 99, 577<, nD
FindSequenceFunction@82, 12, 70, 408<, nD
FindSequenceFunction@83, 17, 99, 577<, nD
FindSequenceFunction@82, 12, 70, 408<, nD

Unfortunately, it appears that Mathematica did not evaluate our FindSequenceFunction commands; however, this only indicates
that it was not able to find formulas for x and y, most likely because we did not provide Mathematica with enough terms.  Thus,
we’ll  need  to  enlarge  our  solution  set,  say  double  the  number  of  solutions  to  eight.   As  the  output  below  shows,  this  requires
enlarging the domain that needs to be search by several orders of magnitude.  Fortunately, this poses no difficulty for Mathemat-
ica given the computer powerful of today’s desktop computers.
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Pellsolutionsdouble = Sort@ FindInstance@
x^2 - 2 y^2 == 1 && 0 < x < 1 000 000 && 0 < y < 1 000 000, 8x, y<, Integers, 10DD

88x ® 3, y ® 2<, 8x ® 17, y ® 12<, 8x ® 99, y ® 70<,
8x ® 577, y ® 408<, 8x ® 3363, y ® 2378<, 8x ® 19601, y ® 13860<,
8x ® 114243, y ® 80 782<, 8x ® 665 857, y ® 470832<<

Feeding these eight solutions into the FindSequenceFunction now yields the following formulas:

dataPellsolutionsx =

Table@Pellsolutionsdouble@@k, 1, 2DD, 8k, 1, Length@PellsolutionsdoubleD<D
dataPellsolutionsy = Table@Pellsolutionsdouble@@k, 2, 2DD,

8k, 1, Length@PellsolutionsdoubleD<D
83, 17, 99, 577, 3363, 19 601, 114243, 665857<
82, 12, 70, 408, 2378, 13 860, 80 782, 470832<
Clear@x0, y0D;

x0 = FindSequenceFunction@dataPellsolutionsx, nD
y0 = FindSequenceFunction@dataPellsolutionsy, nD
1

2
II3 - 2 2 Mn

+ I3 + 2 2 MnM

-
I4 + 3 2 M II3 - 2 2 Mn

- I3 + 2 2 MnM
4 I3 + 2 2 M

This teaches us a lesson: don’t give up at the first try with FindSequenceFunction -- try longer sequences. 

It remains to verify that these formulas indeed satisfy the Pell equation x2
- 2 y2

= 1:

Simplify@x0^2 - 2 y0^2 � 1D
True

NOTE: We have not  demonstrated  that  these  formulas  generate  ALL positive  integer  solutions.   For  a  proof  of  this  fact  and a
complete  treatment  of  Pell  equations,  see  [Ba].   The  solutions  for  x  and  y  appear  as  entries  A001541  and  A001542  in  OEIS,
respectively.

FURTHER  EXPLORATION:  Find  formulas  for  positive  integer  solutions  to  the  negative  Pell  equation  x2
- 2 y2

= -1  and
confirm that your formulas are valid.

Example 2.3 - Dishonest Men, Coconuts, and a Monkey

Consider the following “Coconut” problem that first appeared in The Saturday Evening Post (October 9, 1926), written by Ben
Ames Williams:

Five  men and a  monkey  were  shipwrecked on  a  desert  island,  and they  spent  the  first  day  gathering
coconuts for food.  Piled them all up together and then went to sleep for the night.

But when they were all asleep one man woke up, and he thought there might be a row about dividing
the coconuts in the morning, so he decided to take his share.  So he divided the coconuts into five piles.
He had once coconut left over, and he gave that to the monkey, and he hid his pile and put the rest all
back together.

By and by the next man woke up and did the same thing.  And he had one left over, and he gave it to
the monkey.  And all five of the men did the same thing, one after the other; each one taking a fifth of
the coconuts in the pile when he woke up, and each one having one left over for the monkey.  And in
the morning they divided what coconuts were left, and they came out in five equal shares.  Of course,
each one must have known there were coconuts missing; but each one was guilty as the others, so they
didn’t say anything.  How many coconuts were there in the beginning?
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By and by the next man woke up and did the same thing.  And he had one left over, and he gave it to
the monkey.  And all five of the men did the same thing, one after the other; each one taking a fifth of
the coconuts in the pile when he woke up, and each one having one left over for the monkey.  And in
the morning they divided what coconuts were left, and they came out in five equal shares.  Of course,
each one must have known there were coconuts missing; but each one was guilty as the others, so they
didn’t say anything.  How many coconuts were there in the beginning?

An interesting discussion of the solution by Martin Gardner can be found in [Ga], p.3.  Here we shall take a more experimental
approach to determine the number of coconuts in the original pile.

Let  c  be  the  total  number  of  coconuts  and  sk  be  the  number  of  coconuts  that  the  k-th  sailor  receives  from  his  division  of  the
cocunts  during  the  night,  and  r  the  number  of  coconuts  that  each  sailor  receives  after  the  final  division  in  the  morning.   The
problem can then be described by the following system of Diophantine equations:

(2.5)

c = 5 s1 + 1

4 s1 = 5 s2 + 1

4 s2 = 5 s3 + 1

4 s3 = 5 s4 + 1

4 s4 = 5 s5 + 1

4 s5 = 5 r + 1

Eliminating the intermediate variables leads to a single Diophantine equation:

Clear@c, sD;

Eliminate@8c � 5 s@1D + 1, 4 s@1D == 5 s@2D + 1, 4 s@2D == 5 s@3D + 1, 4 s@3D == 5 s@4D + 1,

4 s@4D == 5 s@5D + 1, 4 s@5D == 5 r + 1<, 8s@1D, s@2D, s@3D, s@4D, s@5D<D
11529 + 15625 r � 1024 c

It is now easy enough to use Mathematica’s FindInstance command to find a solution:

FindInstance@eq, 8c, r<, IntegersD
88c ® 15621, r ® 1023<<

Thus,  c = 15 621,  which  of  course  is  an  unrealistically  large  number  of  coconuts  that  the  sailors  would  have  discovered.   To
obtain other solutions, we argue as follows: since c is divided six times into 5 piles, then 56 can be added to any solution to obtain
the next highest solution.  It follows that 15621 must be the smallest positive integer solution.

What if we now generalize the problem to n sailors?  What is the smallest position integer solution for c?  Here is a table listing
the values of r and c for n = 1 up to n = 5:

Solutions to the Coconut Problem

n r c

1 3 21
2 15 121
3 63 621
4 255 3121
5 1023 15 621

Thus, the formula for c as a function of n is given by:

FindSequenceFunction@821, 121, 621, 3121, 15 621<, nD
-4 + 51+n

The sequence 81, 21, 121, 621, 3121, 15 621, ...< is entry A164785 in OEIS.

FURTHER EXPLORATION: Suppose m coconuts remain and are given to the monkey (instead of one coconut) each time the
coconuts are divided into five piles by each of the five sailors.  How many coconuts were in the original pile?  What if there were
n sailors?

Example 2.4 - FindSequenceFunction Flounders
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Example 2.4 - FindSequenceFunction Flounders

a)  WARNING:  The  FindSequenceFunction  command  does  not  alway  produce  the  desired  answer  since  it  is  sensitive  to  the
number  of  terms  used.   Consider  the  finite  sequence  82, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17<  consisting  of  positive  integers
that are NOT squares (A000037).  Applying the FindSequenceFunction to it yields

FindSequenceFunction@82, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17<, nD
2 +

1

8
-9 - H-1Ln + 10 n + CosB n Π

2
F - SinBn Π

2
F + 2 SinB1

4
HΠ + 6 n ΠLF

Let’s now use this formula to regenerate the finite sequence:

TableB2 +
1

8
-9 - H-1Ln + 10 n + CosB n Π

2
F - SinB n Π

2
F + 2 SinB 1

4
HΠ + 6 n ΠLF , 8n, 1, 13<F

82, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17<
In the output above notice that the entry 14, which appears in the original sequence, is missing and that the entry 16 should not be

included.  Here's a formula, n + n + n , that correctly generates the original finite sequence:

Table@Floor@n + Sqrt@Sqrt@nD + nDD, 8n, 1, 13<D
82, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17<

At  this  point  the  reader  might  object  by  arguing  that  the  FindSequenceFunction  command  would  have  produced  the  formula

n + n + n  if  it  had been given more terms,  say 20 terms instead of  13?  Unfortunately,  even then Mathematica  fails  to

give this formula.  Instead, Mathematica gives a formula involving the DifferenceRoot function:

Table@Floor@n + Sqrt@Sqrt@nD + nDD, 8n, 1, 20<D
82, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24<
Clear@formulaD;

formula@n_D =

FindSequenceFunction@Table@Floor@n + Sqrt@Sqrt@nD + nDD, 8n, 1, 20<D, nD
DifferenceRootAFunctionA9y.., n

.

.=, 9-1 - y
.
.@n..D + y

.

.@1 + n
.
.D � 0, y

.

.@1D � 2,

y
.
.@2D � 3, y

.

.@3D � 5, y
.
.@4D � 6, y

.

.@5D � 7, y
.
.@6D � 8, y

.

.@7D � 10, y
.
.@8D � 11,

y
.
.@9D � 12, y

.

.@10D � 13, y
.
.@11D � 14, y

.

.@12D � 15, y
.
.@13D � 17=EE@nD

Let’s confirm if this formula is correct.  Here’s a list of the first 20 terms generated from it:

Table@formula@nD, 8n, 1, 20<D
82, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24<

From the output above it does seems that Mathematica‘s formula gives the same terms as those generated from n + n + n ,

but alas, if we compare the two formulas out to 30 terms, then we find that they disagree starting with the 21th term (the value at
this term should be 26, not 25):

Table@8Floor@n + Sqrt@Sqrt@nD + nDD, formula@nD<, 8n, 1, 30<D
882, 2<, 83, 3<, 85, 5<, 86, 6<, 87, 7<, 88, 8<, 810, 10<, 811, 11<, 812, 12<,

813, 13<, 814, 14<, 815, 15<, 817, 17<, 818, 18<, 819, 19<, 820, 20<,
821, 21<, 822, 22<, 823, 23<, 824, 24<, 826, 25<, 827, 26<, 828, 27<,
829, 28<, 830, 29<, 831, 30<, 832, 31<, 833, 32<, 834, 33<, 835, 34<<
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Thus, FindSequenceFunction must be used with extreme caution. 

b) HELPFUL TIP: The FindSequenceFunction  may give different, but equivalent, formulas for the same sequence, depending
on whether the sequence has been shifted.  Mathematica assumes that the first element entered into this command corresponds to
n = 1.  For example, recall from an earlier example the finite sequence of perfect squares, 81, 4, 9, 16, 25, 36, 49, 64, 81<, which
Mathematica  recognized  as  being  generated  from  the  formula  n2.   If  we  now  prepend  the  element  0  to  this  sequence,  then
Mathematica easily shifts the formula accordingly:

FindSequenceFunction@80, 1, 4, 9, 16, 25, 36, 49<, nD
H-1 + nL2

On  the  other  hand,  Mathematica  fails  to  do  this  for  the  Fibonacci  sequence.   For  example,  inputting  the  finite  sequence81, 1, 2, 3, 5, 8, 13, 21<, which begins with the term F1 = 1, yields the Fibonacci sequence as expected:

FindSequenceFunction@81, 1, 2, 3, 5, 8, 13, 21<, nD
Fibonacci@nD

However, prepending the element F0 = 0 doesn’t produce the desired shift in the formula, Fn-1, that we would expect:

FindSequenceFunction@80, 1, 1, 2, 3, 5, 8, 13, 21<, nD
1

2
H-Fibonacci@nD + LucasL@nDL

This is not necessary a bad thing.  In this case, equating the two formulas leads to an identity between the Fibonacci sequence and
its cousin, the Lucas sequence Ln  (A000032), defined by the same recurrence, Ln+1 = Ln + Ln-1, but with different initial values,
namely L0 = 2 and L1 = 1:

(2.6)Fn-1 = HLn - FnL �2

or equivalently,

(2.7)Ln = Fn + 2 Fn-1

The next Mathematica command will be helpful in simplifying complicated expressions.

 Simplify

? Simplify

Simplify@exprD performs a sequence of algebraic and other transformations on expr, and returns the simplest form it finds.

Simplify@expr, assumD does simplification using assumptions.  �

Example 2.5

a)  Here’s  an example  where  the  Simplify  command comes to  the  rescue to  simplify  a  trigonometric  identity  that  Mathematica
does not recognize:

Sum@Cos@n * Pi � 100D, 8n, 0, 100<D
1

4
I-1 - 5 M +

1

4
I1 - 5 M +

1

4
I-1 + 5 M +

1

4
I1 + 5 M

Simplify@%D
0

b)  However,  Mathematica  isn't  always  saavy  when  it  comes  to  reducing  formulas,  even  with  the  Simplify  command.   For
example,  the  following  double  sum  reduces  to  a  constant  value,  namely  1,  which  we  easily  discover  by  computing  some  test
values.  However, Mathematica does not seem to recognize this or at least cannot prove it to be true based on its methods.
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b)  However,  Mathematica  isn't  always  saavy  when  it  comes  to  reducing  formulas,  even  with  the  Simplify  command.   For
example,  the  following  double  sum  reduces  to  a  constant  value,  namely  1,  which  we  easily  discover  by  computing  some  test
values.  However, Mathematica does not seem to recognize this or at least cannot prove it to be true based on its methods.

TimeConstrained@Simplify@Sum@H-1L^j � Hi! j!L, 8i, 0, n<, 8j, 0, n - i<DD, 30D
$Aborted

Table@Sum@H-1L^j � Hi! j!L, 8i, 0, n<, 8j, 0, n - i<D, 8n, 1, 10<D
81, 1, 1, 1, 1, 1, 1, 1, 1, 1<

2.1.1.2 Mathematica Missteps

Mathematica is not a perfect CAS as demonstrated with the FindSequenceFunction command  In fact, many of its errors have
been documented, most due to differences in assumptions between Mathematica and the user.  Here are some examples to keep
in mind:

Example 2.6

The function f HxL = x0 is well defined only for x > 0 and in that case equals 1.  Thus, be careful with improper evaluation such as
f H0L:

f@x_D = x^0;

f@0D
1

The answer f H0L = 1 is WRONG since 00 is undefined:

0^0

Power::indet : Indeterminate expression 0
0
 encountered. �

Indeterminate

Example 2.7

Consider Ramanujan’s constant e 163 Π, which is an almost integer (a value that is very close to an integer).   

R = Exp@Pi Sqrt@163DD
N@R, 32D
ã 163 Π

2.6253741264076874399999999999925 ´ 1017

However, if  compute its decimal part,  R - dRt,  using Mathematica’s approximation command, N,  but without specifying the n-
digit precision, then we obtain the wrong answer (recall that the decimal part of every real value is bounded between 0 and 1):

N@R - Floor@RDD
-480.

However, we can remedy this by specifying the precision, say to 15 digits:

N@R - Floor@RD, 15D
0.999999999999250

This serves as a warning that the reader should be careful with approximating extremely large values when Mathematica.

Example 2.8
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Example 2.8

Solve@x^2 + 1 � x � x + 1 � x, xD
88x ® 0<, 8x ® 1<<

Example 2.9

In  the  evaluation  below,  Mathematica  claims  that  the  two  sums  are  equal,  where  the  first  defines  the  harmonic  number

Hn = 1 +
1

2
+

1

3
+ ... +

1

n
, i.e., sum of reciprocals of the first n natural numbers (A001008 and A002805), and the second involves

a harmonic sum of the number of divisors of the natural numbers up to n.

Sum@1 � k, 8k, 1, n<D
Sum@1 � Hk * Length@Divisors@kDDL, 8k, 1, n<D
HarmonicNumber@nD
HarmonicNumber@nD

However, numerical computation shows that this is in fact NOT true:

Table@Sum@1 � k, 8k, 1, n<D, 8n, 1, 5<D
Table@Sum@1 � Hk * Length@Divisors@kDDL, 8k, 1, n<D, 8n, 1, 5<D
:1, 3

2
,
11

6
,
25

12
,
137

60
>

:1, 5

4
,
17

12
,
3

2
,
8

5
>

2.1.2 Online Databases

2.1.2.1 Online Encyclopedia of Integer Sequences (OEIS) - http://oeis.org

The Online  Encyclopedia  of  Integer  Sequences  (OEIS)  is  an  online  database  created  by  Neil  Sloan  in  1965 that  as  of  January
2011 contains a collection of almost 200,000 integer sequences and allows the user to search whether a given integer sequence
appears  in  it  (see  [O]).   Each  sequence  entry  in  OEIS  (or  the  Encyclopedia  as  we’ll  sometimes  refer  to  it)  contains  a  host  of
information  about  the  sequence,  including  a  list  of  initial  terms,  formulas,  known  results,  and  references.   Here’s  an  example
using an in-house command called OEIS, i.e. a command created by the author and not built into Mathematica (see Mathematics-
byExperiment.m package file for Mathematica code) to query the OEIS website.

 OEIS

? OEIS

OEIS@sequence,nD queries the Online Encyclopedia of Integer Sequences HOEISL website

Hhttp:��oeis.orgL to search for sequence and displays the first n search results. The default value is

n=1. The maximum value is n=10. Requires loading of MathematicsbyExperimentPackage.m package.

Example 2.10 - Searching the Encyclopedia (OEIS)

a) Suppose we searched the Encyclopedia to see if it recognizes the finite sequence 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<.
OEIS@81, 1, 2, 3, 5, 8, 13, 21, 34, 55<D
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OEIS Query: 81, 1, 2, 3, 5, 8, 13, 21, 34, 55<
The On-Line Encyclopedia of Integer

Sequences, published electronically at http:��oeis.org, 2010

Go to OEIS complete search results

Summary display of results 1-1 out of 3186 results found.

99A000045,
Fibonacci numbers: FHnL = FHn- 1 L + FHn- 2 L, FH0L = 0, FH 1 L = 1 , FH

2 L = 1 , ... HFormerly M0692 N0256L , +180 2136 =,
80, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,

2584, 4181, 6765, 10 946, 17 711, 28657, 46368, 75025,

121393, 196 418, 317 811, 514 229, 832040, 1346269, 2178309,

3524578, 5 702 887, 9227 465, 14930352, 24157817, 39088169<=
Not  only  does  OEIS  recognize  this  sequence  as  being  part  of  the  Fibonacci  sequence  (A000045),  but  also  part  of  3185  other
sequences.   This  shows  that  the  Fibonacci  numbers,  one  of  the  most  recognized  sequences  in  the  world,  arise  in  many  other
patterns.  To learn more about the Fibonacci sequence, just click on the link for A000045, which will open up your web browser
to  the  OEIS  web  page  describing  them.   To  see  the  other  3185  sequences,  click  on  the  button  ‘Go  to  OEIS  complete  search
results’, which will open up your web browser and show the full search results directly from OEIS. 

b) Here's an example of a finite sequence where one would think that because of the extremely large last element, OEIS would
find either an exact match or no match at all:

OEIS@81, 1, 3, 21, 987, 2 178 309, 10 610 209 857 723<, 2D
OEIS Query: 81, 1, 3, 21, 987, 2 178 309, 10610209857723<
The On-Line Encyclopedia of Integer

Sequences, published electronically at http:��oeis.org, 2010

Go to OEIS complete search results

Summary display of results 1-2 out of 7 results found.

99A058635, H2^nL-th Fibonacci number., +120 9 =,
81, 1, 3, 21, 987, 2 178 309, 10 610 209 857 723, 251728825683549488150424261,

141693817 714 056 513 234 709 965 875411919657707794958199867,

44893845313 309 942 978 077 298160660626646181883623886239791269694466661 322�

268805744 081 870 933 775 586 567 858979269<=
99A050615, Products of distinct terms of A000045 @2^Hi+2LD: aHnL

= ProductHFH2^Hi+2LL^bitHn,iL,i=0..@log2Hn+ 1 LDL., +120 1 =,
81, 3, 21, 63, 987, 2961, 20 727, 62 181, 2 178 309, 6534927, 45744489,

137233467, 2 149 990 983, 6449972 949, 45149810643,

135449431 929, 10 610 209 857 723, 31830629573169,

222814407 012 183, 668 443 221036 549, 10472277129572601<=
Suprisingly,  there  are  seven match  results  with  the  first  two shown above.   This  shows that  there  integer  sequences  that  OEIS
cannot match exactly because they are either embedded in other integer sequences or have gone through simplifications during
calculation; but even then partial matches can still provide clues to help us find their formulas.  This is demonstrated in the next
example.

Example 2.11 - Rational sequences and Fibonacci numbers at prime positions
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Example 2.11 - Rational sequences and Fibonacci numbers at prime positions

Suppose we wish to find an explicit formula for the recursive rational sequence defined by

u@1D = 1;

u@n_D := H3 u@n - 1D + 1L � H5 u@n - 1D + 3L
Below is a list of the first twenty values:

datau = Table@u@nD, 8n, 1, 15<D
:1, 1

2
,

5

11
,
13

29
,
17

38
,

89

199
,
233

521
,
305

682
,
1597

3571
,

4181

9349
,

5473

12238
,
28 657

64 079
,

75 025

167 761
,

98209

219602
,

514229

1149851
>

Observe that applying the FindSequenceFunction command to this sequence yields a complicated formula:

FindSequenceFunctionB:1,
1

2
,

5

11
,

13

29
,

17

38
,

89

199
,

233

521
,

305

682
,

1597

3571
,

4181

9349
,

5473

12 238
,

28 657

64 079
,

75 025

167 761
,

98 209

219 602
,

514 229

1 149 851
>, nF

-J-370248451 2-1+n + 165 580 141 ´ 2-1+n 5 - 969323029 I7 - 3 5 M-1+n
+

433494437 5 I7 - 3 5 M-1+nN � J-827900705 2-1+n + 370248451 ´ 2-1+n 5 +

2167472 185 I7 - 3 5 M-1+n
- 969323029 5 I7 - 3 5 M-1+nN

Let’s divide the problem by analyzing the numerators, {1,1,5,13,17,89,...}, and denominators, {1,2,11,29,38,199,...}, separately.
Again, we find that the FindSequenceFunction command fails to give an elementary pattern for the numerators, expressing them
in terms of Mathematica’s DifferenceRoot function.  

datanumerator = Numerator@datauD
81, 1, 5, 13, 17, 89, 233, 305, 1597, 4181, 5473, 28657, 75025, 98209, 514229<
FindSequenceFunction@datanumerator, nD
DifferenceRootAFunctionA9y.., n

.

.=, 9y..@n..D - 18 y
.
.@3 + n

.

.D + y
.
.@6 + n

.

.D � 0,

y
.
.@1D � 1, y

.

.@2D � 1, y
.
.@3D � 5, y

.

.@4D � 13, y
.
.@5D � 17, y

.

.@6D � 89=EE@nD
On the other hand, feeding the same sequence into OEIS yields three possible matches involving sequences that are related to the
Fibonacci sequence:  

OEIS@datanumerator, 10D

Mathematics by Experiment 

26



OEIS Query: 81, 1, 5, 13, 17, 89, 233, 305, 1597, 4181, 5473, 28657, 75025, 98209, 514229<
The On-Line Encyclopedia of Integer

Sequences, published electronically at http:��oeis.org, 2010

Go to OEIS complete search results

Summary display of results 1-3 out of 3 results found.

99A167808, Numerator of xHnL=xHn- 1 L+xHn-2L,
xH0L=0, xH 1 L= 1 �2; denominator= A130196 ., +280 10 =,

80, 1, 1, 1, 3, 5, 4, 13, 21, 17, 55, 89, 72, 233, 377, 305, 987, 1597,

1292, 4181, 6765, 5473, 17 711, 28 657, 23184, 75 025, 121393,

98 209, 317 811, 514 229, 416 020, 1 346269, 2178309, 1762289,

5702887, 9 227 465, 7465 176, 24157817, 39088169, 31622993<=
99A079497,

aH 1 L= 1 , for n>2 aHnL is the smallest integer > aHn- 1 L such that sqrtH
5 L*aHnL is closer and > to an integer than sqrtH 5 L*aHn-

1 L H i.e. aHnL is the smallest integer > aHn- 1 L such that

fracHsqrtH 5 L*aHnLL<fracHsqrtH 5 L*aHn- 1 L LL., +280 0 =,
81, 5, 9, 13, 17, 89, 161, 233, 305, 1597, 2889, 4181, 5473, 28 657,

51841, 75 025, 98 209, 514 229, 930 249,

1346269, 1 762 289, 9227 465, 16692641,

24157817, 31 622 993, 165 580 141, 299537289,

433494437, 567 451 585, 2 971 215 073, 5374978561<=
99A174883, Largest odd divisors of Fibonacci numbers., +280 0 =,

81, 1, 1, 3, 5, 1, 13, 21, 17, 55, 89, 9, 233, 377, 305, 987, 1597, 323, 4181, 6765,

5473, 17711, 28 657, 1449, 75 025, 121393, 98 209, 317811, 514 229, 104005, 1346 269,

2178309, 1 762 289, 5702 887, 9227465, 933147, 24157817, 39088169, 31622993<=
With  this  as  a  clue,  the  keen  bookkeeper  will  notice  that  most  of  the  numerators  are  in  fact  Fibonacci  numbers,  namely81, 1, 5, 13, 89, 233, 1597, 4181, ...<, and in fact those that are not Fibonacci numbers, 817, 305, 5473, ...<, occur at every third
entry starting with 17.

Using the following in-house command, which identifies the positions of elements within a given integer sequence, we verify that
the numerators consist of Fibonnacci numbers of the form F2 n-1:

 MatchPosition

? MatchPosition

MatchPosition@subset,sequence,n,first,lastD displays the positions of the elements specified by subset within the list generated

by the function sequence@nD from n=first to n=last. Requires loading of MathematicsbyExperimentPackage.m package.
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MatchPosition@datanumerator, Fibonacci, n, 1, 50D �� Column

Fibonacci@881<, 82<<D
Fibonacci@881<, 82<<D
Fibonacci@885<<D
Fibonacci@887<<D
Fibonacci@8<D
Fibonacci@8811<<D
Fibonacci@8813<<D
Fibonacci@8<D
Fibonacci@8817<<D
Fibonacci@8819<<D
Fibonacci@8<D
Fibonacci@8823<<D
Fibonacci@8825<<D
Fibonacci@8<D
Fibonacci@8829<<D

As for the corresponding list of denominators, we follow the trail above and eliminate every third entry starting with the denomina-
tor 38 from consideration.  Then matching these denominators with the Lucas numbers yields the same pattern:

datadenominator = Denominator@datauD
81, 2, 11, 29, 38, 199, 521, 682, 3571, 9349, 12238, 64079, 167761, 219602, 1149851<
MatchPosition@datadenominator, LucasL, n, 1, 50D �� Column

LucasL@881<<D
LucasL@8<D
LucasL@885<<D
LucasL@887<<D
LucasL@8<D
LucasL@8811<<D
LucasL@8813<<D
LucasL@8<D
LucasL@8817<<D
LucasL@8819<<D
LucasL@8<D
LucasL@8823<<D
LucasL@8825<<D
LucasL@8<D
LucasL@8829<<D

The formula for un in terms of Fibonacci and Lucas numbers is now clear:

un =

F2 n-1

L2 n-1

where Fn and Ln are Fibonacci and Lucas numbers, respectively.  The following table confirms this:

Table@Fibonacci@2 n - 1D � LucasL@2 n - 1D, 8n, 1, 10<D
:1, 1

2
,

5

11
,
13

29
,
17

38
,

89

199
,
233

521
,
305

682
,
1597

3571
,
4181

9349
>

2.1.2.2 Inverse Symbolic Calculator (ISC) - http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html

The Inverse Symbolic Calculator (ISC), created by Simon Plouffe in 1995, is useful for searching real numbers that represent the
exact value of a given approximation (see [I]).  Here is an example using the in-house command, ISC, to query the ISC website
(see Mathematics by Experiment package file for Mathematica code) .
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The Inverse Symbolic Calculator (ISC), created by Simon Plouffe in 1995, is useful for searching real numbers that represent the
exact value of a given approximation (see [I]).  Here is an example using the in-house command, ISC, to query the ISC website
(see Mathematics by Experiment package file for Mathematica code) .

 ISC

? ISC

ISC@value,nD queries the Inverse Symbolic Calculator HISCL website

Hhttp:��oldweb.cecm.sfu.ca�cgi-bin�isc�L to search for a real number with approximation given by value

and displays the first n search results. Requires loading of MathematicsbyExperimentPackage.m package.

For example,  feeding the approximation 3.14159 for  Π  into  ISC yields  many matches (289).   The first  five matches are  shown
below:

ISC@"3.14159", 5D
Inverse Symbolic Calculator, published electronically

at http:��oldweb.cecm.sfu.ca�projects�ISC�ISCmain.html
Go to ISC complete search results

Summary display of results 1-5 out of 289 results found.

3141592653589793=Pi

3141592920353982=71�226
3141591530269234=1�31831
3141590543309810=1�3183101
3141592653589793=PsiH1�4L-PsiH3�4L
We can, of course, reduce the number of matches by feeding ISC a better approximation:

ISC@"3.141592653589793", 5D
Inverse Symbolic Calculator, published electronically

at http:��oldweb.cecm.sfu.ca�projects�ISC�ISCmain.html
Go to ISC complete search results

Summary display of results 1-5 out of 43 results found.

3141592653589793=Pi

3141592653589793=PsiH1�4L-PsiH3�4L
3141592653589793=GAMH1�6L*GAMH5�6L-Pi

3141592653589793=1�2*GAMH1�6L*GAMH5�6L
3141592653589793=GAMH1�4L�srH2L*GAMH3�4L
Surprisingly, we still found 43 matches, which goes to show that there are many interesting values that approximate Π.

Example 2.9 - Pell’s Equation (Revisited)

The  Pell  equation,  x2
- 2 y2

= 1  (discussed  in  Example  1.1),  and  its  negative,  x2
- 2 y2

= -1,  share  a  common  pattern.   Let’s
combine their first four solutions:
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Pellsolutionsplusminus = FindInstance@Hx^2 - 2 y^2 == 1 ÈÈ x^2 - 2 y^2 == -1L &&

0 < x < 1000 && 0 < y < 1000, 8x, y<, Integers, 10D
88x ® 1, y ® 1<, 8x ® 7, y ® 5<, 8x ® 41, y ® 29<, 8x ® 239, y ® 169<,

8x ® 3, y ® 2<, 8x ® 17, y ® 12<, 8x ® 99, y ® 70<, 8x ® 577, y ® 408<<
Let’s sort and index these solutions:

Pell Equations x2-y2=±1

n xn yn

1 1 1
2 3 2
3 7 5
4 17 12
5 41 29
6 99 70
7 239 169
8 577 408

Next, define rn =
xn

yn
.  A natural problem to investigate is the limiting value of  rn  as n ® ¥?  Here is a table listing the first ten

approximate values of rn :

Pell Equations x2-y2=±1

n rn=xn�yn

1 1.00000000000000
2 1.50000000000000
3 1.40000000000000
4 1.41666666666667
5 1.41379310344828
6 1.41428571428571
7 1.41420118343195
8 1.41421568627451
9 1.41421319796954
10 1.41421362489487

To obtain an even better approximation of the limiting ratio, we can extend the solution set by using the FindSequenceFunction
to find formulas for xn and yn:  

x@n_D = FindSequenceFunction@81, 3, 7, 17, 41, 99, 239, 577<, nD
y@x_D = FindSequenceFunction@81, 2, 5, 12, 29, 70, 169, 408<, nD
1

2
II1 - 2 Mn

+ I1 + 2 MnM
Fibonacci@n, 2D

The output above refers to the Fibonacci polynomial FnH2L.  Here is a list of values for rn accurate to 12 decimal places:
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Pell's Equation x2-y2=±1

n rn=xn�yn

1 1.00000000000000
2 1.50000000000000
3 1.40000000000000
4 1.41666666666667
5 1.41379310344828
6 1.41428571428571
7 1.41420118343195
8 1.41421568627451
9 1.41421319796954
10 1.41421362489487

n rn=xn�yn

11 1.41421355164605
12 1.41421356421356
13 1.41421356205732
14 1.41421356242727
15 1.41421356236380
16 1.41421356237469
17 1.41421356237282
18 1.41421356237314
19 1.41421356237309
20 1.41421356237310

It is now clear that these ratios converge to limit 2 .  Those that did not recognize this value can feed 1.414213562373 into ISC:

ISC@"1.414213562373", 5D
Inverse Symbolic Calculator, published electronically

at http:��oldweb.cecm.sfu.ca�projects�ISC�ISCmain.html
Go to ISC complete search results

Summary display of results 1-5 out of 67 results found.

1414213562373095=sqrtH2L
1414213562373095=2�srH2L
1414213562373095=1�16^-1�8
1414213562373095=E^H1�2*lnH2LL
1414213562373095=ImHH-2+0*IL^H1�2LL
This confirms  2  as the limit.   Of course we can obtain the same answer by also using Mathematica’s Limit command since
exact formulas for xn and yn are known:

Limit@x@nD � y@nD, n ® InfinityD
2

Example 2.13 - Round Off Error

Suppose we wanted to find the limit of the sequence un in Example 1.10 as n ® ¥.  Here is a table of the first 30 values of un:
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n un

1 1.000000000
2 0.3333333333
3 0.5000000000
4 0.4285714286
5 0.4545454545
6 0.4444444444
7 0.4482758621
8 0.4468085106
9 0.4473684211
10 0.4471544715

n un

11 0.4472361809
12 0.4472049689
13 0.4472168906
14 0.4472123369
15 0.4472140762
16 0.4472134119
17 0.4472136656
18 0.4472135687
19 0.4472136057
20 0.4472135916

n un

21 0.4472135970
22 0.4472135949
23 0.4472135957
24 0.4472135954
25 0.4472135955
26 0.4472135955
27 0.4472135955
28 0.4472135955
29 0.4472135955
30 0.4472135955

This  sequence appears  to  stabilize  out  to  10 decimal  places  to  the  value  0.4472135955.   However,  feeding this  value  into  ISC

fails to give an answer.  

ISC@"0.4472135955", 5D
Inverse Symbolic Calculator, published electronically

at http:��oldweb.cecm.sfu.ca�projects�ISC�ISCmain.html
Go to ISC complete search results

Your search resulted in no match.

This is because Mathematica had rounded off the last significant digit (10-th decimal place).   A more precise calculation shows
that this digit should be 4 not 5.

Table@N@Fibonacci@nD � LucasL@nD, 15D, 8n, 1, 40<D
81.00000000000000, 0.333333333333333, 0.500000000000000, 0.428571428571429,

0.454545454545455, 0.444444444444444, 0.448275862068966, 0.446808510638298,

0.447368421052632, 0.447154471544715, 0.447236180904523, 0.447204968944099,

0.447216890595010, 0.447212336892052, 0.447214076246334, 0.447213411871319,

0.447213665639877, 0.447213568708896, 0.447213605733234, 0.447213591591195,

0.447213596992973, 0.447213594929677, 0.447213595717786, 0.447213595416755,

0.447213595531739, 0.447213595487819, 0.447213595504595, 0.447213595498187,

0.447213595500634, 0.447213595499700, 0.447213595500057, 0.447213595499920,

0.447213595499972, 0.447213595499952, 0.447213595499960, 0.447213595499957,

0.447213595499958, 0.447213595499958, 0.447213595499958, 0.447213595499958<
Feeding the correct value 0.4472135954 into ISC now yields the exact limit, 

1

5
.

ISC@"0.4472135954", 5D
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Inverse Symbolic Calculator, published electronically

at http:��oldweb.cecm.sfu.ca�projects�ISC�ISCmain.html
Go to ISC complete search results

Summary display of results 1-5 out of 52 results found.

4472135954999579=1�srH5L
4472135954999579=1�5^1�2
4472135954999579=sqrtH20L
4472135954999579=1�sqrtH5L
4472135954999579=2*expH1�2L^lnH5L
NOTE: Of course we can obtain the exact answer by also using Mathematica's Limit command since exact formulas for Fn  and
Ln are known:

Limit@Fibonacci@nD � LucasL@nD, n ® InfinityD
1

5

2.2 Tricks of the Trade

You can use all the quantitative data you can get, but you still have to distrust it and use your own intelligence and 
judgment.

-- Alvin Toffler (www.quotationspage.com)

In this modern age and with tools such as computer algebra systems, it is quite easy to generate large data sets for analysis.  In
this  section  we discuss  frequently  used techniques  (tricks  of  the  trade)  for  manipulating  and transforming integer  sequences  to
obtain number patterns.  The examples presented demonstrate that although the computer can be programmed to detect most of
these patterns, it still pays to do good bookkeeping and have a keen eye. 

2.2.1 Good Bookkeeping

I never guess. It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, 
instead of theories to suit facts.

-- Sir Arthur Conan Doyle (1859 - 1930), The Sign of Four, A Scandal in Bohemia

Good  bookkeeping  begins  with  arranging  data  in  an  orderly  fashion  that  allows  patterns  to  reveal  themselves  either  through
symmetry or periodicity.

2.2.1.1 Partitioning a Sequence

Partitioning a  sequence into a  collection of  subsets  or  a  two-dimensional  data  set  is  an effective method to  reveal  patterns that
would be difficult to recognize otherwise.

Example 2.14- Stern’s Diatomic Sequence
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Define a sequence 8an<, called the diatomic sequence (A002487), whose generation proceeds as follows: 

1. Begin with the finite sequence 80, 1<.
2. Insert between every two consecutive terms of the sequence a term equal to the sum of those two entries

3. Iterate step 2.

The sequence in the limit is the diatomic sequence.  The table below describes the first five iterations.

Generation of Diatomic Sequence

Iteration Sequence
0 80, 1<
1 80, 1, 1<
2 80, 1, 1, 2, 1<
3 80, 1, 1, 2, 1, 3, 2, 3, 1<
4 80, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1<
5 80, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5,

3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1<
NOTE:  Observe  that  this  construction  has  memory  in  the  sense  that  each  iteration  preserves  the  sequence  from  the  previous
iteration.

The sequence 8an< can be programmed in Mathematica as follows:

Clear@a, sternD;

nMax = 11;

a@0D = 0;

a@1D = 1;

Do@
stern =

Riffle@Table@a@kD, 8k, 0, 2^i - 1<D, Table@a@k - 1D + a@kD, 8k, 1, 2^Hi - 1L<DD;

Do@a@2^Hi - 1L + kD = stern@@2^Hi - 1L + k + 1DD, 8k, 1, 2^Hi - 1L<D,

8i, 1, nMax<D;

datastern = Table@8n, a@nD<, 8n, 0, 39<D;

ColumnDataDisplay@datastern, 10,

8"n", "aHnL"<, "Generation of Diatomic Sequence", LeftD
Generation of Diatomic Sequence

n aHnL
0 0
1 1
2 1
3 2
4 1
5 3
6 2
7 3
8 1
9 4

n aHnL
10 3
11 5
12 2
13 5
14 3
15 4
16 1
17 5
18 4
19 7

n aHnL
20 3
21 8
22 5
23 7
24 2
25 7
26 5
27 8
28 3
29 7

n aHnL
30 4
31 5
32 1
33 6
34 5
35 9
36 4
37 11
38 7
39 10

a) Observe that the value 1 seems to repeat itself and occur at positions equal to a power of 2.  In other words, we have a2n = 1.
Let’s  use  these  positions  as  markers  then  to  create  an  array  (ignore  the  first  element  a0)  whose  rows  begin  with  1  and  whose
lengths increase by powers of two:

Mathematics by Experiment 

34

http://en.wikipedia.org/wiki/Stern%27s_diatomic_series
http://oeis.org/A002487


1
1 2
1 3 2 3
1 4 3 5 2 5 3 4
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5
1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10

A patter now emerges if we sum each row:

Table@Sum@a@kD, 8k, 2^n, 2^Hn + 1L - 1<D, 8n, 0, 5<D
81, 3, 9, 27, 81, 243<

Thus, the row sums are equal to powers of 3:

(2.8)â
k=2n

2n+1
-1

ak = 3n.

b) Next, notice that the gaps along each column is constant, i.e. the difference between any two terms in each column is the same.

Gaps Along Each Column

Column Gap
1 0
2 1
3 1
4 2
5 1
6 3
7 2
8 3
9 1
10 4

Do you recognize this sequence of gaps?  You should since it is just the diatomic sequence itself.  Thus, we’ve found the identity

(2.9)a2n+1
+n - a2n

+n = an

c) Also, observe that values in certain columns above repeat themselves.  For example, column 2 is repeated as colunns 3, 5, 9,
17, etc. (positions that are one more than a power of 2) as shown in red below:

Grid@Table@If@n � 2^p + 1 ÈÈ n == 2^p + 2 ÈÈ n � 2^p + 4 ÈÈ n � 2^p + 8 ÈÈ n � 2^p + 16,

Style@a@nD, RedD, a@nDD, 8p, 0, 5<, 8n, 2^p, 2^Hp + 1L - 1<D,

Frame ® All, Background ® 8None, 88None, LightGray<<<D
1
1 2
1 3 2 3
1 4 3 5 2 5 3 4
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5
1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2 9 7 12 5 13 8 11 3 10

This leads to the identity

(2.10)a2n
+1 = a2n

+2 = a2n
+4 =. .. = a2n

+2m =. ..

NOTE: It seems that each entry is the sum of two entries above similar to Pascal's triangle; however, this pattern fails for those
entries that are repeated from the previous column.  Therefore, if we consider instead a diatomic array where we pad 1's at the
end of each row to make it palindromic and arrange the entries into columns as shown below for the first five rows:  
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NOTE: It seems that each entry is the sum of two entries above similar to Pascal's triangle; however, this pattern fails for those
entries that are repeated from the previous column.  Therefore, if we consider instead a diatomic array where we pad 1's at the
end of each row to make it palindromic and arrange the entries into columns as shown below for the first five rows:  

diatomicarray@nMax_D := Table@ReplacePart@
PadRight@8<, 2^HnMax - 1L + 1, ""D, H1 + 2^HnMax - nL * ð ® a@2^Hn - 1L + ðDL & ��

HRange@0, 2^Hn - 1LDLD, 8n, 1, nMax<D �� Grid

diatomicarray@5D
1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1

Thus we see that each entry is either the sum of the two entries above it or if there is an entry directly above it, then it takes on the
same value as that entry.  Recursively, the next row in the array can be constructed by copying the previous row and inserting the
sum of every two consecutive entries in the previous row as a new entry.

2.2.2 Sequences and Their Subsequences
We’ve already seen examples of various kinds of sequences and subsequences in the examples above.  We treat in further detail
recursive sequences and special subsequences are arise quite frequently.

2.2.2.1 Recursive sequences

A sequence 8an< is recursive if it satisfies a recurrence, a relationship where each element an  is expressed in terms of any of the
previous elements an-1, an-2, ..., a1, a0.  A linear homogeneous recurrence with constant coefficients is one of the form

an = c1 ×an-1 + c2 ×an-2 + ... + cn-1 ×a1 + cn ×a0

where 8c1, c2, ..., cn<  are constant real values.  This recurrence will be called a 8c1, c2, ..., cn<-recurrence.  For example, recall
that the Fibonacci sequence 80, 1, 1, 2, 3, 5, 8, 13, ...< has a 81, 1<-recurrence: Fn+1 = Fn + Fn-1.

Generating Recursive Sequences

In  many  cases  generating  integer  sequences  by  recursion  is  more  efficient  than  using  an  explicit  formula.   There  are  many
methods to generate recursive sequences in Mathematica.  We demonstrate four different methods to illustrate their strengths and
weaknesses.

Example: Let’s generate the sequence an defined by a 85, -1<-recurrence: 

an = 5 an-1 - an-2

METHOD 1 - We define the sequence an  as a delayed function a[n]  using the SetDelayed  assignment specified by the symbol
“:=” (colon-equal sign):

Clear@aD;

a@0D = 2;

a@1D = 5;

a@n_D := 5 a@n - 1D - a@n - 2D
Timing@Table@a@nD, 8n, 0, 25<DD
83.291, 82, 5, 23, 110, 527, 2525, 12098, 57965, 277727, 1330670, 6375623, 30547445,

146361602, 701 260 565, 3 359 941 223, 16098445550, 77132286527, 369562987085,

1770682648 898, 8483 850 257 405, 40648568638127, 194758992933230,

933146396 028 023, 4470 972 987 206885, 21421718540006402, 102637619712825125<<
The Timing command shows that it took Mathematica about 3 seconds to generate the first 25 terms, which is quite slow.  This is
because  previous  terms,  instead  of  being  stored  to  memory,  are  always  recalculated  (due  to  the  SetDelayed  assignment)  in
generating the next term of the sequence. 
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METHOD 2 - To force Mathematica to store previous terms, we adapt our definition of a[n] as follows: 

ClearAll@aD;

a@0D = 2;

a@1D = 5;

a@n_D := a@nD = 5 a@n - 1D - a@n - 2D
Timing@Table@a@nD, 8n, 0, 25<DD
80., 82, 5, 23, 110, 527, 2525, 12 098, 57965, 277727, 1330670, 6375623, 30547445,

146361602, 701 260 565, 3 359 941 223, 16098445550, 77132286527, 369562987085,

1770682648 898, 8483 850 257 405, 40648568638127, 194758992933230,

933146396 028 023, 4470 972 987 206885, 21421718540006402, 102637619712825125<<
Observe that this methods drastically reduces the run-time to almost zero.  In fact, calculating the first 1000 terms requires less
than a second (output is suppressed):

ClearAll@aD;

a@0D = 2;

a@1D = 5;

a@n_D := a@nD = 5 a@n - 1D - a@n - 2D
Timing@Table@a@nD, 8n, 0, 1000<D;D
80.032, Null<

METHOD 3 - An equivalent approach to Method 2 is to program a loop to generate an inside a Mathematica module (subroutine):

ClearAll@aD;

sequence@nMax_D := Module@8a, n<,

a@0D = 2;

a@1D = 5;

Do@
a@nD = 5 a@n - 1D - a@n - 2D,

8n, 2, nMax<
D;

Table@a@nD, 8n, 0, nMax<D
D

Timing@sequence@1000D;D
80.032, Null<

METHOD 4

One can also use Mathematica’s LinearRecurrence command, which is useful for generating linear recursive sequences.

 LinearRecurrence 

? LinearRecurrence

LinearRecurrence@ker, init, nD gives the sequence of length n

obtained by iterating the linear recurrence with kernel ker starting with initial values init.

LinearRecurrence@ker, init, 8nmin, nmax<D yields terms nmin through nmax in the linear recurrence sequence.  �

Timing@LinearRecurrence@85, -1<, 82, 5<, 1000D;D
80.016, Null<
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Besides  being  simple  to  use,  timing  shows  that  LinearRecurrence  is  twice  as  fast  as  Methods  2  and  3  in  generating  the  first
1000 terms.

NOTE: We can of course use the FindSequenceFunction command to find an explicit formula for an  based on say the first ten
terms:

Simplify@FindSequenceFunction@LinearRecurrence@85, -1<, 82, 5<, 10D, nDD
1

2
-I-5 + 21 M 1

2
I5 + 21 M n

+
1

2
I5 - 21 M n I5 + 21 M

However, we find that this formula is much slower in generating the first 1000 terms:

ClearAll@aD
a@n_D =

1

2
-J-5 + 21 N 1

2
J5 + 21 N n

+
1

2
J5 - 21 N n J5 + 21 N ;

Timing@Table@Simplify@a@nDD, 8n, 1, 1000<D;D
85.163, Null<

This is because considerable computation is required to simplify the binomial expressions for an to an integer value.

Finding Linear Recurrences

If a recurrence is not known for a finite sequence, then the following command attempts to find such a recurrence. 

 FindLinearRecurrence

? FindLinearRecurrence

FindLinearRecurrence@listD finds if possible the minimal linear recurrence that generates list.

FindLinearRecurrence@list, dD finds if possible the linear recurrence of maximum order d that generates list. �

Example 2.15 - Coconut Problem Revisited

Suppose we wish to find a linear recurrrence for the set of solutions rHnL to the Coconut Problem discussed in Example :

FindLinearRecurrence@821, 121, 621, 3121, 15 621<D
86, -5<

Thus, rHnL satisfies the recurrence rHnL = 6 rHn - 1L - 5 rHn - 2L, which we now use to generate the next five solutions:

LinearRecurrence@86, 5<, 821, 121<, 10D
821, 121, 831, 5591, 37 701, 254 161, 1713471, 11551631, 77877141, 525021001<

Example 2.16 - Rearranging the Integers

The integers, commonly expressed as a sequence which runs in both directions, 8 ..., -3, -2, -1, 0, 1, 2, 3, ...<, satisfy a simple
recurrence: n = Hn - 1L + 1.  In this example we will show that rearranging them can produce some rather interesting recurrences
(see [MP]).

a)  Let’s  rearranging  the  integers  into  a  sequence  that  begins  with  0  and  then  alternatees  between  n  and  -n:80, 1, -1, 2, -2, 3, -3, 4, -4, ...<. What recurrence does this sequence satisfy?

FindLinearRecurrence@80, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5<D
8-1, 1, 1<
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b)  How  about  the  recurring  sequence  in  which  every  integer  appears  exactly  twice?   Let’s  try80, 0, 1, 1, -1, -1, 2, 2, -2, -2, 3, 3, -3, -3, 4, 4, -4, -4, ...<:
FindLinearRecurrence@

80, 0, 1, 1, -1, -1, 2, 2, -2, -2, 3, 3, -3, -3, 4, 4, -4, -4, 5, 5, -5, -5<D
81, -2, 2, -1, 1<

c) Find a formula for the recurrence of a corresponding sequence in which every integer occurs exactly n-times?

NOTE: As its name implies, FindLinearRecurrence is only useful in finding constant-coefficient linear recurrences (of homoge-
neous  type).   Thus,  it  is  not  able  to  find  more  general  linear  recurrences  satisfied  by  sequences  such  the  factorials  aHnL = n !,
which has the recurrence 

aH1L = 1; aHnL = n ×aHn - 1L
or nonlinear recurrences such as aHnL = aHn - 1L aHn - 2L with initial values aH0L = 1 and aH1L = 2..   Try it for yourself to see how
FindLinearRecurrence evaluates these examples.

Example 2.17 - Summing House Numbers

A classic problem asks for a house number in Louvain, Belgium where the sum of the house numbers before it equals the sum of
the house numbers after it (see [Pa]).  It is assumed that house numbers take on integers from 1 to k.  For example, if k = 8, then
the desired house number is 6 since

1 + 2 + 3 + 4 + 5 = 7 + 8

However, not all integer values of k will yield an integer solution for h (the reader can easily check this for k = 5).  In fact, as we
shall see later, such solutions are sparse.

More generally, given a positive integer k, we seek to find another positive integer h  such that

(2.11)1 + 2 + ... + Hh - 1L = Hh + 1L + Hh + 2L + ... + k

Simplifying the equation above in Mathematica yields

Simplify@Sum@i, 8i, 1, h - 1<D � Sum@i, 8i, h + 1, k<DD
2 h2 � k + k2

Therefore, it suffices to solve for h and check which values of k will yield integers solutions for h.  Here is a table listing the first
six solutions where k is less than 10,000:

Solutions to the House Number Problem

h k
1 1
6 8
35 49
204 288
1189 1681
6930 9800

NOTE:  Observe  that  Mathematica  used  the  summation  formulas  Úi=1
h-1 i = hHh - 1L �2  and  Új=h+1

k j = Hh + k + 1L Hk - hL �2  to

simplify equation (2.11) above.  Without these formulas, the run time required to generate the table of solutions above would be
much longer.  However, even with these formulas, finding the next five solutions, which grow relatively quickly, will require an
exceedingly long time. 

A more efficient approach to finding additional solutions is to find a recursion satisfied by the first six values for h:
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FindLinearRecurrence@81, 6, 35, 204, 1189, 6930<D
86, -1<

This recursion allows us to now quickly generate the first ten solutions:

LinearRecurrence@86, -1<, 81, 6<, 10D
81, 6, 35, 204, 1189, 6930, 40 391, 235416, 1372105, 7997214<

NOTES:

1. The equation 2 h2
= k2

+ k  can be transformed into a Pell equation by completing the square in k  and making an appropriate
change of variables:

2 h2
= k2

+ k = Hk + 1 �2L2
- 1 �4 Þ 8 h2

= H2 k + 1L2
- 1

Setting x = 2 k + 1 and y = 2 h leads to the Pell equation

x2
- 2 y2

= 1

which we discussed in Example (2.1).  The solutions for Hx, yL correspond precisely to solutions for Hh, kL as seen in the follow-
ing table:

ClearAll@x, yD; Pellsolutionsplus = FindInstance@
Hx^2 - 2 y^2 == 1L && 0 < x < 1000 && 0 < y < 1000, 8x, y<, Integers, 10D

dataPellsolutionsplus = Table@8Sort@PellsolutionsplusD@@k, 1, 2DD,

Sort@PellsolutionsplusD@@k, 2, 2DD<, 8k, 1, Length@PellsolutionsplusD<D
ColumnDataDisplayATable@8n, dataPellsolutionsplus@@n, 1DD,

dataPellsolutionsplus@@n, 2DD, dataPellsolutionsplus@@n, 2DD � 2,

HdataPellsolutionsplus@@n, 1DD - 1L � 2<, 8n, 1, Length@dataPellsolutionsplusD<D,

10, 8"n", "xn", "yn", "hn=yn�2", "kn=Hxn-1L�2"<, "Pell Equations x2-2y2=1"E
88x ® 3, y ® 2<, 8x ® 17, y ® 12<, 8x ® 99, y ® 70<, 8x ® 577, y ® 408<<
883, 2<, 817, 12<, 899, 70<, 8577, 408<<

Pell Equations x2-2y2=1

n xn yn hn=yn�2 kn=Hxn-1L�2
1 3 2 1 1
2 17 12 6 8
3 99 70 35 49
4 577 408 204 288

2. The values for h also correspond to the products xn yn, where Hxn ynL is a solution to the Pell equations x2
- 2 y2

= ±1:

88x ® 1, y ® 1<, 8x ® 7, y ® 5<, 8x ® 41, y ® 29<, 8x ® 239, y ® 169<,
8x ® 3, y ® 2<, 8x ® 17, y ® 12<, 8x ® 99, y ® 70<, 8x ® 577, y ® 408<<
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Pell Equations x2-2y2=±1

n xn yn hn=xn×yn

1 1 1 1
2 3 2 6
3 7 5 35
4 17 12 204
5 41 29 1189
6 99 70 6930
7 239 169 40 391
8 577 408 235 416

Can you explain why?  In fact, the sequence 81, 6, 35, 204, 1189, 6930, ...< are square-triangular numbers (A001109), which we
discuss further in the next chapter.  Note also that the solutions for xn and yn share the same recurrence:

FindLinearRecurrence@Table@dataPellsolutionsplusminus@@n, 1DD,

8n, 1, Length@dataPellsolutionsplusminusD<DD
FindLinearRecurrence@Table@dataPellsolutionsplusminus@@n, 2DD,

8n, 1, Length@dataPellsolutionsplusminusD<DD
82, 1<
82, 1<

FURTHER EXPLORATION: Find a formula involving xn, yn, and y2 n.  Then prove your formula.

2.2.2.2 Special Subsequences

Sequences  sometimes reveal  themselves  through patterns  involving their  subsequences.   Given a  sequence 8an<,  a  subsequence8bn< is a sequence whose elements come from 8an< and are listed in the same order.  More formally, 8bn< is called a subsequence
of 8an< if bn = a f HnL where f HnL is an increasing integer function, i.e., f HnL < f Hn + 1L.  Here are some common subsequences that

we shall consider in this book:

S1. Even Elements: 8a2 n< = 8a0, a2, a4, a6, ...<
S2. Odd Elements: 8a2 n+1< = 8a1, a3, a5, a7, ...<
S3. Elements at Square Positions: 8an2 < = 8a1, a4, a9, a16, ...<
S4. Elements at Powers of 2: 8a2n < = 8a1, a2, a4, a8, ...<
S5.  Elements  at  Prime  Positions:  8aPrimeHnL< = 8a2, a3, a5, a7, ...<,  where  PrimeHnL  refers  to  the  n-th  prime,  starting  with

PrimeH1L = 2.

Example 2.18 Stern’s Diatomic Sequence (Continued)

Let’s continue our search for patterns with the diatomic sequence 8an< discussed in Example 2.13 and compare the sequence itself
with some of its subsequences, for example, those at even positions and at odd positions.
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Diatomic sequence

n an

0 0
1 1
2 1
3 2
4 1
5 3
6 2
7 3
8 1
9 4

Even Elements

n a2n

0 0
1 1
2 1
3 2
4 1
5 3
6 2
7 3
8 1
9 4

Odd Elements

n a2n+1

0 1
1 2
2 3
3 3
4 4
5 5
6 5
7 4
8 5
9 7

Patterns for these subsequences now become clear: a2 n = an and a2 n+1 = an + an+1.

Thus, the diatomic sequence can be alternatively defined through the recurrence 

(2.12): a2 n = an

a2 n+1 = an + an+1

with a0 = 0, a1 = 1.  We generate the first 10 terms using this recurrence to confirm that it agrees with the original definition.

a@0D = 0;

a@1D = 1;

a@n_D := If@Mod@n, 2D � 0, a@n � 2D, a@Hn - 1L � 2D + a@Hn + 1L � 2DD
Table@a@nD, 8n, 0, 9<D
80, 1, 1, 2, 1, 3, 2, 3, 1, 4<

2.2.3 Sequence Transformations
Transformations of sequences allow us to generate new sequences (or subsequences).  Patterns from these new sequences can be
either intereseting in their own right or help us to understand the original sequence.  In this subsection, we shall consider some
well  known  transformations  that  have  become  part  of  the  standard  toolkit  for  studying  integer  sequences  experimentally.   A
sequence transformation T   is a function which defines one sequence, 8bn<, in terms of another sequence, 8an<. 

Special Transformations

Here is a list of some common transformations of a given sequence 8an<.
T1. Partial Sums: bn = a1 + a2 + ... + an

T2. Linear Weighted Partial Sums: bn = a1 + 2 a2 + ... + n ×an

T3. Squares: bn = an
2

T4. Partial Sums of Squares: bn = a1
2

+ a2
2

+ ... + an
2

T5. Product of Two Consecutive Elements: bn = an ×an+1

T6. Determinant: bn = £ an an+1

an+1 an+2
§ = an ×an+2 - an+1

2

Example 2.19 - Sums of Fibonacci Numbers

a)  At  the  beginning  of  this  chapter  we  had  found  a  pattern  for  the  partial  sums  of  the  Fibonacci  sequence  8Fn}  based  on  the
following table of values:
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Fibonacci Numbers Versus Its Partial Sums

n Fn Úk=0
n Fk

0 0 0 = 0
1 1 1 = 0+1
2 1 2 = 0+1+1
3 2 4 = 0+1+1+2
4 3 7 = 0+1+1+2+3
5 5 12 = 0+1+1+2+3+5
6 8 20 = 0+1+1+2+3+5+8
7 13 33 = 0+1+1+2+3+5+8+13
8 21 54 = 0+1+1+2+3+5+8+13+21
9 34 88 = 0+1+1+2+3+5+8+13+21+34

Shifting the column for 8Fn< up two rows revealed the following identity:

(2.13)â
k=0

n

Fk = Fn+2 - 1

For this simple example, we can avoid the above analysis altogether by asking Mathematica to evaluate the partial sums transfor-
mation symbolically, which yields the same identity:

Sum@Fibonacci@kD, 8k, 0, n<D
-1 + Fibonacci@2 + nD

b) Next, we consider the sum of the odd Fibonacci numbers F2 n+1:

Partial Sums of Odd Fibonacci Numbers

n Fn Úk=0
n F2 k+1

0 0 1 = 1
1 1 3 = 1+2
2 1 8 = 1+2+5
3 2 21 = 1+2+5+13
4 3 55 = 1+2+5+13+34
5 5 144 = 1+2+5+13+34+89
6 8 377 = 1+2+5+13+34+89+233
7 13 987 = 1+2+5+13+34+89+233+610
8 21 2584 = 1+2+5+13+34+89+233+610+1597
9 34 6765 = 1+2+5+13+34+89+233+610+1597+4181

It is clear that these sums are given by the Fibonacci numbers at even positions (A001906):

(2.14)â
k=0

n

F2 k+1 = F2 Hn+1L

Again, this identity is confirmed by Mathematica;

Sum@Fibonacci@2 k + 1D, 8k, 0, n<D
Fibonacci@2 H1 + nLD

NOTE:  If  one  uses  the  index  2 k - 1  instead  of  2 k + 1  to  represent  the  odd  Fibonacci  numbers,  then  Mathematica  doesn’t
recognize their partial sums as an identity, but instead gives an explicit formula.

Chapter 2

43

http://oeis.org/A001906


Sum@Fibonacci@2 k - 1D, 8k, 1, n<D
4n I1 + 5 M-2 n J-1 + I 1

2
I1 + 5 MM4 nN

5

This follows from Mathematica’s knowledge of Binet's formula for the Fibonacci numbers:

(2.15)Fn =

J1 + 5 Nn
- J1 - 5 Nn

2n 5

To obtain identity (2.14), it suffices to verify that Mathematica‘s explicit formula is equal to F2 n, which follows from replacing n
by 2 n in Binet’s formula. 

c)  What  do  you  expect  the  formula  to  be  for  the  sum  of  the  even  Fibonacci  numbers  (make  a  guess  before  performing  your
experiment)?  Let's verify your conjecture:

Partial Sums of Odd Fibonacci Numbers

n Fn Úk=0
n F2 k

0 0 0 = 0
1 1 1 = 0+1
2 1 4 = 0+1+3
3 2 12 = 0+1+3+8
4 3 33 = 0+1+3+8+21
5 5 88 = 0+1+3+8+21+55
6 8 232 = 0+1+3+8+21+55+144
7 13 609 = 0+1+3+8+21+55+144+377
8 21 1596 = 0+1+3+8+21+55+144+377+987
9 34 4180 = 0+1+3+8+21+55+144+377+987+2584

This  time  a  slight  twist  emerges  in  the  pattern:  the  sum  of  the  first  n  even  Fibonacci  numbers  is  one  less  than  the  Fibonacci
number F2 n+1:  

(2.16)â
m=1

n

F2 k = F2 n+1 - 1

Mathematica again gives the same identity:

Sum@Fibonacci@2 kD, 8k, 0, n<D
-1 + Fibonacci@1 + 2 nD

d) How about the partial sum of the squares of the Fibonacci numbers?
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Partial Sums of Squares of Fibonacci Numbers

n Fn Úk=0
n Fk

2

0 0 0 = 0
1 1 1 = 0+1
2 1 2 = 0+1+1
3 2 6 = 0+1+1+4
4 3 15 = 0+1+1+4+9
5 5 40 = 0+1+1+4+9+25
6 8 104 = 0+1+1+4+9+25+64
7 13 273 = 0+1+1+4+9+25+64+169
8 21 714 = 0+1+1+4+9+25+64+169+441
9 34 1870 = 0+1+1+4+9+25+64+169+441+1156

Is there a pattern?  Let’s consider their divisors:

dataFibonacciPartialSumsSquares =

Table@8n, Fibonacci@nD, Sum@Fibonacci@kD^2, 8k, 0, n<D,

Divisors@Sum@Fibonacci@kD^2, 8k, 0, n<DD<, 8n, 1, 9<D;

ColumnDataDisplayBdataFibonacciPartialSumsSquares, 10,

:"n", "Fn", "â
k=0

n

Fk
2 ", "Divisors of â

k=0

n

Fk
2">,

"Partial Sums of Squares of Fibonacci Numbers", LeftF
Partial Sums of Squares of Fibonacci Numbers

n Fn Úk=0
n Fk

2 Divisors of Úk=0
n Fk

2

1 1 1 81<
2 1 2 81, 2<
3 2 6 81, 2, 3, 6<
4 3 15 81, 3, 5, 15<
5 5 40 81, 2, 4, 5, 8, 10, 20, 40<
6 8 104 81, 2, 4, 8, 13, 26, 52, 104<
7 13 273 81, 3, 7, 13, 21, 39, 91, 273<
8 21 714 81, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 714<
9 34 1870 81, 2, 5, 10, 11, 17, 22, 34, 55, 85, 110, 170, 187, 374, 935, 1870<

Yes,  in  this  case  each  sum is  equal  to  the  product  of  two  consecutive  Fibonacci  numbers,  also  known as  the  golden  rectangle
numbers (A001654):

Sum@Fibonacci@kD^2, 8k, 1, n<D
Fibonacci@nD Fibonacci@1 + nD

Thus we've discovered the identity:

(2.17)â
m=1

n

Fk
2

= Fn Fn+1

NOTE:  Observe  in  the  table  above  that  the  two  Fibonacci  divisors  Fn  and  Fn+1  seem  to  always  be  consecutive  in  the  list  of
divisors for Úm=1

n Fk
2.  In other words, there are no divisors of Úm=1

n Fk
2 that lie between Fn and Fn+1.  Can you explain why?

e) Let’s apply the determinant transformation to the Fibonacci sequence:
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Determinant Transformation of Fibonacci Sequence

n FnFn+2-Fn+1
2

0 -1
1 1
2 -1
3 1
4 -1
5 1
6 -1
7 1
8 -1
9 1

The pattern in this case is quite simple and yields Cassini’s identity:

(2.18)Fn Fn+2 - Fn+1
2

= H-1Ln+1

NOTE:  Cassini’s  identity  is  the  basis  for  the  following  visual  deception  known  as  the  Missing  Square  Puzzle:  Take  a  square
whose sides are 8 units in length.   Divide the square into four pieces according to the illustration below and rearrange them to
form a 5 x 13 rectangle:

3 5

5

3

5 8

5

However,  the  area  the  square  is  82
= 64 square  units,  whereas  the  area  of  the  rectangle  is  5� 13 = 65 square  units.   What  hap-

pened to the missing square?  The answer lies in the fact that the four pieces do not form an exact rectangle; their inclines have
different slopes.  There is a gap in the shape of a parallelogram in the middle of the rectangle.  This becomes more visible if we
zoom in:

FURTHER EXPLORATION: Explore on your own to find similar patterns for the determinant transformation of even Fibonacci
numbers.  Repeat for the odd Fibonacci numbers.

Example 2.20 - Power Sums
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Example 2.20 - Power Sums

John  Wallis,  in  his  investigation  of  areas  under  polynomial  functions,  discovered  some  remarkable  simple  patterns  regarding
ratios of power sums, i.e., sums of consecutive integers of the form 1p

+ 2p
+ ... + np.   Define

(2.19)RHn, pL =

1p
+ 2p

+ ... + np

np
+ np

+ ... + np
=

Úk=1
n k p

np+1

where the denominator is  the sum of n  copies of np.   Wallis  was able to detect  patterns for RHn, pL,  which we demonstrate for
RHn, 2L.  Towards this end, let’s examine the values of RHn, 2L for 1 £ n £ 10 as shown in the table below.

n RHn,2L
1 02+12

12+12
�

1

2

2 02+12+22

22+22+22
�

5

12

3 02+12+22+32

32+32+32+32
�

7

18

4 02+12+22+32+42

42+42+42+42+42
�

3

8

5 02+12+22+32+42+52

52+52+52+52+52+52
�

11

30

n RHn,2L
6 02+12+22+32+42+52+62

62+62+62+62+62+62+62
�

13

36

7 02+12+22+32+42+52+62+72

72+72+72+72+72+72+72+72
�

5

14

8 02+12+22+32+42+52+62+72+82

82+82+82+82+82+82+82+82+82
�

17

48

9 02+12+22+32+42+52+62+72+82+92

92+92+92+92+92+92+92+92+92+92
�

19

54

10 02+12+22+32+42+52+62+72+82+92+102

102+102+102+102+102+102+102+102+102+102+102
�

7

20

Visual inspection suggests that the numerators in the fractions above consist of the odd integers and the denominators consists of
multiples of 6, although the pattern is not consistent due to cancellation of factors. Mathematica confirms that this is indeed the
pattern:

FindSequenceFunction@81 � 2, 5 � 12, 7 � 18, 3 � 8, 11 � 30, 13 � 36, 5 � 14<, nD
1 + 2 n

6 n

Thus,

(2.20)RHn, 2L =

1 + 2 n

6 n

NOTE : For those with a background in calculus, observe that the limiting value of RHn, 2L as n ® ¥ equals 1/3, which gives the
exact area under the parabola f HxL = x2 along the interval @0, 1D.  This is because RHn, 2L represents an approximation of this area
by n rectangles, which can be demonstrated as follows: partition the interval @0, 1D into n subintervals having a uniform width of
1 �n.  Each subinterval @Hk - 1L �n, k �nD then defines the base of a rectangle Rk  whose height is specified by the value of f HxL at
the right endpoint of the subinterval. The area of each rectangle is given by 

(2.21)areaHRkL =

1

n
× f

k

n
=

k2

n3

and the total of these areas, called a Riemann sum, is precisely RHn, 2L:
(2.22)areaHR1L + areaHR2L + ... + areaHRnL =

12

n3
+

22

n3
+ ... +

n2

n3
=

12
+ 22

+ ... + n2

n3
=

12
+ 22

+ ... + n2

n2
+ n2

+ ... + n2
= RHn, 2L

FURTHER EXPLORATION:

1. Find a formula for RHn, 3L and RHn, 4L.
2. Find a general formula for RHn, pL.

2.2.3.2 Finite Differences

The method of finite  differences is  very powerful  tool  for  determining formulas of  sequences generated by a polynomial.   In a
collection of his 50 most interesting columns (as judged by reader response), The Colossal Book of Mathematics, Martin Gardner
writes (p. 15):
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The method of finite  differences is  very powerful  tool  for  determining formulas of  sequences generated by a polynomial.   In a
collection of his 50 most interesting columns (as judged by reader response), The Colossal Book of Mathematics, Martin Gardner
writes (p. 15):

Recreational  problems  involving  permutations  and  combinations  often  contain  low-order  formulas
that can be correctly guessed by the method of finite differences and later (one hopes ) proved.

Given a sequence 8a1, a2, a3, ...<, we define its first differences (or gap) to be

(2.23)D an = an+1 - an

and more generally its d-th differences (or differences to level d) to be

(2.24)D
d an = D

d-1 an+1 - D
d-1 an

for p ³ 1 where D0 an = an.  

If a formula is known for the m-th differences, then this yields a recurrence for the original sequence by backwards computation:

(2.25)

D
d an = D

d-1 an+1 - D
d-1 an

= D
d-2 an+2 - 2 D

d-2 an+1 + D
d-2 an

= D
d-3 an+3 - 3 D

d-3 an+2 + 3 D
d-3 an+1 - D

d-3 an

...

= â
i=0

d H-1Li d

i
an+d-i

On the other  hand,  if  all  d-differences Dd ak  are  known for  some fixed k,  then an explicit  formula for  the original  sequence is
given by

(2.26)an+k = â
m=0

n K n
m

O D
m ak

See [GKP], pp. 187-192 for a derivation of this formula.

The following Mathematica command allows one to compute the difference table of a sequence to any level:

 Differences

? Differences

Differences@listD gives the successive differences of elements in list.

Differences@list, nD gives the nth
differences of list.

Differences@list, 8n1, n2, …<D gives the successive nk
th

differences at level k in a nested list.  �

Example 2.21

Consider the sequence 8an< consisting of sums of squares as defined by an = 12
+ 22

+ ... + n2:
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Sums of Squares

n an

1 1 � 12

2 5 � 12 + 22

3 14 � 12 + 22 + 32

4 30 � 12 + 22 + 32 + 42

5 55 � 12 + 22 + 32 + 42 + 52

6 91 � 12 + 22 + 32 + 42 + 52 + 62

7 140 � 12 + 22 + 32 + 42 + 52 + 62 + 72

8 204 � 12 + 22 + 32 + 42 + 52 + 62 + 72 + 82

9 285 � 12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92

10 385 � 12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92 + 102

The following array lists the successive differences of 8an< up to level 4:

d Ddan
1 84, 9, 16, 25, 36, 49, 64, 81, 100<
2 85, 7, 9, 11, 13, 15, 17, 19<
3 82, 2, 2, 2, 2, 2, 2<
4 80, 0, 0, 0, 0, 0<

Thus, we have the following formulas for its differences up to level 3:

D an = Hn + 1L2

D
2 an = H2 n + 3L

D
3 an = 2

All higher-order differences are equal to zero.  As a result, the summation in equation (2.26) may be terminated at m = 3, giving
an effective formula for 8an<:

differences@d_, n_D := FindSequenceFunction@Differences@sumsofsquares, dD, nD;

Sum@Binomial@n, mD * differences@m, 0D, 8m, 0, 3<D
n +

3

2
H-1 + nL n +

1

3
H-2 + nL H-1 + nL n

Simplifying the expression above now yields the classic formula for sums of squares:

Factor@Simplify@%DD
1

6
n H1 + nL H1 + 2 nL

NOTE: Mathematica employs similar techniques to obtain the same answer when we ask it to evaluate an:

a@nD
1

6
n H1 + nL H1 + 2 nL

Example 2.22 - Gilbreath’s Conjecture
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Suppose we revise our definition of d-differences to ignore sign and consider only the absolute value of the differences, which
we refer to as  d ¤-differences:

Then computing  d ¤-differences for the sequence of primes reveals an interesting pattern known as Gilbreath’s conjecture: each
sequence of  d ¤-differences, except for the first (d = 1), begins with 1.  This is indicated by the red entries in the array below.

Clear@sD
s@0, n_D := Prime@nD
s@m_, n_D := Abs@s@m - 1, n + 1D - s@m - 1, nDD
TableForm@

Table@If@m > 0 && n � 1, Style@s@m, nD, RedD, s@m, nDD, 8m, 0, 11<, 8n, 1, 12 - m<DD
2 3 5 7 11 13 17 19 23 29 31 37
1 2 2 4 2 4 2 4 6 2 6
1 0 2 2 2 2 2 2 4 4
1 2 0 0 0 0 0 2 0
1 2 0 0 0 0 2 2
1 2 0 0 0 2 0
1 2 0 0 2 2
1 2 0 2 0
1 2 2 2
1 0 0
1 0
1

In 1993, this pattern was verified by Odlyzko [Od] for all primes up to 1013; however, no proof is known of Gilbreath’s conjec-
ture (see [Gi]).

2.2.3.3 Binomial Transform and Inversion

The binomial transform of a sequence 8an< is defined as

(2.27)bHnL = â
k=0

n n
k

aHnL

Recall that 
n
k

 are binomial coefficients defined earlier. 

The inversion of a sequence 8an< (also referred to as the binomial transform) is defined as

(2.28)cHnL = â
k=0

n H-1Lk n
k

aHnL
Inversion refers to the fact that this transformation is equal to its inverse transform so that one can recover 8an<  using the same
formula:

(2.29)aHnL = â
k=0

n H-1Lk n
k

cHnL

Example 2.23

a) Let’s apply the binomial transform to the Fibonacci sequence:
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Clear@bD;

b@n_D = Sum@Binomial@n, kD * Fibonacci@kD, 8k, 0, n<D
-I 1

2
I3 - 5 MMn

+ I 1

2
I3 + 5 MMn

5

Although Mathematica  does not recognize it,  a comparison of the first several values bn  reveals the pattern to be nothing more
than the even Fibonacci numbers, F2 n.

n FHnL Úk=0
n Hn

k
LFHnL

1 1 1
2 1 3
3 2 8
4 3 21
5 5 55
6 8 144
7 13 377
8 21 987
9 34 2584
10 55 6765

Thus,

(2.30)â
k=0

n n
k

Fk = F2 n

Do you think this pattern is special to the Fibonacci sequence?  What about other sequences having the same 81, 1<  recurrence,
but with different initial values, such as the Lucas sequence 8Ln<?

(2.31)Ln+1 = Ln + Ln-1; L0 = 2, L1 = 1

Here are the first ten Lucas numbers, generated using the Mathematica function LucasL.

Table@LucasL@nD, 8n, 0, 9<D
82, 1, 3, 4, 7, 11, 18, 29, 47, 76<

Applying the binomial transform shows that it yields a similar formula as the Fibonacci numbers:

Clear@cD;

c@n_D = Sum@Binomial@n, kD * LucasL@kD, 8k, 0, n<D
1

2
I3 - 5 M n

+
1

2
I3 + 5 M n

Again, comparing the first several values of cn shows that indeed they are the Lucas numbers at even positions (A005248):
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n LHnL Úk=0
n Hn

k
LLHnL

1 1 3
2 3 7
3 4 18
4 7 47
5 11 123
6 18 322
7 29 843
8 47 2207
9 76 5778
10 123 15 127

This leads us to the same identity:

(2.32)â
k=0

n n
k

Lk = L2 n

FURTHER EXPLORATION: Explore whether this identity holds for all 81, 1<-recurrences.

b) Now consider the inversion of the Fibonacci sequence:

Clear@bD;

b@n_D = Sum@H-1L^k * Binomial@n, kD * Fibonacci@kD, 8k, 0, n<D
I 1

2
I1 - 5 MMn

- I 1

2
I1 + 5 MMn

5

Do you  recognize  this  formula?   You  should  since  it  is  nothing  more  than  (the  negative  of)  Binet’s  formula  for  the  Fibonacci
numbers as seen from its initial values given below.

Table@Simplify@b@nDD, 8n, 0, 10<D
80, -1, -1, -2, -3, -5, -8, -13, -21, -34, -55<

Thus,

(2.33)â
k=0

n H-1Lk n
k

Fk = -Fn

NOTE: Observe that Mathematica fails to recognize bn  as the negative Fibonacci numbers, even if we apply the FindSequence-
Function command to its first ten values:

Table@Simplify@b@nDD, 8n, 0, 10<D
FindSequenceFunction@Table@Simplify@b@nDD, 8n, 0, 10<D, nD
80, -1, -1, -2, -3, -5, -8, -13, -21, -34, -55<
1

2
HFibonacci@nD - LucasL@nDL

Let’s proceed to the inversion of the Lucas numbers:
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Clear@cD;

c@n_D = Sum@H-1L^k * Binomial@n, kD * LucasL@kD, 8k, 0, n<D
1

2
I1 - 5 M n

+
1

2
I1 + 5 M n

Here, we find that the Lucas sequence is preserved under inversion:

Table@Simplify@c@nDD, 8n, 0, 10<D
82, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123<

Thus,

(2.34)â
k=0

n H-1Lk n
k

Lk = Ln

NOTE: For those with a background in linear algebra, inversion is an involution, i.e.,  a linear transformation I  whose square is
the identity transformation, I2

= Id.  It follows that 1 and -1 are its only eigenvalues.  The example above demonstrates then that
the  Lucas  and  Fibonacci  sequences  are  eigenvectors  corresponding  to  these  eigenvalues,  respectively.   Can  you  find  other
sequences that are eigenvectors of the inversion transform?

2.2.3.4 Convolution and Generating Functions

Convolution

Given two sequences 8an< and 8bn<, we define their  convolution to be the sequence

(2.35)cn = â
k=0

n

ak bn-k

Convolution arises natural in many applications such as signal processing and statistics.  Later in this chapter, we’ll describe how
convolution formulas can be easily derived for many different sequences using generating functions.

Example 2.24 - Convolution of Recurring Sequences

Let’s  investigate  how  sequences  like  the  Fibonacci  sequence  behave  under  self-convolution.  Mathematica  gives  the  following
unappealing convolution formula:

Clear@cD;

c@n_D = Sum@Fibonacci@kD * Fibonacci@n - kD, 8k, 0, n<D
1

5 I5 + 5 M
I-2 I1 + 5 MM-n II1 + 5 M I4n - I-2 I3 + 5 MMnM + I5 + 5 M I4n + I-2 I3 + 5 MMnM nM

Instead, we’ll call on Mathematica to find a recurrence for 8cn< (A001629):

Table@Simplify@c@nDD, 8n, 1, 10<D
80, 1, 2, 5, 10, 20, 38, 71, 130, 235<
FindLinearRecurrence@80, 1, 2, 5, 10, 20, 38, 71, 130, 235<D
82, 1, -2, -1<

Let’s compare this recurrence with that of the convolved Lucas numbers.
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Clear@cD;

c@n_D = Sum@LucasL@kD * LucasL@n - kD, 8k, 0, n<D
1

5 + 5
I-2 I1 + 5 MM-n

I4n I9 + 5 M + I-2 I3 + 5 MMn I11 + 3 5 M + I5 + 5 M I4n + I-2 I3 + 5 MMnM nM
Table@Simplify@c@nDD, 8n, 1, 10<D
84, 13, 22, 45, 82, 152, 274, 491, 870, 1531<
FindLinearRecurrence@84, 13, 22, 45, 82, 152, 274, 491, 870, 1531<D
82, 1, -2, -1<

Thus,  we see  that  both  recurrences  are  the  same.   As  a  last  experiment,  let’s  convolve  the  Fibonacci  sequence  with  the  Lucas
sequence.

Clear@cD;

c@n_D = Sum@Fibonacci@kD * LucasL@n - kD, 8k, 0, n<D
1

5

1

2
I-1 - 5 M -n

-1 +
1

2
I-3 - 5 M n H1 + nL

dataConvolveFibonacciLucas = Table@Simplify@c@nDD, 8n, 1, 10<D
82, 3, 8, 15, 30, 56, 104, 189, 340, 605<
FindLinearRecurrence@dataConvolveFibonacciLucasD
82, 1, -2, -1<

Again, we obtain the same recurrence for 8cn< = 80, 2, 3, 8, 18, 47, ...< (A099920).  We also observe the following: the first four
initial  values  of  8cn<  are  Fibonacci  numbers.   This  leads  us  to  conjecture  that  perhaps  Fibonacci  numbers  appear  as  factors.
Indeed, by generating a table of values for the ratio cn � Fn (except for n = 0), we discover the following pattern:

n cn�Fn
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
10 11

This results in the identity

(2.36)â
k=0

n

Fk Ln-k = Hn + 1L Fn

FURTHER EXPLORATION: 

a) Investigate whether convolutions of any two 81, 1<-sequences must satisfy a 82, 1, -2, -1<-recurrence.  Can you prove this?
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b) Investigate recurrences for the convolution of 8m, 1<-sequences by experimenting with various positive integer values for m.
Can you find a general formula for the recurrence?

Example 2.25 - Catalan Numbers and Euler’s Polygon Division Problem

In 1751, Leonard Euler proposed to Christian Goldbach the problem of finding the number of ways that a n-sided regular polygon
can be divided into triangles using its diagonals, which we denote by En.  Here are plots of the solutions for the first few values of
n:

n Polygon Divisions

3

4

5

6

Further calculations give us the following values for En up to n = 8:

n Number of solutions
3 1
4 2
5 5
6 14
7 42
8 132

Feeding these values into the FindSequenceFunction yields

FindSequenceFunction@datapolygontriangles, nD
CatalanNumber@-2 + nD

Thus, En is given by the Catalan number Cn-2 (A000108), which is known to have formula 

(2.37)Cn =

H2 nL !

n ! Hn + 1L !

Thus,
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(2.38)En =

H2 Hn - 2LL !

Hn - 2L ! Hn - 1L !

The Catalan numbers  arise  in  many other  applications  in  combinatorics  (see  [St]  for  66 different  ways  of  defining the  Catalan
numbers) and have many interesting properties.  For example, suppose we convolve the sequence of Catalan numbers with itself
by defining

(2.39)cn = â
k=0

n

Ck Cn-k

Here’s a table listing the first ten values of cn:

n CHnL cHnL
0 1 1
1 1 2
2 2 5
3 5 14
4 14 42
5 42 132
6 132 429
7 429 1430
8 1430 4862
9 4862 16796

This shows that convolution shifts the Catalan numbers (as well as the values En) and yields the following recurrence formula:

(2.40)Cn+1 = â
k=0

n

Ck Cn-k

Generating Functions

An  extremely  useful  analytic  approach  to  studying  convolution  of  sequences  is  via  generating  functions.   A  function  GHxL  is
called a generating function for a sequence 8an< if its elements describe the power series coefficients of GHxL, i.e.

(2.41)GHxL = â
n=0

¥

an xn

The connection with  convolution arises  when the  generating functions  for  two sequences  8an<  and 8bn<  are  multiplied together;
their product yields a function whose power series coefficients give precisely the convolution of  8an< and 8bn<:

(2.42)â
i=0

¥

ai xi â
j=0

¥

b j x j
= â

i=0

¥ â
j=0

¥

ai b j xi+ j
= â

n=0

¥ â
k=0

n

an bn-k xn
= â

n=0

¥

cn xn

There  are  many techniques  for  finding the  generating  function  for  a  given sequence.   If  the  sequence  has  a  recurrence,  then  a
formula  for  the  generating  function  can  typically  be  found  by  manipulating  its  power  series.  We  demonstrate  this  with  some
examples.

Example 2.26 - Generating function for the Fibonacci sequence

Let Fn denote the Fibonacci sequence as usual and define its generating function by

GHxL = â
n=0

¥

Fn xn

We then translate the recurrence for the Fibonacci numbers, Fn = Fn-1 + Fn-2, into an identity involving GHxL as follows:
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GHxL = â
n=0

¥

Fn xn
= 0 + x + â

n=2

¥

Fn xn
= x + â

n=2

¥ HFn-1 + Fn-2L xn
= x + x â

n=2

¥

Fn-1 xn-1
+ x2 â

n=2

¥

Fn-2 xn-2
= x + x GHxL + x2 GHxL

Solving for GHxL gives

(2.43)GHxL =

x

1 - x - x2

We can obtain the same formulas using Mathematica‘s GeneratingFunction command.

GeneratingFunction@Fibonacci@nD, n, xD
-

x

-1 + x + x2

Here is a description of the GeneratingFunction command:

 GeneratingFunction

? GeneratingFunction

GeneratingFunction@expr, n, xD gives the generating function

in x for the sequence whose nth
series coefficient is given by the expression expr.

GeneratingFunction@expr, 8n1, n2, …<, 8x1, x2, …<D gives the multidimensional generating

function in x1, x2, … whose n1, n2, … coefficient is given by expr. �

A related command, FindGeneratingFunction, which combines the two functions GeneratingFunction and FindSequenceFunc-
tion, is useful when a formula for 8an< is not immediately available.

 FindGeneratingFunction

? FindGeneratingFunction

FindGeneratingFunction@8a1, a2, …<, xD attempts to find a simple generating function in x whose nth
series coefficient is an.

FindGeneratingFunction@88n1, a1<, 8n2, a2<, …<, xD
attempts to find a simple generating function whose ni

th
series coefficient is ai.  �

Example 2.27 - Generating Functions and Partitions

Generating functions are useful  for counting partitions of  integers.   To demonstrate this,  consider the following product  of  two
power series where we multiply term by term and carefully keep track of exponents:

(2.44)

â
n=0

¥

cn xn
= â

i=0

¥

xi â
j=0

¥

x2 j
= Ix0

+ x1
+ x2

+ x3
+ ...M Ix0

+ x2×1
+ x2×2

+ x2×3
+ ...M

= x0+0
+ x1+0

+ Ix2+0
+ x0+2×1M + Ix3+0

+ x1+2×1M + Ix4+0
+ x2+2×1

+ x0+2×2M + ...

= x0
+ x1

+ 2 x2
+ 2 x3

+ 3 x4
+ ...

Thus, we see that the coefficient cn counts the number of ways that the integer n can be partitioned as a sum of i copies of 1 and j
copies of 2.  For example, if n = 4, then the expansion above shows that there are three such partitions: 

4 = 1 + 1 + 1 + 1
4 = 1 + 1 + 2
4 = 2 + 2  
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Here's a table listing the number of partitions for n ranging from 1 to 10:

n Number of Partitions
1 1
2 2
3 2
4 3
5 3
6 4
7 4
8 5
9 5
10 6

The  pattern  is  clear:  the  values  of  8cn<  consist  of  positive  integers  listed  in  order,  but  repeated  (except  for  the  first  value)
(A008619).  To prove this pattern, we compute the generating functions for the two given power series Úi=0

¥ xi  and Új=0
¥ x2 j  by

evaluating them directly in Mathematica: (the GeneratingFunction command is not necessary in this case):

G1 = Sum@x^i, 8i, 0, Infinity<D
1

1 - x

G2 = Sum@x^H2 iL, 8i, 0, Infinity<D
1

1 - x2

Multiplying these two functions together gives us the generating function for Ún=0
¥ cn xn.  To obtain a formula for cn, it suffices to

use Mathematica’s SeriesCoefficient command 

 SeriesCoefficient

? SeriesCoefficient

SeriesCoefficient@series, nD finds the coefficient of the nth
-order term in a power series in the form generated by Series.

SeriesCoefficient@ f , 8x, x0, n<D finds the coefficient of Hx - x0Ln
in the expansion of f about the point x = x0.

SeriesCoefficientA f , 8x, x0, nx<, 9y, y0, ny=, …E finds a coefficient in a multivariate series.  �

SeriesCoefficient@G1 * G2, 8x, 0, n<D
1

4
H3 + H-1Ln + 2 nL n ³ 0

0 True

Thus,

(2.45)cn =

1

4
H3 + H-1Ln

+ 2 nL
This  confirms  the  pattern  that  we  had  observed  in  the  table  above.   Of  course,  we  could  have  obtained  the  same  answer  by
computing the coefficient sequence 8cn< as the convolution of the coefficient sequences 8an< and 8bn< corresponding to the series
Ún=0

¥ an xn
= Úi=0

¥ xi  and Ún=0
¥ bn xn

= Új=0
¥ x2 j, respectively.  Since an = 1 and bn = H1 + H-1LnL �2, we find their convolution gives

exactly the same formula: 
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Sum@1 * H1 + H-1L^Hn - kLL � 2, 8k, 0, n<D
1

4
H3 + H-1Ln + 2 nL

An equivalent formula in terms of the floor function is given by cn = e n+2

2
u.

NOTE:  It  makes  sense  to  assume  in  our  definition  of  a  generating  function  that  GHxL = Ún=0
¥ an xn  as  a  power  series  should

converge on some interval of non-zero length; however, this is not always necessary.  Even if Ún=0
¥ an xn  is a divergent series, we

can  still  algebraically  manipulate  Ún=0
¥ an xn  as  a  formal  power  series  and  hope  to  get  useful  results  (see  [GKP],  p.  346  for  an

example of this involving the sequence of factorials).

2.2.3.5 Continued Fractions

Let a0 be an integer and 8a1, a2, ..., an< a finite set of positive integers.  The expression

(2.46)

pn

qn

= a0 +

1

a1 +
1

a2+
1

...+
1

an

is  called  a  finite  continued  fraction  having  8a1, a2, ..., an<  as  quotients.   It  is  also  denoted  by  @a0; a1, ..., anD.   If  the  quotients8a1, a2, ...<  is  infinite,  then  the  corresponding  continued  fraction  @a0; a1, a2, ...D  is  said  to  be  infinite,  viewed  as  a  limit  of@a0; a1, a2, ..., anD (called its convergents), i.e.,

(2.47)@a0; a1, a2, ...D = lim
n®¥

@a0; a1, a2, ..., anD
Thus, the convergents pn �qn = @a0; a1, a2, ..., anD provide rational approximations of x = @a0; a1, a2, ...D.
Generating Continued Fractions

The continued fraction representation of a real value x can be generated from its integer part dxt and fractional part x - dxt and
repeating this process as follows:

a0 = dxt; f1 = x - dxt
a1 =

1

f1
; f2 = a1 - da1t

a2 =

1

f2
; f3 = a2 - da2t

...

an =

1

fn
; f4 = a3 - da3t

...

If fn = 0 for some n, then this process is terminated and the resulting continued fraction for x = @a0; a1, a2, ..., anD is finite.

Example 2.28 - Continued Fraction for Π

 Let x = Π.  Then the first three quotients of the continued fraction for Π are given by

a0 = dΠt = 3; f1 = Π - dΠt = 0.14159 ...

a1 =

1

f1
= 7; f2 = a1 - da1t = 0.06251 ...
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a2 =

1

f2
= 15; f3 = a2 - da2t = 0.99659 ...

a3 =

1

f2
= 1; f4 = a3 - da3t = 0.00341 ...

Mathematica has built-in commands to generate continued fractions and their convergents, for example:

ContinuedFraction@Pi, 10D
83, 7, 15, 1, 292, 1, 1, 1, 2, 1<
Convergents@Pi, 10D
:3, 22

7
,
333

106
,
355

113
,
103 993

33 102
,
104348

33215
,
208341

66317
,
312689

99532
,
833719

265381
,
1146408

364913
>

Unfortunately, these quotients do not follow a recognizable pattern.  However, there are generalized continued fractions of Π that
do follow regular patterns (see [La]).

NOTE: Observe that the convergents above provide better and better approximations of Π, as they should since the sequence of
convergents must converge to Π:

dataconvergentspi =

Table@8n, Row@8Convergents@Pi, 10D@@nDD, "=", N@Convergents@Pi, 10D@@nDD, 9D<D<,

8n, 1, 10<D;

ColumnDataDisplay@dataconvergentspi, 10, 8"n", "pn�qn"<, "Convergents of Π"D
Convergents of Π

n pn�qn
1 3=3.00000000

2 22

7
=3.14285714

3 333

106
=3.14150943

4 355

113
=3.14159292

5 103993

33102
=3.14159265

6 104348

33215
=3.14159265

7 208341

66317
=3.14159265

8 312689

99532
=3.14159265

9 833719

265381
=3.14159265

10 1146408

364913
=3.14159265

Example 2.29 - Continued Fractions and Pell Equations

 Let x = 2 .  Then the first ten quotients and convergents are

ContinuedFraction@Sqrt@2D, 10D
81, 2, 2, 2, 2, 2, 2, 2, 2, 2<
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Convergents@Sqrt@2D, 10D
:1, 3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
,
1393

985
,
3363

2378
>

Do you recognize the numerators 81, 3, 7, 17, 41, 99, 239, ...< and denominators 81, 2, 5, 12, 29, 70, 169, ...< in the convergents
above?  They are precisely solutions to the Pell equations x2

- 2 y2
= ±1 discussed in Example (2.1).

FURTHER EXPLORATION:

1. Explain why the quotients above are all the same, i.e., an = 2 for all integers n ³ 1.

2. Repeat this example by computing the quotients and convergents of x = 3 .  Find patterns for them and determining whether
the numerators and denominators of the convergents satisfy Pell equations of any kind.

3. What about x = n  where n is a positive integer?

2.2.4 Methods from Number Theory

2.2.4.1 Divisors and Prime Numbers

An integer d  is called a divisor (or factor) of n if d  divides n.  For example, 4 is a divisor of 12 since 4 divides 12 (i.e. 12 �4 = 3).
The Mathematica command Divisors will generate a list of all the divisors of a given integer.  For example, all the divisors of 20
are

Divisors@20D
81, 2, 4, 5, 10, 20<

A positive integer p > 1 is called prime if the only divisors are 1 and itself; otherwise, it is said to be composite.  For example, 13
is prime since the only divisors are 1 and 13; however, 15 is composite since 15 = 3 ×5.  One can use the Mathematica command
PrimeQ to determine whether an integer is prime.

PrimeQ@13D
PrimeQ@15D
True

False

Example 2.30 - Prime Factorizations of 2n - 1

Let’s consider the prime factorizations of 2n
- 1.

n Prime Factors of 2n-1

1 1 � 11

2 3 � 31

3 7 � 71

4 15 � 31 × 51

5 31 � 311

6 63 � 32 × 71

7 127 � 1271

8 255 � 31 × 51 × 171

9 511 � 71 × 731

10 1023 � 31 × 111 × 311
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For n = 2, 4, 6, and 10, we observe that n + 1 (namely 3, 5, 7, and 11) appears as a prime factor of 2n
- 1.  Let’s confirm this for

the first twenty prime values of n + 1:

n Prime Factors of 2n-1

1 1 � 11

2 3 � 31

4 15 � 31 × 51

6 63 � 32 × 71

10 1023 � 31 × 111 × 311

12 4095 � 32 × 51 × 71 × 131

16 65535 � 31 × 51 × 171 × 2571

18 262143 � 33 × 71 × 191 × 731

22 4194303 � 31 × 231 × 891 × 6831

28 268435455 � 31 × 51 × 291 × 431 × 1131 × 1271

This leads to the following result:

Theorem 2.2: if n + 1 is an odd prime, then 2n
- 1 is divisible by n + 1

Is  the  converse  true?   Unfortunately,  no.   There  are  composite  numbers  n + 1  that  divide  2n
- 1,  the  first  case  being

n + 1 = 341 = 11´31 which divides 2340
- 1:

Do@
If@Mod@2^n - 1, n + 1D � 0 && ! PrimeQ@n + 1D, Print@n + 1DD, 8n, 1, 1000<D

341

561

645

2340-1 = 31 × 52 × 111 × 311 × 411 × 1371 × 9531 × 10211 × 44211 × 263171 × 436911 × 1310711 × 5508011 ×

236500611 × 7226904 352 843 746 8411 × 9 5209728063337584311 × 268314230360653526111

Example 2.31 - Sum of Four Squares

Lagrange’s Four-Square Theorem states that any natural number n can be written as a sum of four squares of integers: 

(2.48)n1
2

+ n2
2

+ n3
2

+ n4
2

= n

But how many ways are there of doing this for each n, i.e. how many solutions are of the form 8n1, n2, n3, n4< where we distin-
guish sign and order?  Here are several solutions for n = 2:

12
+ 12

+ 02
+ 02

= 2

02
+ 02

+ 12
+ 12

= 2

H-1L2
+ H-1L2

+ 02
+ 02

= 2

We denote by rd HnL the number of ways of writing n as a sum of d  squares.  Then r4H2L = 24.  Here's a Mathematica command
called  SumsOfSquaresRepresentations  for  generating  all  such  representations  (see  http://mathworld.wolfram.com/-
SumofSquaresFunction.html):
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SumOfSquaresRepresentations@4, 2D
88-1, -1, 0, 0<, 8-1, 0, -1, 0<, 8-1, 0, 0, -1<, 8-1, 0, 0, 1<,

8-1, 0, 1, 0<, 8-1, 1, 0, 0<, 80, -1, -1, 0<, 80, -1, 0, -1<, 80, -1, 0, 1<,
80, -1, 1, 0<, 80, 0, -1, -1<, 80, 0, -1, 1<, 80, 0, 1, -1<, 80, 0, 1, 1<,
80, 1, -1, 0<, 80, 1, 0, -1<, 80, 1, 0, 1<, 80, 1, 1, 0<, 81, -1, 0, 0<,
81, 0, -1, 0<, 81, 0, 0, -1<, 81, 0, 0, 1<, 81, 0, 1, 0<, 81, 1, 0, 0<<

In addition, Mathematica has a built-in command for calculating rd HnL: SquaresR.

 SquaresR

? SquaresR

SquaresR@d, nD gives the number of ways rdHnL to represent the integer n as a sum of d squares. �

SquaresR@4, 2D
24

Here's a table listing the first ten values of r4HnL (A000118):

n r4HnL
1 8
2 24
3 32
4 24
5 48
6 96
7 64
8 24
9 104
10 144

Let’s now compare these values with the divisors of n, and in particular with the sum of the divisors of n:

n r4HnL Divisors of n Sum of Divisors of n
1 8 81< 1
2 24 81, 2< 3
3 32 81, 3< 4
4 24 81, 2, 4< 7
5 48 81, 5< 6
6 96 81, 2, 3, 6< 12
7 64 81, 7< 8
8 24 81, 2, 4, 8< 15
9 104 81, 3, 9< 13
10 144 81, 2, 5, 10< 18

Do  you  see  a  connection  r4HnL  and  the  sum  of  the  divisors  of  n?   It  seems  that  the  former  is  8  times  the  latter,  although  this
relationship fails for n = 4 and n = 8.  However, if we ignore the divisors 4 and 8, then it  is true.  Let’s confirm this for higher
values of n:
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n r4HnL Divisors of n Sum of Divisors of n
11 96 81, 11< 12
12 96 81, 2, 3, 4, 6, 12< 28
13 112 81, 13< 14
14 192 81, 2, 7, 14< 24
15 192 81, 3, 5, 15< 24
16 24 81, 2, 4, 8, 16< 31
17 144 81, 17< 18
18 312 81, 2, 3, 6, 9, 18< 39
19 160 81, 19< 20
20 144 81, 2, 4, 5, 10, 20< 42

Thus, we see that the PHnL depends only on the sum of those divisors that are NOT divisible by 4.

Theorem: The number of representations of n ³ 1 as the sum of four squares is given by

(2.49)
r4HnL = 8 â

d n,4Id

d

Sum of divisors function:

The sum of the divisors of a positive integer n is traditionally defined by the sigma function, i.e. ΣHnL = Úd n
� d.  In Mathematica,

the sigma function is defined by the command DivisorSigma.  If the sum of the divisors equals 2 n, i.e. ΣHnL = 2 n, then n is said
to be a perfect number.

 DivisorSigma

? DivisorSigma

DivisorSigma@k, nD gives the divisor function ΣkHnL.  �

For example, the divisors of n = 6 are 81, 2, 3, 6<.  Thus, ΣH6L = 12 and so 6 is a perfect number.

DivisorSigma@1, 6D
12

Some higher perfect numbers are 28, 496, and 8128.  It is unknown whether there are infinite many perfect numbers.

Example 2.32 - Sigma function at prime values 

Below is a table listing the first thirty values of ΣHnL.
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n ΣHnL
1 1
2 3
3 4
4 7
5 6
6 12
7 8
8 15
9 13
10 18

n ΣHnL
11 12
12 28
13 14
14 24
15 24
16 31
17 18
18 39
19 20
20 42

n ΣHnL
21 32
22 36
23 24
24 60
25 31
26 42
27 40
28 56
29 30
30 72

No pattern emerges for ΣHnL  until we restrict our attention to certain subsequences.  The following table, which lists ΣHnL  for n
prime, clearly shows that ΣHnL = n + 1 in this case:

n ΣHnL
2 3
3 4
5 6
7 8
11 12
13 14
17 18
19 20
23 24
29 30

This of course is due to the fact that any prime integer n has only two divisors, 1 and n (itself).

The next table lists the values of ΣHnL for those values of n equal to a power of 2:

n ΣHnL
2 3
4 7
8 15
16 31
32 63

It appears that ΣH2nL = 2n+1
- 1 and follows from the fact that the divisors of 2n  are all the non-negative powers of 2 less than or

equal to 2n.  Thus, ΣH2nL = 20
+ 21

+ ... + 2n
= 2n+1

- 1.

Euler's totient (phi) function:

Two positive integers m and n are said to be relatively prime if they have no commond divisor other than 1.  For example, 5 and
11 are relatively prime.  However, 6 and 15 are NOT relatively prime, having 3 as a common divisor.

The totient (phi) function ΦHnL is defined to be the number of positive integers less than or equal to n that are relatively prime to
n. The corresponding command in Mathematica is EulerPhi:

 EulerPhi
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? EulerPhi

EulerPhi@nD gives the Euler totient function ΦHnL.  �

For example, ΦH6L = 2 since there are two positive integers less than or equal to 6 that are relatively prime to 6, namely 1 and 5:

EulerPhi@6D
2

Example 2.33 - Euler totient function

a) The following table lists the values of ΦHnL for the first thirty positive integers:

Euler's Φ function

n ΦHnL
1 1
2 1
3 2
4 2
5 4
6 2
7 6
8 4
9 6
10 4

n ΦHnL
11 10
12 4
13 12
14 6
15 8
16 8
17 16
18 6
19 18
20 8

n ΦHnL
21 12
22 10
23 22
24 8
25 20
26 12
27 18
28 12
29 28
30 8

If we again focus only on primes values of n, then the following pattern emerges:

ΦHnL for n prime

n ΦHnL
2 1
3 2
5 4
7 6
11 10
13 12
17 16
19 18
23 22
29 28

Thus, ΣHnL = n - 1 whenever n is prime.  This is because every positive integer less than n is relatively prime to n (there are n - 1
such integers).

b) It's clear from the results that we’ve obtained so far that ΦHnL + ΣHnL = 2 n whenever n is prime.
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ColumnDataDisplay@data, 10, 8"n", "ΣHnL+ΦHnL"<, ""D

n ΣHnL+ΦHnL
2 4
3 6
5 10
7 14
11 22
13 26
17 34
19 38
23 46
29 58

Let’s generalize this problem and consider those values for n where ΦHnL + ΣHnL = k n for some fixed positive integer k > 2.  For
example, here are some solutions for k = 3:

SigmaPhiSum@k_, number_D := Module@8i = 0, n = 1, list = 8<<,

While@i < number,

If@DivisorSigma@1, nD + EulerPhi@nD � k * n, AppendTo@list, nD; i++D; n++D; list

D
SigmaPhiSum@3, 6D
8312, 560, 588, 1400, 85 632, 147492<

Observe that these solutions are of the form 4 m, i.e., divisible by 4.

Mod@SigmaPhiSum@3, 6D, 4D
80, 0, 0, 0, 0, 0<

Here are some interesting open questions involving solutions to ΦHnL + ΣHnL = k n (see [Gu]):

1. Are there infinitely many solutions for each k?

2. Is there an odd solution?

3. The solutions above are of the form 4 m?  Are there solutions of the form 4 m + 2?

c) What about the product ΣHnL ΦHnL?  Do you recognize a pattern?

n ΣHnL×ΦHnL
1 1
2 3
3 8
4 14
5 24
6 24
7 48
8 60
9 78
10 72

Again, if we focus on the primes, then we observe that Σ HnL Φ HnL is always one less than a square:
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n Prime

n ΣHnL×ΦHnL
2 3
3 8
5 24
7 48
11 120
13 168
17 288
19 360
23 528
29 840

But note that there are composite integers n where ΣHnL ΦHnL is also one less than a square.

SigmaPhiProduct@number_D := Module@8i = 0, n = 1, list = 8<<,

While@i < number, If@Sqrt@DivisorSigma@1, nD * EulerPhi@nD + 1D �

IntegerPart@Sqrt@DivisorSigma@1, nD * EulerPhi@nDD + 1D,

AppendTo@list, nD; i++D; n++D; list

D
SigmaPhiProduct@10D
82, 3, 5, 6, 7, 11, 13, 17, 19, 22<

Here are some open problems involving Σ HnL Φ HnL (see [Gu]):

1. Are there infinitely values for n where Σ HnL Φ HnL is a perfect square?

2. Are there infinitely many composite values for n where Σ HnL Φ HnL is one less than a square?

2. Characterize those values for n where Σ HnL Φ HnL is divisible by n.

Example 2.34 - Mersenne Primes

Consider the sequence aHnL = 2n
- 1.

a@n_D := 2^n - 1;

a) Let’s investigate when 2n
- 1 is prime.  The table below tell us which of the first 20 elements of aHnL are prime:

Table 2.1: Values of 2n - 1

n 2n-1 2n-1 prime

1 1 False
2 3 True
3 7 True
4 15 False
5 31 True
6 63 False
7 127 True
8 255 False
9 511 False
10 1023 False

n 2n-1 2n-1 prime

11 2047 False
12 4095 False
13 8191 True
14 16 383 False
15 32 767 False
16 65 535 False
17 131 071 True
18 262 143 False
19 524 287 True
20 1048575 False
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If  we examine the values for n  in which is  2n
- 1 is  prime (called Mersenne primes),  we find that  they are also prime, namely

n = 2, 3, 5, 7, 13, 17, 19.  Thus, we’ve discovered the result that

Theorem: If 2n
- 1 is prime, then n is prime.

NOTE: 

1. Observe that the converse is false since n = 11 is prime, but 211
- 1 = 2047 = 23 ×89 is NOT prime.

2. Euclid proved that if 2n
- 1 is prime, then 2n-1 H2n

- 1L is an even perfect number.  Euler showed that the converse is also true.
However, it is not known whether there exists odd perfect numbers.  See Wikipedia entry [Wi-Pe].

2.2.4.2 Congruence and Modular Arithmetic

Every integer n, when divided by a positive integer p, leaves a remainder r.  In other words, n can be written in the form

(2.50)n = q × p + r

with 0 £ r £ n - 1.  Using this fact, we define the congruence of n modulo p to be equal to r (called the residue) and write this in
shorthand as r º n Hmod pL.   In the special case where p = 2, then r = 0 or 1 and determines the parity of n, i.e. n is even if r = 0
and n is odd if r = 1.

Example 2.35 - Sums of Two Squares

In this example we investigate which positive integers n can be expressed as a sum of two square integers, i.e. n1
2

+ n2
2

= n, where

signs and order are distinguished.  Then recall that r2HnL denotes the number of solutions for 8n1, n2<.  Then r2H5L = 8.  Here are
the 8 different representations obtained using the SumOfSquaresRepresentations command discussed in Example 2.31.  

SumOfSquaresRepresentations@2, 5D
88-2, -1<, 8-2, 1<, 8-1, -2<, 8-1, 2<, 81, -2<, 81, 2<, 82, -1<, 82, 1<<

Also recall that we can compute r2H5L using the SquaresR command.

SquaresR@2, 5D
8

Here’s a table listing the first 20 values of r2HnL (A004018):

n r2HnL
1 4
2 4
3 0
4 4
5 8
6 0
7 0
8 4
9 4
10 8

n r2HnL
11 0
12 0
13 8
14 0
15 0
16 4
17 8
18 4
19 0
20 8

No pattern is evident from the table above.  Let’s restrict our attention then to prime integers:
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n r2HnL
2 4
3 0
5 8
7 0
11 0
13 8
17 8
19 0
23 0
29 8

n r2HnL
31 0
37 8
41 8
43 0
47 0
53 8
59 0
61 8
67 0
71 0

We find that starting with n = 3, the values of r2HnL  are nonzero for n = 5, 13, 17, 29, 37, 41, 53, 61.  Is their a pattern to these
values?  To discover the answer, let’s compute the residues of n (modulo 4).

n n Hmod 4L r2HnL
2 2 4
3 3 0
5 1 8
7 3 0
11 3 0
13 1 8
17 1 8
19 3 0
23 3 0
29 1 8

n n Hmod 4L r2HnL
31 3 0
37 1 8
41 1 8
43 3 0
47 3 0
53 1 8
59 3 0
61 1 8
67 3 0
71 3 0

Thus, it is now clear that odd prime p is expressible as a sum of two squares if and only if p º 1 Hmod 4L.
Example 2.36 - Sum of Remainders and Perfect Numbers

a) Let’s tabulate the values n mod d for 1 £ n £ 10 and 1 £ d £ 10:

Table 2.2: Values of n mod d

d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
n=1 0 1 1 1 1 1 1 1 1 1
n=2 0 0 2 2 2 2 2 2 2 2
n=3 0 1 0 3 3 3 3 3 3 3
n=4 0 0 1 0 4 4 4 4 4 4
n=5 0 1 2 1 0 5 5 5 5 5
n=6 0 0 0 2 1 0 6 6 6 6
n=7 0 1 1 3 2 1 0 7 7 7
n=8 0 0 2 0 3 2 1 0 8 8
n=9 0 1 0 1 4 3 2 1 0 9
n=10 0 0 1 2 0 4 3 2 1 0

Let’s consider gaps (successive differences) along each column.  Define  D rd HnL = Hn + 1L Hmod dL - n Hmod dL.  Then we see that
the values of D rd HnL are either 1 or 1 - d (except for the first column):

Table 2.3: Values of D rdHnL
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d=1 d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
n=1 0 -1 1 1 1 1 1 1 1 1
n=2 0 1 -2 1 1 1 1 1 1 1
n=3 0 -1 1 -3 1 1 1 1 1 1
n=4 0 1 1 1 -4 1 1 1 1 1
n=5 0 -1 -2 1 1 -5 1 1 1 1
n=6 0 1 1 1 1 1 -6 1 1 1
n=7 0 -1 1 -3 1 1 1 -7 1 1
n=8 0 1 -2 1 1 1 1 1 -8 1
n=9 0 -1 1 1 -4 1 1 1 1 -9
n=10 0 1 1 1 1 1 1 1 1 1

A  little  analysis  reveals  that  the  choice  of  value  depends  on  whether  or  not  d  divides  Hn + 1L.   Thus,  we  have  the  following
formula:

(2.51)D rd HnL = : 1 - d, if d Hn + 1L
1, otherwise

b)  Define  the  sum of  remainders  function  ΡHnL = Úd=1
n Hn mod dL  which  sums the  first  n  elements  along  each  row in  Table  2.2.

Here’s a listing of the first fifty values of ΡHnL (A004125):

Table 2.4: Sums of Remainders Function ΡHnL
Ρ@n_D := Sum@Mod@n, dD, 8d, 1, n<D

n ΡHnL
1 0
2 0
3 1
4 1
5 4
6 3
7 8
8 8
9 12
10 13

n ΡHnL
11 22
12 17
13 28
14 31
15 36
16 36
17 51
18 47
19 64
20 61

n ΡHnL
21 70
22 77
23 98
24 85
25 103
26 112
27 125
28 124
29 151
30 138

n ΡHnL
31 167
32 167
33 184
34 197
35 218
36 198
37 233
38 248
39 269
40 258

n ΡHnL
41 297
42 284
43 325
44 328
45 339
46 358
47 403
48 374
49 414
50 420

Observe that certain values repeat:ΡH1L = ΡH2L = 0, ΡH3L = ΡH4L = 1, ΡH7L = ΡH8L = 8, ΡH15L = ΡH16L = 36, ΡH31L = ΡH32L = 167.

These positions correspond to powers of 2.  Does this pattern hold for all powers of 2?  Let's verify for larger values:

Table 2.5: Values of ΡH2nL
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n 2n ΡH2n-1L ΡH2nL
1 2 0 0
2 4 1 1
3 8 8 8
4 16 36 36
5 32 167 167
6 64 693 693
7 128 2849 2849
8 256 11459 11 459
9 512 46244 46 244
10 1024 185 622 185 622

This confirms the following pattern:

ΡH2nL = ΡH2n
- 1L for every positive integer n.

Can you prove this?

c)  The  pattern  ΡH2nL = ΡH2n
- 1L  suggests  that  we  should  examine  successive  differences  of  ΡHnL.   Define

D ΡHnL = ΡHn + 1L - ΡHnL.  Here are the first fifty values of D ΡHnL:
Table 2.6: Values of DΡHnL

Gaps of ΡHnL
n DΡHnL
1 0
2 1
3 0
4 3
5 -1
6 5
7 0
8 4
9 1
10 9

n DΡHnL
11 -5
12 11
13 3
14 5
15 0
16 15
17 -4
18 17
19 -3
20 9

n DΡHnL
21 7
22 21
23 -13
24 18
25 9
26 13
27 -1
28 27
29 -13
30 29

n DΡHnL
31 0
32 17
33 13
34 21
35 -20
36 35
37 15
38 21
39 -11
40 39

n DΡHnL
41 -13
42 41
43 3
44 11
45 19
46 45
47 -29
48 40
49 6
50 29

Are there any other patterns besides D ΡH2n
- 1L = 0?  Suppose we investigate those values for n where D ΡHnL = 1.  However, an

experimental search of the first 10,000 values shows that there are only three cases where D ΡHnL = 1, namely n = 2, 9, 135.

DΡ@n_D := Ρ@n + 1D - Ρ@nD;

Do@
If@Ρ@n + 1D - Ρ@nD � 1, Print@nDD, 8n, 1, 10 000<D

2

9

135

Thus,  no  pattern  seems  to  exist.   On  the  other  hand,  let’s  consider  when  D ΡHnL = -1.   Here,  we  find  that  for  the  first  10,000
values, there are four cases:

Do@
If@Ρ@n + 1D - Ρ@nD � -1, Print@nDD, 8n, 1, 10 000<D
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5

27

495

8127

A  pattern  now  emerges:  adding  1  to  these  values  for  n  give  the  perfect  numbers  6,  28,  496,  and  8128.   This  leads  us  to  the
following result:

Theorem: n is perfect if and only if D Ρ Hn - 1L = -1.

See [Sp] for a proof of this theorem.

NOTE: Observe the false pattern in Table 2.6: if n = 10 p,  then ΡHnL = 10 q + 9 for some integer q.   For example, D ΡH50L = 29.
Alas, this fails for n = 80 since D ΡH80L = 40.

Example 2.37

Let’s consider the values of  2n
- 1 Hmod nL:

Table 2.7: Values of 2n - 1 Hmod nL

n 2n-1 mod n

1 0
2 1
3 1
4 3
5 1
6 3
7 1
8 7
9 7
10 3

n 2n-1 mod n

11 1
12 3
13 1
14 3
15 7
16 15
17 1
18 9
19 1
20 15

It appears that 2n
- 1 º 1 Hmod nL for n = 2, 3, 5, 7, 11, 13, 17, 19.  These are prime numbers.  We check this for the first twenty

primes:

n 2n-1 mod n

2 1
3 1
5 1
7 1
11 1
13 1
17 1
19 1
23 1
29 1

n 2n-1 mod n

31 1
37 1
41 1
43 1
47 1
53 1
59 1
61 1
67 1
71 1

Thus, we’ve found strong evidence for the following result:

Theorem 2.6: If n is a prime integer, then 2n
- 1 º 1 Hmod nL.

Is the converse true?  Unfortunately, no.  The first counterexample occurs when n = 341.  We have that 2341
- 1 º 1 Hmod 341L,

but 341 = 11 ×31 is not prime.  Here are the first three counterexamples:
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Do@
If@Mod@2^n - 1, nD � 1 && ! PrimeQ@nD, Print@nDD, 8n, 1, 1000<D

341

561

645

Observe  that  these  counterexamples  correspond  to  the  same  counterexamples  mentioned  at  the  end  of  Example  2.30.   This  is
because Theorem 2.6 is equivalent to Theorem 2.2.

Example 2.38 - Power Sums

We shall refer to the sum SpHnL = 1n
+ 2n

+ ... + np as a power sum.  Here is table of power sums for 1 £ n £ 4 and 1 £ p £ 4:

Table 2.8: Values of 1n + 2n + ... + np

p=1 p=2 p=3 p=4

n=1 11 � 1 12 � 1 13 � 1 14 � 1

n=2 11 + 21 � 3 12 + 22 � 5 13 + 23 � 9 14 + 24 � 17

n=3 11 + 21 + 31 � 6 12 + 22 + 32 � 14 13 + 23 + 33 � 36 14 + 24 + 34 � 98

n=4 11 + 21 + 31 + 41 � 10 12 + 22 + 32 + 42 � 30 13 + 23 + 33 + 43 � 100 14 + 24 + 34 + 44 � 354

To find patterns, we consider the remainders of SpHnL Hmod nL.
Table 2.9:

p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10
n=1 0 0 0 0 0 0 0 0 0 0
n=2 1 1 1 1 1 1 1 1 1 1
n=3 0 2 0 2 0 2 0 2 0 2
n=4 2 2 0 2 0 2 0 2 0 2
n=5 0 0 0 4 0 0 0 4 0 0
n=6 3 1 3 1 3 1 3 1 3 1
n=7 0 0 0 0 0 6 0 0 0 0
n=8 4 4 0 4 0 4 0 4 0 4
n=9 0 6 0 6 0 6 0 6 0 6
n=10 5 5 5 3 5 5 5 3 5 5

a) Let's restrict the values of p to prime integers:

Table 2.10:

p=2 p=3 p=5 p=7 p=11 p=13 p=17 p=19 p=23 p=29
n=1 0 0 0 0 0 0 0 0 0 0
n=2 1 1 1 1 1 1 1 1 1 1
n=3 2 0 0 0 0 0 0 0 0 0
n=4 2 0 0 0 0 0 0 0 0 0
n=5 0 0 0 0 0 0 0 0 0 0
n=6 1 3 3 3 3 3 3 3 3 3
n=7 0 0 0 0 0 0 0 0 0 0
n=8 4 0 0 0 0 0 0 0 0 0
n=9 6 0 0 0 0 0 0 0 0 0
n=10 5 5 5 5 5 5 5 5 5 5
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The following pattern emerges from the table above for odd primes p:

Theorem: SpH4 n + 2L = 2 n + 1

This is because of Fermat's Little Theorem:

Fermat’s Little Theorem: Let p be a prime.  Then p I a implies ap-1
º 1 Hmod pL

(2.52)p I a Þ ap-1
º 1 Hmod pL

See if you can prove Theorem using Fermat’s Little Theorem.

b) Let's now restrict m to being primes:

Table 2.11:

p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10 p=11 p=12 p=13 p=14 p=15
n=2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n=3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0
n=5 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0
n=7 0 0 0 0 0 6 0 0 0 0 0 6 0 0 0
n=11 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0
n=13 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0
n=17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n=19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n=23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
n=29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This leads us to the following theorem: http://arxiv.org/PS_cache/arxiv/pdf/1011/1011.0076v1.pdf

Theorem: Let n be a prime integer.  For p³1, we have

(2.53)1p
+ 2p

+ ... + np
= : n - 1 Hmod nL if Hn - 1L ý p

0 Hmod nL if Hn - 1L I p

Example 2.39 - Congruence of Fibonacci Numbers

a) Let’s investigate the residues (remainders) of the Fibonacci numbers modulo 2.  Below is a table listing the residues of the first
twenty Fibonacci numbers:

Table 2.12:

n Fn mod 2

0 0
1 1
2 1
3 0
4 1
5 1
6 0
7 1
8 1
9 0

n Fn mod 2

10 1
11 1
12 0
13 1
14 1
15 0
16 1
17 1
18 0
19 1

By examining these residues, it’s clear that they repeat every third entry and can be described using the formula
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(2.54)Fn mod 2 = :
0 if n º 0 mod 3

1 if n º 1 mod 3

1 if n º 2 mod 3

However, Mathematica finds a much cleaner formula:

FindSequenceFunction@Table@Mod@Fibonacci@nD, 2D, 8n, 1, 10<D, nD
ModAn2, 3E

To  prove  this,  we  consider  the  three  possible  remainders  for  n  when  divided  by  3:  0,  1,  2.   This  corresponds  to  n = 3 q,
n = 3 q + 1, and n = 3 q + 2, respectively.  Then substituting each of these forms for n into n2 yields

Expand@n^2 �. n ® 83 q, 3 q + 1, 3 q + 2<D
99 q2, 1 + 6 q + 9 q2, 4 + 12 q + 9 q2=

To obtain the congruence of each of these expressions, we apply modular arithmetic to obtain the desired answer.  For example,
if n = 3 q + 1, then

(2.55)1 + n + n2
º 1 + 6 q + 9 q2

º 1 mod 3

since  both  6 q  and  9 q2  are  divisible  by  3.   This  proves  Fn mod 2 º 1.   Another  option  is  to  have  Mathematica  perform  the
modular arithmetic:

Simplify@Mod@1 + 6 q + 9 q^2, 3D, Element@q, IntegersDD
1

The reader is encouraged to verify the other two cases by carrying out the same calculations.

b)  Are  the  residues  of  the  Fibonacci  numbers  periodic  for  other  moduli?  To  answer  this,  we  make  a  table  of  the  residues
Fn Hmod mL, with n ranging from 1 to 20 and m ranging from 1 to 10:

Table 2.13:

Fn mod m Hn=1,...,15L
n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14 n=15

m=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m=2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
m=3 1 1 2 0 2 2 1 0 1 1 2 0 2 2 1
m=4 1 1 2 3 1 0 1 1 2 3 1 0 1 1 2
m=5 1 1 2 3 0 3 3 1 4 0 4 4 3 2 0
m=6 1 1 2 3 5 2 1 3 4 1 5 0 5 5 4
m=7 1 1 2 3 5 1 6 0 6 6 5 4 2 6 1
m=8 1 1 2 3 5 0 5 5 2 7 1 0 1 1 2
m=9 1 1 2 3 5 8 4 3 7 1 8 0 8 8 7
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Fn mod m Hn=16,...,30L
n=

16

n=

17

n=

18

n=

19

n=

20

n=

21

n=

22

n=

23

n=

24

n=

25

n=

26

n=

27

n=

28

n=

29

n=

30

m=1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m=2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
m=3 0 1 1 2 0 2 2 1 0 1 1 2 0 2 2
m=4 3 1 0 1 1 2 3 1 0 1 1 2 3 1 0
m=5 2 2 4 1 0 1 1 2 3 0 3 3 1 4 0
m=6 3 1 4 5 3 2 5 1 0 1 1 2 3 5 2
m=7 0 1 1 2 3 5 1 6 0 6 6 5 4 2 6
m=8 3 5 0 5 5 2 7 1 0 1 1 2 3 5 0
m=9 6 4 1 5 6 2 8 1 0 1 1 2 3 5 8

Looking at the first several rows of this array seem to indicate that the residues are periodic for every modulus m.  Indeed, this is
true (can you prove why?).  Here is a table listing the periods for m ranging from 1 to 20:

Table 2.14:

m Period of FnHmod mL
1 1
2 3
3 8
4 6
5 20
6 24
7 16
8 12
9 24
10 60

m Period of FnHmod mL
11 10
12 24
13 28
14 48
15 40
16 24
17 36
18 24
19 18
20 60

No formula in terms of m is known for these periods.  However, there are other interesting patterns that can be extracted.  Denote
the period of Fn Hmod mL by PHmL.  Then observe that for m > 2, PHmL is always even.  Another pattern involves the sequence of
residues  81, 0, 1<,  which seems to  appear  with  relative  high frequency,  especially  in  the  second array above.   Let’s  isolate  this
sequence in our table:

Table 2.15:

Fn mod m Hn=1,...,15L - Residue Pattern 81,0,1<
n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14 n=15

m=1 - - - - - - - - - - - - - - -

m=2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
m=3 1 - - - - - 1 0 1 - - - - - 1
m=4 1 - - - 1 0 1 - - - 1 0 1 - -

m=5 1 - - - - - - - - - - - - - -

m=6 1 - - - - - - - - - - - - - -

m=7 1 - - - - - - - - - - - - - 1
m=8 1 - - - - - - - - - 1 0 1 - -

m=9 1 - - - - - - - - - - - - - -
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Fn mod m Hn=16,...,30L - Residue Pattern 81,0,1<
n=

16

n=

17

n=

18

n=

19

n=

20

n=

21

n=

22

n=

23

n=

24

n=

25

n=

26

n=

27

n=

28

n=

29

n=

30

m=1 - - - - - - - - - - - - - - -

m=2 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
m=3 0 1 - - - - - 1 0 1 - - - - -

m=4 - 1 0 1 - - - 1 0 1 - - - 1 0
m=5 - - - 1 0 1 - - - - - - - - -

m=6 - - - - - - - 1 0 1 - - - - -

m=7 0 1 - - - - - - - - - - - - -

m=8 - - - - - - - 1 0 1 - - - - -

m=9 - - - - - - - 1 0 1 - - - - -

A  discernible pattern now emerges.  The locations of 81, 0, 1< seem to be regularly spaced.  Here’s a table listing the positions of
the residue 0 at these locations in comparison to the periods PHmL.
Table 2.16:

m PHmL Positions of residue 0 at occurrences of 81,0,1< Hup to n=30L
2 3 83, 6, 9, 12, 15, 18, 21, 24, 27<
3 8 88, 16, 24<
4 6 86, 12, 18, 24<
5 20 820<
6 24 824<
7 16 816<
8 12 812, 24<

The pattern is now clear.  The locations of 81, 0, 1< occur at positions n that are multiples of PHmL.  Thus, we’ve discovered the
following result:

Theorem: Let i = 0 or 1.  Then Fn±i = i Hmod mL if and only if P HmL n.

Can you prove this theorem?

2.2.5 Combinatorial Methods

2.2.5.1 Permutations

A permutation of a set of n elements is an ordering of its elements.  For example, 81, 2, 3< and 82, 1, 3< are two different permuta-
tions of 81, 2, 3<. The Mathematica command Permutations will generate all permutations of a given set of elements:

? Permutations

Permutations@listD generates a list of all possible permutations of the elements in list.

Permutations@list, nD gives all permutations containing at most n elements.

Permutations@list, 8n<D gives all permutations containing exactly n elements. �

For example, there are six permutations of 81, 2, 3<:
Permutations@81, 2, 3<D
881, 2, 3<, 81, 3, 2<, 82, 1, 3<, 82, 3, 1<, 83, 1, 2<, 83, 2, 1<<

The set 81, 2, ..., n< has n ! permutations because of the Multiplication Principle.

2.2.5.2 Inversions
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2.2.5.2 Inversions

An inversion of a permutation Σ is a pair of elements of Σ that is ‘out of order’.  For example, the permutation 82, 3, 1< has two

inversions: 82, 1< and 83, 1<.  Denote by iHΣL to be the total number of inversions of Σ.  The Mathematica command Inversions
will calculate iHΣL:

? Inversions

Inversions@pD counts the number of inversions in permutation p. �

Let’s use this command to can verify that iH82, 3, 1<L = 2:

Inversions@82, 3, 1<D
2

Example 2.40 - Distribution of Total Number of Inversions (see [Kn], p. 15)

In  this  example  we  analyze  how  the  total  number  of  inversions  are  distributed  among  all  permutations  on  n  elements.   For
example, the following table lists iHΣL for all permutations of the set 81, 2, 3< corresponding to n = 3:

Total Number of Inversions

Σ IHΣL81, 2, 3< 081, 3, 2< 182, 1, 3< 182, 3, 1< 283, 1, 2< 283, 2, 1< 3

Thus, we see that the total number of inversions are distributed as follows:

Distribution of iHpL for permutations on 3 elements

k Number of Permutations with iHΣL=k
0 1
1 2
2 2
3 1

More generally, we define IHn, kL to be the number of permutations Σ on n elements having iHΣL = k.  Below is a table of values
for IHn, kL:

IHn,kL
IHn,kL k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

n=1 1 0 0 0 0 0 0 0 0 0 0
n=2 1 1 0 0 0 0 0 0 0 0 0
n=3 1 2 2 1 0 0 0 0 0 0 0
n=4 1 3 5 6 5 3 1 0 0 0 0
n=5 1 4 9 15 20 22 20 15 9 4 1

Observe that each row in the table above is symmtric.  Also, we find that the following recurrence holds:

(2.56)IHn, kL = IHn - 1, kL + IHn - 1, k - 1L
FURTHER EXPLORATION: Can you find other patterns in the table for IHn, kL?

2.2.5.3 Derangements
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2.2.5.3 Derangements

Derangements  are  permutations  with  no  fixed  points,  i.e.,  no  elements  remains  in  place.   For  example,  there  are  two  derange-
ments of the set 81, 2, 3<: 82, 3, 1< and 83, 1, 2<.  Here is the Mathematica command for generating derangements:

? Derangements

Derangements@pD constructs all derangements of permutation p. �

For example, there are 9 derangements of 81, 2, 3, 4< (out of 24 permutations).

Derangements@4D
882, 1, 4, 3<, 82, 3, 4, 1<, 82, 4, 1, 3<, 83, 1, 4, 2<,

83, 4, 1, 2<, 83, 4, 2, 1<, 84, 1, 2, 3<, 84, 3, 1, 2<, 84, 3, 2, 1<<
The number of derangements of the set 81, ..., n< is called the subfactorial of n and denoted by n

i
 (or ! n).  Thus, 3

i
= 2.  Here is

the corresponding Mathematica command: 

? Subfactorial

Subfactorial@nD gives the number of permutations of n objects that leave no object fixed. �

Subfactorial@4D
9

Let’s make a table of subfactorials:

nMax = 9;

datasubfactorials = Table@8n, Subfactorial@nD<, 8n, 1, nMax<D;

ColumnDataDisplayAdatasubfactorials, 10, 9"n", "n¡"=, "Subfactorial"E
Subfactorial

n n¡

1 0
2 1
3 2
4 9
5 44
6 265
7 1854
8 14833
9 133496

Do you see a connection between any two consecutive terms?  Let’s look at their ratios, n
i
� Hn - 1L

i
.  
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nMax = 9;

datasubfactorialsratios2elements = Table@
8n, Subfactorial@nD, If@n < 3, "-", Row@8Subfactorial@nD � Subfactorial@n - 1D,

"»", N@Subfactorial@nD � Subfactorial@n - 1D, 5D<DD<, 8n, 1, nMax<D;

ColumnDataDisplayAdatasubfactorialsratios2elements, 10,

9"n", "n¡", "n¡�Hn-1L¡"=, "Subfactorial"E
Subfactorial

n n¡ n¡�Hn-1L¡

1 0 -

2 1 -

3 2 2»2.0000

4 9 9

2
»4.5000

5 44 44

9
»4.8889

6 265 265

44
»6.0227

7 1854 1854

265
»6.9962

8 14833 14833

1854
»8.0005

9 133496 133496

14833
»8.9999

Observe that the ratios above are almost integers.  If we round them off, then a simple linear progression emerges as a pattern.
Denote by @n

i
� Hn - 1L

i
D to be the round of n

i
� Hn - 1L

i
.

nMax = 9;

datasubfactorialsratios2elementsround = Table@8n, Subfactorial@nD,

If@n < 3, "-", Round@Subfactorial@nD � Subfactorial@n - 1DDD<, 8n, 1, nMax<D;

ColumnDataDisplayAdatasubfactorialsratios2elementsround, 10,

9"n", "n¡", "@n¡�Hn-1L¡D"=, "Subfactorial"E
Subfactorial

n n¡ @n¡�Hn-1L¡D
1 0 -

2 1 -

3 2 2
4 9 4
5 44 5
6 265 6
7 1854 7
8 14833 8
9 133496 9

Since it appears that @n
i
� Hn - 1L

i
D = n, we should consider scaling subfactorials by n, namely n × Hn - 1L

i
. 
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nMax = 9;

datasubfactorialsscaled =

Table@8n, Subfactorial@nD, If@n < 3, "-", n * Subfactorial@n - 1DD,

If@n < 3, "-", Subfactorial@nD - n * Subfactorial@n - 1DD<, 8n, 1, nMax<D;

ColumnDataDisplayAdatasubfactorialsscaled, 10,

9"n", "n¡", "nHn-1L¡", "n¡-nHn-1L¡"=, "Subfactorial"E
Subfactorial

n n¡ nHn-1L¡ n¡-nHn-1L¡

1 0 - -

2 1 - -

3 2 3 -1
4 9 8 1
5 44 45 -1
6 265 264 1
7 1854 1855 -1
8 14833 14 832 1
9 133496 133 497 -1

The pattern is now clear: 

(2.57)n
i

= nHn - 1L
i

+ H-1Ln

FURTHER EXPLORATION: 

1. Formula (2.57) points to a connection between consecutive factorials, n
i
 and Hn - 1L

i
.  Find this connection and use it to prove

formula (2.57).

2. Can you find a pattern involving the sum of any two consecutive subfactorials?

Example 2.41 - Even and Odd Derangements

A permutation is called an even (or odd) if it can be expressed as an even number of of even (or odd) number of transpositions,
i.e.,  exchanges  of  two  elements,  respectively.  An  even  (or  odd)  derangement  is  one  that  is  also  an  even  (or  odd)  permutation,
respectively.  Denote by deHnL and doHnL the number of even and odd derangements, respectively.  Here’s a table comparing  deHnL
(A003221)and doHnL (A145221):

Table 2.17:

n deHnL doHnL deHnL-doHnL
1 0 0 0
2 0 1 -1
3 2 0 2
4 3 6 -3
5 24 20 4
6 130 135 -5
7 930 924 6

Thus, we find that the following identity holds:

(2.58)deHnL - doHnL = H-1Ln-1 Hn - 1L
For a combinatorial proof, see [BBN].
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2.2.6 Two-Dimensional Sequences
We’ve already encountered two-dimensional sequences in earlier examples, i.e., sequences indexed by two parameters.  A classic
example is the sequence of binomial coefficients

(2.59)an, k =
n
k

=

n !

k ! Hn - kL !

These coefficients form Pascal’s triangle (discussed further in Chapter 3).

Mathematica’s FindSequenceFunction command does not recognize two-dimensional sequences.  Thus, we demonstrate how a
two-dimensional sequence can be studied by analyzing its one-dimensional subsequences.

Example 2.42 - Approximating 2

In this  example we demonstrate how to approximate 2  using a two-dimensional  sequence (see [LP]).   To start,  consider the
sequence 

8an< = :J 2 Nn> = :1, 2 , 2, 2 2 , 4, 4 2 , ...> 

consisting of powers of 2 .  Since 2  is unknown, let’s replace it with a crude approximation, say 1, to obtain a new sequence

8bn< = 81, 1, 2, 2, 4, 4, ...<
whose formula is given by

FindSequenceFunction@81, 2, 2, 4, 4, 8, 8<, nD
2-

3

2
+
n

2 I1 - H-1Ln + 2 + H-1Ln 2 M
NOTE: A more concise formula is 2dn�2t.
Now extend 8bn< to a two-dimensional sequence 9bn, k= defined by the recurrence

(2.60)bn, k = bn, k-1 + bn+1, k-1

with initial row bn, 0 = bn.  The array below displays the first 5 rows of bn, k (A117918):

Table 2.18:

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9
k=0 1 1 2 2 4 4 8 8 16 16
k=1 2 3 4 6 8 12 16 24 32 48
k=2 5 7 10 14 20 28 40 56 80 112
k=3 12 17 24 34 48 68 96 136 192 272
k=4 29 41 58 82 116 164 232 328 464 656
k=5 70 99 140 198 280 396 560 792 1120 1584

a)  Let’s  find  a  formula  for  bn, k.   Unfortunately,  the  FindSequenceFunction  command  cannot  be  used  directly  on  two-dimen-

sional  sequences.   Instead,  we’ll  find  formulas  for  the  entries  in  each  row and paste  them together  to  get  our  two-dimensional
formula.  Define fkHnL =bn, k.  The following table gives fomulas for fkHnL for k ranging from 1 to 10: 

Table 2.19:
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k Formula for fkHnL
0 2

1

2
H-3+nL I1 - H-1Ln + 2 + H-1Ln 2 M

1 2
1

2
H-3+nL I3 - 3 H-1Ln + 2 2 + 2 H-1Ln 2 M

2 2
1

2
H-3+nL I7 - 7 H-1Ln + 5 2 + 5 H-1Ln 2 M

3 2
1

2
H-3+nL I17 - 17 H-1Ln + 12 2 + 12 H-1Ln 2 M

4 2
1

2
H-3+nL I41 - 41 H-1Ln + 29 2 + 29 H-1Ln 2 M

5 2
1

2
H-3+nL I99 - 99 H-1Ln + 70 2 + 70 H-1Ln 2 M

6 2
1

2
H-3+nL I239 - 239 H-1Ln + 169 2 + 169 H-1Ln 2 M

7 2
1

2
H-3+nL I577 - 577 H-1Ln + 408 2 + 408 H-1Ln 2 M

8 2
1

2
H-3+nL I1393 - 1393 H-1Ln + 985 2 + 985 H-1Ln 2 M

9 2
1

2
H-3+nL I3363 - 3363 H-1Ln + 2378 2 + 2378 H-1Ln 2 M

Observe that  each formula involves a linear  combination of  H-1Ln  and 2 .   Thus,  we’ll  need to find formulas for  their  corre-
sponding coefficients (as functions of k):

81, 3, 7, 17, 41, 99, 239, 577, 1393, 3363< and 81, 2, 5, 12, 29, 70, 169, 408, 985, 2378<
Entering these coefficients into FindSequenceFunction yields

FindSequenceFunction@83, 7, 17, 41, 99, 239, 577, 1393, 3363<, kD
-I1 - 2 Mk

+ 3 I1 + 2 Mk
+ 2 2 I1 + 2 Mk

2 I1 + 2 M
FindSequenceFunction@82, 5, 12, 29, 70, 169, 408, 985, 2378<, kD
2 I1 - 2 Mk

+ 4 I1 + 2 Mk
+ 3 2 I1 + 2 Mk

4 I1 + 2 M
Substituting these formulas for the coefficients gives us the following formula for bn, k:

b@n_, k_D =

SimplifyB2
1

2
H-3+nL KKK-J1 - 2 Nk

+ 3 J1 + 2 Nk
+ 2 2 J1 + 2 NkO � J2 J1 + 2 NNO -

KK-J1 - 2 Nk
+ 3 J1 + 2 Nk

+ 2 2 J1 + 2 NkO � J2 J1 + 2 NNO H-1Ln +

KK 2 J1 - 2 Nk
+ 4 J1 + 2 Nk

+ 3 2 J1 + 2 NkO � J4 J1 + 2 NNO 2 +

KK 2 J1 - 2 Nk
+ 4 J1 + 2 Nk

+ 3 2 J1 + 2 NkO � J4 J1 + 2 NNO H-1Ln 2 OF
2

1

2
H-3+nL I-1 + 2 M JH-1Ln I1 - 2 Mk

+ I1 + 2 Mk I3 + 2 2 MN
b) What do you notice about the ratios b1

k �b0
k  as k ® ¥?  Here’s a table listing the first twenty ratios:

Table 2.20:
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n b1,k�b0,k
1 1.50000000000
2 1.40000000000
3 1.41666666667
4 1.41379310345
5 1.41428571429
6 1.41420118343
7 1.41421568627
8 1.41421319797
9 1.41421362489
10 1.41421355165

n b1,k�b0,k
11 1.41421356421
12 1.41421356206
13 1.41421356243
14 1.41421356236
15 1.41421356237
16 1.41421356237
17 1.41421356237
18 1.41421356237
19 1.41421356237
20 1.41421356237

Mathematica shows that the limit of these ratios equals 2 :

Limit@b@1, kD � b@0, kD, k ® InfinityD
2

This is easy to derive from the formula for b1
k �b0

k :

Simplify@b@1, kD � b@0, kDD
2 J-I1 - 2 Mk

+ I1 + 2 Mk I3 + 2 2 MN
I1 - 2 Mk

+ I1 + 2 Mk I3 + 2 2 M
We rewrite this formula as

(2.61)b1
k �b0

k
=

2 -K 1- 2

1+ 2
Ok

+ J3 + 2 2 N
K 1- 2

1+ 2
Ok

+ J3 + 2 2 N
Since 0 <

1- 2

1+ 2
< 1, it follows that K 1- 2

1+ 2
Ok

® 0 as k ® ¥.  Thus,

(2.62)b1
k �b0

k
®

2 J3 + 2 2 N
J3 + 2 2 N = 2

Thus, the ratios b1
k �b0

k  provide a rational approximation of 2 .  What about the ratios  bn+1
k �bn

k  as k ® ¥ for arbitrary n?  See if

you can determine a pattern for their limits.

Simplify@b@2, kD � b@1, kDD
2 I1 - 2 Mk

+ I1 + 2 Mk I4 + 3 2 M
-I1 - 2 Mk

+ I1 + 2 Mk I3 + 2 2 M
NOTE: Observe that  each row of  bn, k  satisfies  the  recurrence b2 n, k = 2 bn, k.   A recursive formula for  bn, k  in  terms of  the  ele-

ments in the first row is given by

(2.63)bn
k

= â
j=0

k k

j
bn+ j

0

Chapter 2

85



FURTHER EXPLORATION: Explore for powers of 3 instead of 2 as initial values for bn
0.
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Wallis’ Formula for Π

John Wallis H1616 - 1703L

http://www-history.mcs.st-and.ac.uk/Mathematicians/Wallis.html

John Wallis, Savilian Professor of Geometry and founding member of the Royal Society, first honed his pattern detection abilities
from his experience as a cryptologist during the English Civil War (1642-1651) in which he decoded Royalist messages for the
victorious Parliamentarians.  In his most important work, Arithmetica Infinitorum, published in 1656, Wallis demonstrated how
he was  able  to  derive  his  famous  infinite  product  formula  for  Π  by  interpolating  number  patterns  obtained  by  quadrature  (area

enclosed by a curve).  His journey begins with the area of a quarter unit circle, Π/4, bounded by the graph of y = 1 - x2 on the

interval @0, 1D.

Π

4

-1 0 1

1
y � 1 - x2

In the language of calculus, this shaded area can be represented by a definite integral and denoted by

(2.64)à
0

1I1 - x2M1�2
â x =

Π

4

Unfortunately, the definite integral above allows Wallis little room for algebraic manipulation.  Instead, he considers the definite

integral  Ù0
1I1 - x1�2M2

â x  (where  the  exponents  are  replaced  by  their  reciprocals)  and  more  generally  those  of  the  form

Ù0
1I1 - x1�pMq

â x for arbitrary integers p and q.  Now, Wallis’ contemporaries, namely Robertval, Fermat and Pascal, had already

determined that for non-negative integers k, 

(2.65)à
0

a

xk
â x =

ak+1

k + 1

From here, Wallis boldly assumes that this formula continues to hold for all non-negative real values of k,  and in particular for

rational k =
p

q
 (p and q positive integers), so that

(2.66)à
0

1

xp�q
â x =

1

p �q + 1

As a result, he is now able to calculate Ù0
1I1 - x1�pMq

â x using binomial expansion and the formula above.  For example, since

(2.67)I1 - x1�2M2
= 1 - 2 x1�2

+ x

it follows that the area under I1 - x1�2M2
 can be calculated as the sum of the areas under the three curves 1, 2 x1�2, and x, which

Wallis already knew how to compute separately:

Mathematics by Experiment 

88

http://www-history.mcs.st-and.ac.uk/Mathematicians/Wallis.html


it follows that the area under I1 - x1�2M2
 can be calculated as the sum of the areas under the three curves 1, 2 x1�2, and x, which

Wallis already knew how to compute separately:

(2.68)à
0

1I1 - x1�2M2
â x = à

0

1I1 - 2 x1�2
+ xM â x = à

0

1

1 â x - à
0

1

2 x1�2
â x + à

0

1

x â x = 1 - 2 ×

1

1 �2 + 1
+

1

1 + 1
=

1

6

With this technique in mind, Wallis then makes a tabulation of the values of Ù0
1I1 - x1�pMq

â x using other positive integers for p

and q.   This generates a symmetrical table given below consisting of values that Wallis recognized to be reciprocals of figurate
numbers, a generalization of the triangular numbers to higher-dimensions (discussed in detail in Chapter 3).

Ù01H1-xpLqâx

q=1 q=2 q=3 q=4 q=5

p=1 1

2

1

3

1

4

1

5

1

6

p=2 1

3

1

6

1

10

1

15

1

21

p=3 1

4

1

10

1

20

1

35

1

56

p=4 1

5

1

15

1

35

1

70

1

126

p=5 1

6

1

21

1

56

1

126

1

252

More precisely, if we define

(2.69)gHp, qL =

1

Ù0
1I1 - x1�pMq

â x

then 

(2.70)gHp, qL = fp
q+1

=

Hq + 1L Hq + 2L × × × Hq + pL
1 ×2 × × × p

are  figurate  numbers  whenever  p  and  q  are  positive  integers.   The  values  of  gHp, qL  together  form the  Figurate  Triangle,  now
commonly referred to as Pascal's triangle (see Chapter 3), with the exception that the entries equal to 1 are missing:

gHp,qL
q=1 q=2 q=3 q=4 q=5

p=1 2 3 4 5 6
p=2 3 6 10 15 21
p=3 4 10 20 35 56
p=4 5 15 35 70 126
p=5 6 21 56 126 252

Next,  to  obtain  a  formula  for  w = gH1 �2, 1 �2L,  which  corresponds  to  the  reciprocal  of  the  original  definite  integral

Ù0
1I1 - x2M1�2

â x, Wallis interpolates the values of gHp, qL by assuming that the following formula for figurate numbers continues

to hold even for arbitrary non-negative real values of  p and q, including q = -1 �2:

(2.71)gHp, qL = : 1 if p = 0
Hq+1L Hq+2L×××Hq+pL

1×2××× p
if p ¹ 0

Wallis it seems is not bothered by the fact that gH0, qL is not formally defined according to definition 1.6; the scent of the figurate
numbers must have been too strong for him not to follow.  As a result of formula 1.8, Wallis is able to produce the following table
containing column values for half-integer values of q:
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gHp,qL
q=0 q=

1

2
q=1 q=

3

2
q=2 q=

5

2
q=3 q=

7

2
q=4 q=

9

2
q=5

p=1 1

2
1 3

2
2 5

2
3 7

2
4 9

2
5 11

2
6

p=2 3

8
1 15

8
3 35

8
6 63

8
10 99

8
15 143

8
21

p=3 5

16
1 35

16
4 105

16
10 231

16
20 429

16
35 715

16
56

p=4 35

128
1 315

128
5 1155

128
15 3003

128
35 6435

128
70 12155 � 128 126

p=5 63

256
1 693

256
6 3003

256
21 9009

256
56 21879 � 256 126 46189 � 256 252

To complete the table for half-integer values of p, he takes advantage of the following recurrence satisfied by figurate numbers
and again assumes that it continues to hold for all non-negative values of p and q, including p = -1 �2:

(2.72)gHp + 1, qL = gHp, qL ×

q + p + 1

p + 1

This, coupled with the assumption that the values must be symmetric, i.e. gHp, qL = gHq, pL, allows him to fill in all the missing
values by expressing them in terms of w = gH1 �2, 1 �2L:

gHp,qL
q=-

1

2
q=0 q=

1

2
q=1 q=

3

2
q=2 q=

5

2
q=3 q=

7

2
q=4

p=-
1

2
¥ 1 w

2

1

2

w

3

3

8

4 w

15

5

16

8 w

35

35

128

p=0 1 1 1 1 1 1 1 1 1 1

p=
1

2

w

2
1 w 3

2

4 w

3

15

8

8 w

5

35

16

64 w

35

315

128

p=1 1

2
1 3

2
2 5

2
3 7

2
4 9

2
5

p=
3

2

w

3
1 4 w

3

5

2

8 w

3

35

8

64 w

15

105

16
H128 wL � 21 1155

128

p=2 3

8
1 15

8
3 35

8
6 63

8
10 99

8
15

p=
5

2

4 w

15
1 8 w

5

7

2

64 w

15

63

8
H128 wL � 15 231

16
H512 wL � 35 3003

128

p=3 5

16
1 35

16
4 105

16
10 231

16
20 429

16
35

p=
7

2

8 w

35
1 64 w

35

9

2
H128 wL � 21 99

8
H512 wL � 35 429

16
H1024 wL � 35 6435

128

p=4 35

128
1 315

128
5 1155

128
15 3003

128
35 6435

128
70

Again we note that gH-1 �2, pL is undefined, but Wallis does not seem to care, as by now he has committed himself to following
the trail marked by the pattern of figurate numbers.

With his table complete, Wallis focuses in on the row of values for p = 1 �2 and factors them according to the pattern:

gH1�2,qL
q=-

1

2
q=0 q=

1

2
q=1 q=

3

2
q=2 q=

5

2
q=3 q=

7

2
q=4

p=1�2 1

2
w 1 w 3

2

4

3
w 3×5

2×4

4×6

3×5
w H3 × 5 × 7L �

H2 × 4 × 6L
H4 × 6 × 8L �

H3 × 5 × 7Lw
H3 × 5 × 7 × 9L �

H2 × 4 × 6 × 8L
 Lastly, Wallis assumes that the ratios of consecutive terms in each row decrease montonically, i.e.,
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(2.73)
gJ p+1

2
, qN

gI p

2
, qM >

gJ p+2

2
, qN

gJ p+1

2
, qN

In particular, for p = 1 �2, we have

(2.74)
2

w
>

w

1
>

3

2 w
>

2 ×4 w

3 ×3
>

3 ×3 ×5

2 ×4 ×4 w
>

2 ×4 ×4 ×6 w

3 ×3 ×5 ×5
> ...

It follows that the sequence of inequalities hold for w:

(2.75)
3

2
< w < 2 ,

3 ×3

2 ×4

5

4
< w <

3 ×3

2 ×4

4

3
,

3 ×3 ×5 ×5

2 ×4 ×4 ×6

7

5
< w <

3 ×3 ×5 ×5

2 ×4 ×4 ×6

5

4
, ...

In general, we have for n ³ 1

(2.76)
3 ×3 ×5 ×5 × × × H2 n + 1L H2 n + 1L

2 ×4 ×4 ×6 × × × H2 nL H2 n + 2L
2 n + 3

2 n + 2
< w <

3 ×3 ×5 ×5 × × × H2 n + 1L H2 n + 1L
2 ×4 ×4 ×6 × × × H2 nL H2 n + 2L

2 n + 2

2 n + 1

Since  the  factors  2 n+3

2 n+2
 and  2 n+2

2 n+1
 both  converge  to  1  in  the  limit  as  n ® ¥,  we  thus  obtain  Wallis’  formula  by  setting

w = 4 � Π:

(2.77)
4

Π

=

3 ×3 ×5 ×5 ×7 ×7 × × ×

2 ×4 ×4 ×6 ×6 ×8 × × ×

A brilliant mathematical tour-de-force!
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Exercises

Readers can hunt on their own for patterns by solving the following exercises.

1. Products of Consecutive Integers

a. Find a formula for the product of four consecutive integers beginning with n, i.e., nHn + 1L Hn + 2L Hn + 3L in terms of 
perfect squares.  For example, here are the products for n ranging from 1 to 5:

s = Table@n * Hn + 1L Hn + 2L Hn + 3L, 8n, 1, 5<D
824, 120, 360, 840, 1680<

b. Prove your formula algebraically.

2.  Sums of Squares of Fibonacci Numbers (see [Ho])

a. Find a pattern for the sum of squares of two consecutive Fibonacci numbers:

Sums of Squares

n FHnL2+FHn+1L2

0 1
1 2
2 5
3 13
4 34
5 89
6 233
7 610
8 1597
9 4181

Show Mathematica Answer

NOTE:  Mathematica's  FindSequenceFunction  gives  a  direct  formula  for  the  sequence  above,  but  not  a  very  interesting  one.
Find a more interesting formula involving the Fibonacci numbers.

b. Can you find patterns involving sums of squares of non-consecutive Fibonacci numbers, e.g., the even Fibonacci numbers?

c. What about sums of square of three consecutive Fibonacci numbers?

Show Mathematica Answer

d. What about sums/differences of cubes of consecutive Fibonacci numbers? (see [Me])

Show Mathematica Answer

3.  Concordia Function ([LLHC])

Consider the Concordia function cHnL which counts the number of partitions of n consisting only of prime numbers.  For example,
the table below shows that there are seven partitions of 5, of which two contain only prime numbers, namely the partitions 85< and83, 2<.  Thus, cH5L = 2.
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n Partions of n
1 881<<
2 882<, 81, 1<<
3 883<, 82, 1<, 81, 1, 1<<
4 884<, 83, 1<, 82, 2<, 82, 1, 1<, 81, 1, 1, 1<<
5 885<, 84, 1<, 83, 2<, 83, 1, 1<, 82, 2, 1<, 82, 1, 1, 1<, 81, 1, 1, 1, 1<<

Here is a table listing the first thirty values of cHnL:
Number of Partitions

Consisting of Primes

n cHnL
1 0
2 1
3 1
4 1
5 2
6 2
7 3
8 3
9 4
10 5

n cHnL
11 6
12 7
13 9
14 10
15 12
16 14
17 17
18 19
19 23
20 26

n cHnL
21 30
22 35
23 40
24 46
25 52
26 60
27 67
28 77
29 87
30 98

Now define bHnL to be the number of partitions of n that consist only of 2's or 3's.

Number of Partitions

Consisting of 2's or 3's

n bHnL
1 0
2 1
3 1
4 1
5 1
6 2
7 1
8 2
9 2
10 2

n bHnL
11 2
12 3
13 2
14 3
15 3
16 3
17 3
18 4
19 3
20 4

n bHnL
21 4
22 4
23 4
24 5
25 4
26 5
27 5
28 5
29 5
30 6

Find a formula for bHnL.
4.  Revisited: Dishonest Men, Coconuts, and a Monkey (see [Ga], Chapter 1, p. 3)

Recall  the  problem in  Example  1.2  involving  the  division  of  coconuts  among five  sailors  and  a  monkey.   Suppose  in  the  final
division each received an equal share with no coconuts remaining.

a. Find the number of coconuts that the five sailors had gathered.

b. Generalize the problem to n sailors and solve it to find a formula for the number of coconuts.

5. Rational solutions of quadratics with coefficients in arithmetic progression (see [LoHe])

Consider the following quadratic equation whose coefficients are in arithmetic progression:

x2
+ Hn + 1L x - Hn + 2L = 0
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a. For which integer values of n does this equation yield rational solutions for x?  Hint: Use the Solve command to obtain the 
solution formula for x and then apply the FindInstance command to find particular solutions for n.

b. Find formulas for the two rational solutions for x.  Then prove your formulas.

6. Divisibility of the Perrin sequence by primes (see [PS]

Define a sequence an by a0 = 3, a1 = 0, a2 = 2, and an+3 = an+1 + an.  Find a divisibility pattern involving an.

Answer: an is divisible by prime integers n.

a@0D = 3; a@1D = 0; a@2D = 2;

a@n_D := a@n - 2D + a@n - 3D
Table@a@nD, 8n, 0, 5<D
83, 0, 2, 3, 2, 5<
Table@Mod@a@nD, nD, 8n, 3, 15<D
80, 2, 0, 5, 0, 2, 3, 7, 0, 5, 0, 9, 8<

NOTE: This result generalizes to sequences  a0 = k, a1 = a2 =. .. ak-2 = 0, ak-1 = k - 1, and an+k = an+1 + an. 

7. Lacunary Recurrences (see [Yo-P])

a. Consider the Fibonacci sequence F0 = 0, F1 = 1, Fn+1 = Fn + Fn-1.

i. Find a recurrence for the subsequence 8F2 m<.  Prove your answer.

ii. Find a recurrence for the subsequence 8Fa m< where a is a positive integer:

iii. Find a recurrence for the subsequence 8Fa m+b< where a and b are positive integers.

b. Next consider the sequence x0 = 0, x1 = 1, xn+1 = 2 xn + xn-1.

i. Find a recurrence for the subsequence 8xa m< where a is a positive integer:

ii. Find a recurrence for the subsequence 8xa m+b< where a is a positive integer:

c. Next consider the tribonacci sequence x0 = 0, x1 = 1, x2 = 2, xn+2 = xn+1 + xn + xn-1.  Find a recurrence for the 
subsequence 8xa m< where a is a positive integer:

8. Summing a Sequence (see [ES2])

Consider  the  rational  sequence8an< = 81, 1 �2, 1 �4, 3 �8, 3 �16, 8 �32, 7 �64, 21 �128, 15 �256, 55 �512, 31 �1024, 144 �2048, 63 �4096, ...<:
a. Find a formula for an:

Show Mathematica Answer

b. Find the sum of the series Ún=0
¥ aHnL.

9. Sums of trinomials of roots of a cubic.

a. The quadratic equation x2
- x - 1 = 0 has two roots: a =

1- 5

2
 and b =

1+ 5

2
. Define uHnL to be the binomial sum

uHnL = â
i=0

n

ai bn-i

Find an explict formula and a recurrence for uHnL.
b. Denote the roots of the cubic equation x3

- x2
- x - 1 = 0 by a, b, c.  Find an explicit formula and a recurrence for the 

trinomial sum

uHnL = â
i=0

n â
j=0

n-i

ai b j cn-i- j

c. Denote the roots of the quartic equation x3
- x2

- x - 1 = 0 by a, b, c, d .   Conjecture a recurrence for the trinomial sum
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uHnL = â
i=0

n â
j=0

n-i â
k=0

n-i- j

ai b j ck dn-i- j-k

and experimentally verify your conjecture.  NOTE: You may find that Mathematica will have difficulty evaluating uHnL for large
values of n using the trinomial sum formula above.  This shows that recurrences can be more effective in generating sequences
than direct formulas.

10. Fibonacci to Lucas (see [ES3])

Find a recurrence for the ratios of Fibonacci to Lucas numbers:

Table@Fibonacci@nD � LucasL@nD, 8n, 1, 10<D
:1, 1

3
,
1

2
,
3

7
,

5

11
,
4

9
,
13

29
,
21

47
,
17

38
,

55

123
>

11. Non-Totients (see [Pu])

A non-totient is an integer n for which there is no solution to the equation jHxL = n, where jHxL is Euler's totient function.  Find a
number pattern among the set of non-totients and prove that it is true.

12. Continued Fractions

Find a formula for the convergents of the continued fraction (1,1,1,...):

Convergents@PadRight@8<, 10, 1DD
:1, 2,

3

2
,
5

3
,
8

5
,
13

8
,
21

13
,
34

21
,
55

34
,
89

55
>

Give a proof of your formula.

13. Subsets with no adjacent elements

Let  sn  denote  the  number  of  subsets  of  81, 2, ..., n<  such  that  no  two  elements  are  adjacent.   For  example,  if  n = 4,  then  the
subsets with no adjacent elements are: {{1,3},{2,4}, {1,4}}

For n = 5, we have: {{1,3},{1,4},{1,5},{2,4},{2,5}}

Recursion: Fn = Fn-1 + Fn-2  (non-adjacent subsets of {1,2,3,4,6} = non-adjacent subsets of {1,2,3,4,5} + non-adjacent subsets of
{1,2,3,4} (with 6 added as an element since any non-adjacent subset containing 6 will be a non-adjacent subset of {1,2,3,4} with
6 deleted))

14. Counting Triangles in a Square (see [BoKo])

Let  T HnL  denote  the  number  of  lattice  triangles  lying  inside  the  region  @0, nD ´@0, nD  of  the  Cartesian  plane  whose  sides  lie  on
lines of slope 0, ¥, 1, or -1.  Determine a closed formula for T HnL.
15. Diophantine Triplets (see [DeBr])

A Diophantine triplet is a set of three positive integers Ha, b, cL such that a < b < c and a b + 1, b c + 1, and a c + 1 are all perfect
squares.  Find patterns  describing Diophantine triplets.

Mathematics by Experiment 

96



3
Classical Number Patterns

In  this  chapter  we  describe  some  classical  numerical  experiments  involving  integer  sequences  to  reveal  the  myriad  of  number
patterns that can arise.  We make two disclaimers about these experiments.  First they focus more on analysis of data and formula-
tion of mathematical conjectures as opposed to rigorous proofs of the results obtained, although proofs of certain conjectures are
given if they are short and elementary; otherwise, more complicated proofs are given in the appendix or referenced elsewhere in
the mathematics literature.   Second we provide litte historical background behind the numerical experiments discussed,, some of
which have a rich history and date as far back as the Greeks, and instead provide references where appropriate.

3.1 Figurate Numbers

The figurate  numbers  date  back  to  Pythagoras  (c.  570–c.  495  BC)  and  other  ancient  Greek  philosophers  who were  the  first  to
study properties of real numbers and to study them for knowledge sake.  Figurate numbers are generated from arrangements of
points into regular geometrical shapes.  If the shape is a polygon, such as a triangle, square, or pentagons, then figurate numbers
are also called polygonal numbers, which we shall explore first.

Part 1 - Triangular Numbers
The triangular numbers tn count the number of points in the following sequence of triangles which represent their area:

n = 1 n = 2 n = 3 n = 4 n = 5

Thus, we have by construction

t1 = 1

t2 = 1 + 2 = 3

t3 = 1 + 2 + 3 = 6

...

More generally, we have

(3.1)tn = 1 + ... + n = tn-1 + n

To begin our exploration of triangular numbers, we first make a table listing the first ten values.
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Triangular Numbers

n tn=Úk=1
n k

1 1 = 1
2 3 = 1+2
3 6 = 1+2+3
4 10 = 1+2+3+4
5 15 = 1+2+3+4+5
6 21 = 1+2+3+4+5+6
7 28 = 1+2+3+4+5+6+7
8 36 = 1+2+3+4+5+6+7+8
9 45 = 1+2+3+4+5+6+7+8+9
10 55 = 1+2+3+4+5+6+7+8+9+10

STEP 1

The  first  goal  in  understanding  any  sequence  of  values  defined  by  summation  is  to  find  an  efficient  formula  for  calculating  it
(besides by brute force).   For example, can you compute t100  without summing all  100 terms?  Since no obvious multiplicative
formula appears in the table above, we shall demonstrate four different methods for extracting such a formula for tn:

Method             1:

This  classic  technique  is  a  variation  of  the  “summing  in  pairs”  trick  commonly  told  as  an  anecdote  involving  Carl  Friedrich
Gauss, who at the age of 10, was able to quickly sum the first 100 positive integers to the surprise of his schoolmaster (see [Hay]).

Suppose we sum two copies of tn by adding corresponding terms in pairs, but reverse the order of the terms in the second copy:

Triangular Numbers

n tn+tn=Úk=1
n k+Úk=n

1 k

1

1 = 1
1 = 1
-------------

2 = 2

2

3 = 1+2
3 = 2+1
-------------

6 = 3+3

3

6 = 1+2+3
6 = 3+2+1
-------------

12 = 4+4+4

4

10 = 1+2+3+4
10 = 4+3+2+1
-------------

20 = 5+5+5+5

5

15 = 1+2+3+4+5
15 = 5+4+3+2+1
-------------

30 = 6+6+6+6+6

n tn+tn=Úk=1
n k+Úk=n

1 k

6

21 = 1+2+3+4+5+6
21 = 6+5+4+3+2+1
-------------

42 = 7+7+7+7+7+7

7

28 = 1+2+3+4+5+6+7
28 = 7+6+5+4+3+2+1
-------------

56 = 8+8+8+8+8+8+8

8

36 = 1+2+3+4+5+6+7+8
36 = 8+7+6+5+4+3+2+1
-------------

72 = 9+9+9+9+9+9+9+9

9

45 = 1+2+3+4+5+6+7+8+9
45 = 9+8+7+6+5+4+3+2+1
-------------

90 = 10+10+10+10+10+10+10+10+10

10

55 = 1+2+3+4+5+6+7+8+9+10
55 = 10+9+8+7+6+5+4+3+2+1
-------------

110 = 11+11+11+11+11+11+11+11+11+11

Aha!  It is now clear from the table above that 2 tn  equals the sum of n copies of n + 1, or equivalently, nHn + 1L.  Assuming this,
we conclude that

(3.2)tn =

nHn + 1L
2

Method             2:
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Let’s examine the divisors of each of the triangular numbers:

n tn Divisors of tn

1 1 81<
2 4 81, 3<
3 10 81, 2, 3, 6<
4 20 81, 2, 5, 10<
5 35 81, 3, 5, 15<
6 56 81, 3, 7, 21<
7 84 81, 2, 4, 7, 14, 28<
8 120 81, 2, 3, 4, 6, 9, 12, 18, 36<
9 165 81, 3, 5, 9, 15, 45<
10 220 81, 5, 11, 55<

It appears that for n is a divisor of tn for n odd.  This suggests that we should examine the values of tn �n:

n tn�n
1 1

2 3

2

3 2

4 5

2

5 3

6 7

2

7 4

8 9

2

9 5

10 11

2

Converting all the values for tn �n into half-integers shows that tn �n =
n+1

2
, which results in the same formula as (3.2).

Method             3:

Suppose we summed the even and odd integers appearing in the sum tn = 1 + 2 + ... + n separately.  Denote by on and en to be the
sum of the odd terms and even terms of 81, 2, ..., n<, respectively.  Here is a table listing the first ten values of on and en:
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Triangular Numbers

n tn=Úk=1
n k on en

1 1 = 1 1 = 1 0 = 8<
2 3 = 1+2 1 = 1 2 = 2
3 6 = 1+2+3 4 = 1+3 2 = 2
4 10 = 1+2+3+4 4 = 1+3 6 = 2+4
5 15 = 1+2+3+4+5 9 = 1+3+5 6 = 2+4
6 21 = 1+2+3+4+5+6 9 = 1+3+5 12 = 2+4+6
7 28 = 1+2+3+4+5+6+7 16 = 1+3+5+7 12 = 2+4+6
8 36 = 1+2+3+4+5+6+7+8 16 = 1+3+5+7 20 = 2+4+6+8
9 45 = 1+2+3+4+5+6+7+8+9 25 = 1+3+5+7+9 20 = 2+4+6+8
10 55 = 1+2+3+4+5+6+7+8+9+10 25 = 1+3+5+7+9 30 = 2+4+6+8+10

Clear patterns now emerge.  Depending on whether n is odd or even, which we re-index as 2 n - 1 and 2 n, respectively, we find
that

o2 n-1 = o2 n = n2

As for en, observe that we can re-express it as a sum of odd integers by subtracting 1 from each even integer.  For example,

e5 = 2 + 4 = H1 + 1L + H3 + 1L = H1 + 3L + 2 = o4 + 2
e6 = 2 + 4 + 6 = H1 + 1L + H3 + 1L + H5 + 1L = H1 + 3 + 5L + 3 = o6 + 3

More generally, we have 

e2 n = e2 n+1 = o2 n + n = n2
+ n = nHn + 1L

It follows that

t2 n-1 = o2 n-1 + e2 n-1 = n2
+ Hn - 1L n = nH2 n - 1L =

2 nH2 n-1L
2

t2 n = o2 n + e2 n = n2
+ nHn + 1L = nH2 n + 1L =

2 nH2 n+1L
2

These formulas are equivalent to (3.2).

NOTE: Factoring 2 from each term in en yields the relation

e2 n = e2 n+1 = 2 tn

and leads to the following recurrences for the triangular numbers:

(3.3)
t2 n-1 = o2 n-1 + e2 n-1 = n2

+ 2 tn-1

t2 n = o2 n + e2 n = n2
+ 2 tn

Method             4:

We calculate successive differences up to order 2 (assume t0 = 0):

d Ddtn

0 80, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55<
1 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
2 81, 1, 1, 1, 1, 1, 1, 1, 1<
3 80, 0, 0, 0, 0, 0, 0, 0<

Since D0 t0 = 1, D1 t0 = 1, D2 t0 = 1, and Dd t0 = 0 for all d ³ 3, it follows that

(3.4)tn = â
m=0

n K n
m

O D
m a0 =

n
0

D
0 a0 +

n
1

D
1 a0 +

n
2

D
2 a0 = 1 ×0 + n ×1 +

nHn - 1L
2

×1 =

n2
+ n

2
=

nHn + 1L
2
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which agrees with (3.2).  

NOTES: 

1. We can of course use Mathematica to verify formula  (3.2) as follows:

Sum@k, 8k, 1, n<D
1

2
n H1 + nL

2. A visual “proof without words” of (3.2) is given below ([]):

...
... 8

n

tn

+

...
... 8

n

tn

=

...
...

8

n+1

nHn+1L
...

...

STEP 2

Consider the following table of sums of two consecutive triangular numbers.   Do you observe a pattern?

n tn tn+tn+1

1 1 4
2 3 9
3 6 16
4 10 25
5 15 36
6 21 49
7 28 64
8 36 81
9 45 100
10 55 121

Yes, the pattern here is quite clear: 

(3.5)tn + tn+1 = Hn + 1L2

Of course, we can obtain the same answer by using Mathematica to substitute the formula for tn (obtained in Step 1) into tn + tn+1

and then simplify the result:

Simplify@Sum@k, 8k, 1, n<D + Sum@k, 8k, 1, n + 1<DD
H1 + nL2

Can you sketch a similar “proof without words” to demonstrate this formula?

STEP 3

What about a formula for Tn = t1 + t2 + ... + tn, the sum of the first n triangular numbers?
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n tn t1+...+tn+1

1 1 1
2 3 4
3 6 10
4 10 20
5 15 35
6 21 56
7 28 84
8 36 120
9 45 165
10 55 220

The pattern is not so simple here.  Let’s try the same trick as before by examining the values of Tn �n:

n tn Tn�n
1 1 1
2 3 2

3 6 10

3

4 10 5
5 15 7

6 21 28

3

7 28 12
8 36 15

9 45 55

3

10 55 22

To convert the values for Tn �n to integers, we multiply each by 3:

n tn 3Tn�n
1 1 3
2 3 6
3 6 10
4 10 15
5 15 21
6 21 28
7 28 36
8 36 45
9 45 55
10 55 66

This  shows  that  values  for  3 Tn �n  are  the  same  as  the  triangular  numbers,  except  shifted  by  one  position.   Thus,
3 Tn �n = tn+1 = Hn + 1L Hn + 2L �2, or equivalently,

(3.6)Tn =

nHn + 1L Hn + 2L
6

Again, we can obtain the same answer using Mathematica:

Mathematics by Experiment 

102



Sum@TriangularNumber@kD, 8k, 1, n<D
1

6
n H1 + nL H2 + nL

NOTE: The numbers Tn  are also referred to as tetrahedral (or pyramidal) numbers. This can be seen geometrically by stacking
the triangular numbers t1, t2,...,tn on top of each other as layers to form the tetrahedron corresponding to Tn:

n = 1 n = 2 n = 3 n = 4

Tetrahedral Numbers

FURTHER EXPLORATION: 

1.  Can you detect  any patterns for the weighted sum Úk=1
n k tn+1 = t1 + 2 t2 + ... + n tn?  Use Mathematica  to  verify your conjec-

tures.  

2.  Leonard  Euler  observed  that  if  n  is  a  triangular  number,  then  9 n + 1,  25 n + 3,  49 n + 6,  81 n + 10,  and  so  forth,  are  also
triangular numbers involving odd square multiples of n.  Are there other triangular numbers that involve odd square multiples of
n?

Part 2 - Square Numbers
Triangular  numbers  can be generalized to  square  numbers  sn,  whose values  are  given by the  number  of  points  inside  a  square
representing its area as illustrated below:

n = 1 n = 2 n = 3 n = 4 n = 5

Square numbers can be defined recursively:

s1 = 1

s2 = 1 + 3 = 4

s3 = 1 + 3 + 5 = 9

...

More generally, we have

(3.7)sn = 1 + 3 + 5 + ... + H2 n - 1L = sn-1 + H2 n - 1L
Of course, square numbers can also be defined more explicitly by the formula

(3.8)sn = n + ... + nHn summandsL = n2

This leads to the classic identity

(3.9)1 + 3 + 5 + ... + H2 n - 1L = n2

A more  interesting  pattern  involving  square  numbers  has  to  do  with  their  connection  to  triangular  numbers.   In  particular,  are
there triangular numbers that are also square numbers?  Examining the first ten triangular numbers show that there is indeed one:
t8 = 36.   Let's  call  such  numbers  square-triangular  numbers  and  denote  them by  rn.   Further  investigation  shows that  there  are
relatively few of these numbers and that they are dispersed among the triangular numbers.  The following Mathematica module
will search by brute-force for the n-th square-triangular number.

Chapter 3

103



TriangularSquareNumbers@n_D := Module@8list = 8<, k = 1, i = 0<, While@n > i,

If@Sqrt@TriangularNumber@kDD == IntegerPart@Sqrt@TriangularNumber@kDDD,

AppendTo@list, 8k, TriangularNumber@kD<D; i++D; k++D; listD;

Here's a table showing the first six square-triangular numbers:

n rn

1 1
2 36
3 1225
4 41616
5 1413721

A  further  search  for  larger  square-triangular  numbers  becomes  too  exhaustive;  thus,  it  is  desirable  to  find  a  more  efficient
formula for generating them.

Unfortunately, FindSequenceFunction fails to determine an explicit formula for square-triangular numbers:

Simplify@FindSequenceFunction@datasquaretriangularnumbers@@All, 2DD, nDD
FindSequenceFunction@81, 36, 1225, 41616, 1413721<, nD

Similarly, the command FindLinearRecurrence fails to find a recurrence:

FindLinearRecurrence@datasquaretriangularnumbers@@All, 2DDD
FindLinearRecurrence@81, 36, 1225, 41616, 1413721<D

However, since these values are integer squares, perhaps we should employ their radicals.  Here’s a table listing the square roots
of the six square-triangular numbers given above:

n rn

1 1
2 6
3 35
4 204
5 1189

Indeed we now find that the values for rn  do satisfy a recurrence:

FindLinearRecurrence@datasquaretriangularnumberssquareroots@@All, 2DDD
86, -1<

On the other hand, FindSequenceFunction fails to find a formula for rn :

FindSequenceFunction@datasquaretriangularnumberssquareroots@@All, 2DDD
FindSequenceFunction@81, 6, 35, 204, 1189<D

Perhaps more terms are needed.  Fortunately, we now have a recurrence formula, which we can use to quickly generate additional
terms:

datasquaretriangularnumbersmoreterms = LinearRecurrence@86, -1<, 81, 6<, 10D
81, 6, 35, 204, 1189, 6930, 40 391, 235416, 1372105, 7997214<

Feeding this longer list of terms into FindSequenceFunction yields the following formula for tn :
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Simplify@FindSequenceFunction@datasquaretriangularnumbersmoreterms, nDD
-I3 - 2 2 Mn

+ I3 + 2 2 Mn

4 2

Squaring this formula yields a corresponding formula for tn, originally discovered by Leonard Euler in 1788:

(3.10)rn =

J3 + 2 2 Nn
- J3 - 2 2 Nn

4 2

2

NOTE: A more novel  approach to  studying square-triangular  numbers  is  to  describe them algebraically,  i.e.,  rn = s2
=

tHt+1L
2

 for

some positive integers s and t.  Multiplying both sides of this equation by 8 and completing the square on the left-hand side yields

H2 t + 1L2
- 1 = 8 s2.   This  is  equivalent  to  Pell’s  equation  x2

- 2 y2
= 1  with  x = 2 t + 1  and  y = 2 s,  which  we  discussed  in  the

previous chapter.   

In  fact,  the  values  for  rn  correspond  to  the  product  x × y,  where  Hx, yL  represent  solutions  to  the  more  general  Pell  equation
x2

- 2 y2
= ±1.

Part 3 - Pentagonal Numbers
A more interesting generalization of the triangular numbers are the pentagonal numbers Pn, which represent the number of points
arranged inside a pentagon consisting of edges n dots in length as illustration below:

GraphicsRow@Table@PentagonalNumberPlot@n0D, 8n0, 0, 4<D,

Alignment ® Bottom, Frame ® All, ImageSize ® 400D
n = 1 n = 2 n = 3 n = 4 n = 5

Thus the pentagonal numbers are defined by

p1 = 1

p2 = 1 + 4 = 5

p3 = 1 + 4 + 7 = 12

...

More generally, we have

(3.11)pn = 1 + 4 + 7 + 10 ... + H3 n - 2L = pn-1 + H3 n - 2L
Let's proceed as before by making a table listing the values of the first ten pentagonal numbers.
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n pn=Úk=1
n H3k-2L

1 1 = 1
2 5 = 1+4
3 12 = 1+4+7
4 22 = 1+4+7+10
5 35 = 1+4+7+10+13
6 51 = 1+4+7+10+13+16
7 70 = 1+4+7+10+13+16+19
8 92 = 1+4+7+10+13+16+19+22
9 117 = 1+4+7+10+13+16+19+22+25
10 145 = 1+4+7+10+13+16+19+22+25+28

STEP 1

Conjecture a formula for the pentagonal numbers pn  in terms of n.   HINT: Try either Gauss’s technique of summing in pairs or
else examine their divisors.   Does your formula match Mathematica's formula?

STEP 2

What connection do pentagonal numbers have with triangular numbers.   HINT: Partition the pentagon that corresponds to each
pentagonal number into an appropriate number of triangles.  Prove your conjecture algebraically.

Part 3.1.4 - Polygonal Numbers
Let’s make our notation for polygonal numbers more uniform by writing Pn

d  to denote the n-th polygonal number corresponding to

a  polygon  with  d  sides.   The  following  table  summarizes  what  we  know  so  far  about  the  values  of  triangular  (d = 3),  squareHd = 4), and pentagonal (d = 5) numbers.

Polygonal Numbers Pn
d

Pn
d n=1 n=2 n=3 n=4 n=5

d=3 HTriangularL 1 3 6 10 15

d=4 HSquareL 1 4 9 16 25

d=5 HPentagonalL 1 5 12 22 35

“

Step 1

Based on the pattern, can you guess what the first five values for some higher-order polygonal numbers, say hexagonal, heptago-
nal, and octagonal? 

Polygonal Numbers Pn
d

Pn
d n=1 n=2 n=3 n=4 n=5

d=3 1 3 6 10 15
d=4 1 4 9 16 25
d=5 1 5 12 22 35
d=6 1 6 15 28 45
d=7 1 7 18 34 55
d=8 1 8 21 40 65

Conjecture a formula for the n-th polygonal number Pd HnL.
Step 2

Below is a more extensive table of Pd HnL for 3 £ d £ 9 and 1 £ n £ 9.
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Polygonal Numbers Pn
d

Pn
d n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

d=3 1 3 6 10 15 21 28 36 45
d=4 1 4 9 16 25 36 49 64 81
d=5 1 5 12 22 35 51 70 92 117
d=6 1 6 15 28 45 66 91 120 153
d=7 1 7 18 34 55 81 112 148 189
d=8 1 8 21 40 65 96 133 176 225
d=9 1 9 24 46 75 111 154 204 261

What other patterns do you observe about polygonal numbers?

Part 5 - Higher-Dimensional Figurate Numbers
We saw in the first part how sums of natural numbers generate triangular numbers and in turn how sums of triangular numbers
generate  tetrahedral  numbers  (pyramids with  triangular  base).   Of  course,  we can continue this  pattern by considering sums of
tetrehedral numbers, which can be visualized as a four-dimensional pyramid.  If we refer to these sums as figurate numbers fn

d ,

then this process can be continued indefinitely to an arbitrary number of dimensions as follows:

(3.12)fn
0

= 1

(3.13)fn
1

= f1
0

+ f2
0

+ ... + fn
0

= 1 + 1 + ... + 1 = n

(3.14)fn
2

= f1
1

+ f2
1

+ ... + fn
1

= 1 + 2 + ... + n = tn =

nHn + 1L
2

(3.15)fn
3

= f1
2

+ f2
2

+ ... + fn
2

= t1 + t2 + ... + tn = Tn =

nHn + 1L Hn + 2L
6

...

(3.16)fn
d

= f1
d-1

+ f2
d-1 ... + fn

d-1

Based on known formulas for fn
1, fn

2, and fn
3, can you conjecture a formula for fn

d?

 The following is a tabulation of fn
d :

Figurate Numbers fn
d

fn
d n=1 n=2 n=3 n=4 n=5

d=0 1 1 1 1 1
d=1 1 2 3 4 5
d=2 1 3 6 10 15
d=3 1 4 10 20 35
d=4 1 5 15 35 70

It is clear from this table that the following recursive identity holds:

(3.17)fn
d

= fn
d-1

+ fn-1
d

This recurrence is the basis for many other fascinating patterns in the table, which in the context of figurate numbers is referred
to as the Figurate Triangle.  However, it is more well known as Pascal’s triangle, the next topic in this chapter.
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3.2 Pascal's Triangle

Pascal’s  triangle  is  one  of  the  most  recognized  number  patterns  in  the  world,  being  an  array  of  coefficients  that  appear  in  the
binomial expansion of Hx + yLn for all non-negative integers n.  For example, below are the first 5  expansions (up to n = 4):

Hx + yL0
= 1

Hx + yL1
= 1 × x + 1 × y

Hx + yL2
= 1 × x2

+ 2 x y + 1 × y2

Hx + yL3
= 1 × x3

+ 3 x2 y + 3 x y2
+ 1 × y3

Hx + yL4
= 1 × x4

+ 4 x3 y + 6 x2 y2
+ 4 x y3

+ 1 × y4

These coefficients,  called binomial  coefficients  (in  blue),  are  typically  arranged in  the  form of  an equilateral  triangle  and form
Pascal's triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

More precisely, we define the binomial coefficient 
n
k

 to be the coefficient of xk yn-k in the expansion 

(3.18)Hx + yLn
=

n
0

xn
+

n
1

xn-1 y +
n
2

xn-2 y2
+ ... + K n

n
O yn

It is clear that 
n
0

= K n
n

O = 1.

Part 1 - Formula for Pascal’s Triangle
To find a formula for the binomial coefficients, we observe that Pascal’s Triangle is essentially a reconfiguration of the Figurate

Triangle  (discussed at  the  end of  the  previous section)  where  the  binomial  coefficient  
n
k

 corresponds to  the  figurate  number

fn-k+1
k .  Since figurate numbers are given by formula (3.XXX), it suffices to adapt this formula to describe binomial coefficients.

First, we express figurate numbers in terms of factorials as follows:

(3.19)fn
d

=

nHn + 1L Hn + 2L × × × Hn + d - 1L
1 ×2 ×3 × × ×d

=

H1 ×2 ×3 × × × Hn - 1LL nHn + 1L Hn + 2L × × × Hn + d - 1L
H1 ×2 ×3 × × × Hn - 1LL H1 ×2 ×3 × × ×dL =

Hn + d - 1L !

Hn - 1L ! d !

It follows that

(3.20)
n
k

= fn-k+1
k

=

n !

Hn - kL ! k !

=

n !

k ! Hn - kL !

For example, 
5

2
=

5!

2!×3!
= 10.  Can you prove formula (3.20)? A proof is given in Appendix A.1.

The most easily recognized patttern involving Pascal’s triangle is the following: every interior entry is the sum of the two entries
above  it  (e.g.  the  entry  3  in  the  third  row  is  the  sum of  entries  1  and  2  in  the  second  row).   This  fundamental  relationship  is
expressed mathematically by the identity (called Pascal’s identity)

(3.21)
n
k

=
n - 1

k - 1
+

n - 1

k

Observe that if we merely input this identity into Mathematica, then Mathematica is not able to verify it:
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Binomial@n, kD � Binomial@n - 1, k - 1D + Binomial@n - 1, kD
Binomial@n, kD � Binomial@-1 + n, -1 + kD + Binomial@-1 + n, kD

However, if we use the FullSimplify command and assume n and k to be non-negative integers, then Mathematica is now able to
confirm it:

FullSimplify@Binomial@n, kD � Binomial@n - 1, k - 1D + Binomial@n - 1, kD,

Element@n, IntegersD && n >= 0 && Element@k, IntegersD && k >= 0D
True

NOTE: The equilateral configuration of Pascal’s triangle is quite arbitrary and is not the only one that is useful.  A more natural
configuration which aligns coefficients  corresponding to  the monomials  xk yn-k  (see 1.1-1.5)  is  that  of  a  right  triangle  (column
justified),  a  form used originally  by Michael  Stifel  and other  when it  made it  appearance in  Western mathematical  texts  in  the
1500's:   

Binomial Coefficents Hn
k

L
Hn
k

L k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=5 1 5 10 10 5 1
n=6 1 6 15 20 15 6 1
n=7 1 7 21 35 35 21 7 1
n=8 1 8 28 56 70 56 28 8 1
n=9 1 9 36 84 126 126 84 36 9 1

We note that Pascal's triangle can also be displayed in array form by including those values of 
n
k

 for 1 £ n < k  , a form that is

referred to as Pascal's matrix (or square).

Binomial Coefficents Jn
k

N
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

n=0 1 0 0 0 0 0 0 0 0 0
n=1 1 1 0 0 0 0 0 0 0 0
n=2 1 2 1 0 0 0 0 0 0 0
n=3 1 3 3 1 0 0 0 0 0 0
n=4 1 4 6 4 1 0 0 0 0 0
n=5 1 5 10 10 5 1 0 0 0 0
n=6 1 6 15 20 15 6 1 0 0 0
n=7 1 7 21 35 35 21 7 1 0 0
n=8 1 8 28 56 70 56 28 8 1 0
n=9 1 9 36 84 126 126 84 36 9 1

Part 2 - Rows, Columns, Diagonals
Pascal's triangle contain many fascinating number pattterns involving its rows, columns, and diagonals.
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Step 1

Let's consider the sum of the terms in each row of Pascal's triangle.  For example, the sum of the entries in row n = 3 equals 8
(entires in this row are shown in red below):

Binomial Coefficents Jn
k

N
k=0 k=1 k=2 k=3 k=4 k=5

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=5 1 5 10 10 5 1

The following table lists the sums of the first 6 rows (n = 0 corresponds to the first row):

n Úk=0
n Jn

k
N

0 1 = 1
1 2 = 1+1
2 4 = 1+2+1
3 8 = 1+3+3+1
4 16 = 1+4+6+4+1
5 32 = 1+5+10+10+5+1

The table reveals that  each row sums to a power of 2.   Thus we have discovered the another well  known fundamental  identity
involving Pascal's triangle:

(3.22)â
k=0

n n
k

= 2n

Can you prove this formula?

FURTHER EXPLORATION: What do you observe about the sum of the terms at even positions in each row (starting at n = 0)?
Odd positions? 

Step 2

Next, let's sum the terms in the first column of Pascal's triangle.  Since this column (and every other column) is infinite in length,
we'll keep a running total of its entries by calculating its partial sums, i.e., the sum of the entries up to the n-th row.  Moreover,
since each entry is equal to 1, this is easily calculated by the sum 

(3.23)â
k=0

n n
0

= 1 + 1 + ... + 1 = n

For example, the partial sum of the first four entries in the first colum (corresponding to n = 3) equals 4.  Here is a table of partial
sums for n ranging from 1 to 5:
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n Úk=0
n Jn

k
N

0 1 = 1
1 2 = 1+1
2 3 = 1+1+1
3 4 = 1+1+1+1
4 5 = 1+1+1+1+1
5 6 = 1+1+1+1+1+1

The interesting observation is that these partial sums are recorded precisely in the second column of Pascal's triangle.

Binomial Coefficents Jn
k

N
k=0 k=1 k=2 k=3 k=4 k=5

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=5 1 5 10 10 5 1

To test if this is a coincidence, we compute the partial sums of the second column, given by

(3.24)â
k=1

n n
1

= â
k=1

n

n = 1 + 2 + 3 + ... + n

to see if a similar pattern holds (the entries corresponding case n = 4 is displayed in red):

GridBPrependBdatabinomialsecondcolumnpartialsums, :"n ", "Úk=0
n Jn

k
N">F,

Frame ® All, Alignment ® 88Left, Left<, Automatic<,

Background ® 8None, 888Lighter@LightGrayD, White<<, 81 ® LightBrown<<<F
n Úk=0

n Jn
k

N
1 1 = 1
2 3 = 1+2
3 6 = 1+2+3
4 10 = 1+2+3+4
5 15 = 1+2+3+4+5

Indeed, we find that the partial sums 81, 3, 6, 10, 15, ...< are again given precisely by the third column in Pascal's triangle, which
the reader should recognize as the triangular numbers tn discussed in the previous section.
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Binomial Coefficents Jn
k

N
k=0 k=1 k=2 k=3 k=4 k=5

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=5 1 5 10 10 5 1

Verify on your own that this relationship continues to hold for any column so that the sum of the first n entries in the m-th column
of Pascal's triangle is given by the Hn + 1L-th entry in the Hm + 1L-th column:

Thus, we’ve discovered classic binomial formula:

(3.25)â
k=m

n k

m
=

n + 1

m + 1

Observe that Mathematica also recognizes this identity:

Simplify@Sum@Binomial@k, mD, 8k, m, n<DD
Binomial@1 + n, 1 + mD

Can you prove this identity?

FURTHER EXPLORATION: Can you find other figurate and polygonal numbers lurking inside Pascal's triangle?

Step 3

Observe that the diagonals (top left to bottom right) of Pascal's triangle are the same as its columns due to its orientation.  Let's
consider the opposite diagonals (bottom left to top right) and sum its entries (for example the first six such diagonals are colored
below).  Do you recognize a pattern?

Diagonals of Binomial Coefficents Jn
k

N
k=0 k=1 k=2 k=3 k=4 k=5

n=0 1 0 0 0 0 0
n=1 1 1 0 0 0 0
n=2 1 2 1 0 0 0
n=3 1 3 3 1 0 0
n=4 1 4 6 4 1 0
n=5 1 5 10 10 5 1

n Sum of n-th Diagonal

HPascal's TriangleL
0 1 = 1
1 1 = 1+0
2 2 = 1+1+0
3 3 = 1+2+0+0
4 5 = 1+3+1+0+0
5 8 = 1+4+3+0+0+0

It  appears  that  the  diagonals  sum  to  the  Fibonacci  numbers  F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8.   Thus  we  have
discovered the identity
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(3.26)â
m=0

n K n - m
m

O = Fn+1

Observe that Mathematica also recognizes this identity:

Sum@Binomial@n - m, mD, 8m, 0, n<D
Fibonacci@1 + nD

Can you prove this?  HINT: Use Pascal’s Identity to prove that the left hand side of (3.26) satisfies the same recurrence as the
Fibonacci numbers.

Part 3 - Pascal’s Triangle in Reverse
Note  that  we  can  extend  Pascal's  triangle  in  the  reverse  direction,  i.e.,  for  negative  integer  values  of  n,  by  rewriting  Pascal’s
identity (3.21) as

(3.27)
n - 1

k
=

n
k

-
n - 1

k - 1

Here is table show Pascal’s triangle in reverse:

Pascal's Triangle in Reverse

k=0 k=1 k=2 k=3 k=4 k=5
n=-5 1 -5 15 -35 70 -126
n=-4 1 -4 10 -20 35 -56
n=-3 1 -3 6 -10 15 -21
n=-2 1 -2 3 -4 5 -6
n=-1 1 -1 1 -1 1 -1
n=0 1 0 0 0 0 0
n=1 1 1 0 0 0 0
n=2 1 2 1 0 0 0
n=3 1 3 3 1 0 0
n=4 1 4 6 4 1 0
n=5 1 5 10 10 5 1

What patterns do you observe?  Can you find a formula for 
-n
k

 where n > 0 and k > 0?

Part 4 - Pascal’s Triangle (Mod n)

Let’s consider the congruence 
n
k

Hmod nL:
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nMax = 11;

databinomialmodulon =

Table@If@n � 0, "-", Mod@Binomial@n, kD, nDD, 8n, 0, nMax<, 8k, 0, nMax<D;

ColumnB:"Hn
k

L Hmod nL",

Grid@Prepend@HPrepend@databinomialmodulon@@ðDD, "n=" ~~ ToString@ð - 1DDL & ��

Range@1, Length@databinomialmodulonDD,

Prepend@H"k=" ~~ ToString@ðDL & �� Range@0, nMaxD, " "DD, Frame ® All,

Alignment ® Center, Background ® 881 ® LightBrown<, 81 ® LightBrown<<D>, CenterF
Hn
k

L Hmod nL
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11

n=0 - - - - - - - - - - - -

n=1 0 0 0 0 0 0 0 0 0 0 0 0
n=2 1 0 1 0 0 0 0 0 0 0 0 0
n=3 1 0 0 1 0 0 0 0 0 0 0 0
n=4 1 0 2 0 1 0 0 0 0 0 0 0
n=5 1 0 0 0 0 1 0 0 0 0 0 0
n=6 1 0 3 2 3 0 1 0 0 0 0 0
n=7 1 0 0 0 0 0 0 1 0 0 0 0
n=8 1 0 4 0 6 0 4 0 1 0 0 0
n=9 1 0 0 3 0 0 3 0 0 1 0 0
n=10 1 0 5 0 0 2 0 0 5 0 1 0
n=11 1 0 0 0 0 0 0 0 0 0 0 1

Do you see any patterns involving the rows?  Columns?  HINT: Consider the rows and columns at prime positions.

FURTHER EXPLORATION: Binomials to Binomials (see [Os])

Recall that binomial coefficients describe the expansion of H1 + xLn.  Let’s fix x = 2  and consider the expansion of the binomial

(3.28)K1 + 2 On

= an + bn 2

which results in another binomial.  For example,

K1 + 2 O0

= 1

K1 + 2 O1

= 1 + 2

K1 + 2 O2

= 1 + 2 2 + K 2 O2

= 3 + 2 2

K1 + 2 O3

= 1 + 3 2 + 3 K 2 O2

+ K 2 O3

= 7 + 5 2

Here is a table listing the first ten values of an and bn:
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nMax = 9; databinomialroot2 = Table@8n, Simplify@H1 + Sqrt@2DL^n + H1 - Sqrt@2DL^nD � 2,

Simplify@H1 + Sqrt@2DL^n - H1 - Sqrt@2DL^nD � H2 Sqrt@2DL<, 8n, 0, nMax<D;

ColumnDataDisplayBdatabinomialroot2, 10, 9"n ", "an", "bn"=,

"Expansion of H1+ 2 Ln = an+bn 2 ", 88Left, Left, Left<, Automatic<F
Expansion of H1+ 2 Ln = an+bn 2

n an bn

0 1 0
1 1 1
2 3 2
3 7 5
4 17 12
5 41 29
6 99 70
7 239 169
8 577 408
9 1393 985

a) Can you find both recursive and explicit formulas for an and bn?

Show Mathematica Answer

b) Find the limiting value of an �bn as n ® ¥.

Show Mathematica Answer

c) Find recursive formulas for an and bn (in terms of c and d) for the binomial expansion Jc + d Nn
= an + bn 2 .

3.3 Pythagorean Triples

Part 1 - Pythagorean Triples Whose Sides are Consecutive Integers
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Pythag/pythag.html

Note 75.23 Pythagorean triples Chris Evans Mathematical Gazette 75 (1991), page 317

A Pythagorean triple 8a, b, c< is a set of three positive integers satisfying the Pythagorean Theorem: a2
+ b2

= c2.  Thus, 8a, b, c<
represent  the  sides  of  a  right  triangle.   For  example,  the  smallest  Pythagorean  triple  is  83, 4, 5<.   Another  triple  is  85, 12, 13<.
There  are  many  algorithms  for  generating  Pythagorean  triples  and  their  subsets.   In  this  section,  we’ll  explore  some  of  these
algorithms.

Step 1

The Pythagorean triple 83, 4, 5< stands out because of the property that it consists of consecutive integers.  Are there other such
triples?  To find out, we begin by substituting b = a + 1 and c = a + 2 into the equation  a2

+ b2
= c2.

eq = Simplify@a^2 + b^2 � c^2 �. 8b ® a + 1, c ® a + 2<D
a2 � 3 + 2 a
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This yields a quadratic equation in a that can easily be solved:

Solve@eq, aD
88a ® -1<, 8a ® 3<<

We rule out the negative solution a = -1; thus, the only solution is a = 3, corresponding to the triple 83, 4, 5<.
Step 2

Let’s relax the restriction that all  three sides must be consecutive integers by considering triples 8a, b, c<  where say, the longer
leg and hypotenuse, are consecutive integers, i.e., c = b + 1; one example, besides 83, 4, 5<, is the triple 85, 12, 13<.  Now, not all
Pythagorean  triples  have  this  property,  for  example,  88, 15, 17<.   On  the  other  hand,  are  there  more  such  triples?   Are  there
infinitely many such triples?  If so, is there a formula for generating them?  

To answer these questions, again it suffices to substitute c = b + 1 into the equation  a2
+ b2

= c2 and solve for b in terms of a:

Clear@a, b, eqD;

eq = Simplify@a^2 + b^2 == Hb + 1L^2D
Solve@eq, bD
a2 � 1 + 2 b

::b ®
1

2
I-1 + a2M>>

We now argue as follows: if b is required to a positive integer, then a2
- 1 must be even (divisible by 2).  It follows that a2  must

be an odd integer greater than 1 and hence a must be odd integer greater than 1.  This allows us to index the solutions as

Clear@a, b , cD;

a@n_D := 2 n + 1;

b@n_D := Ha@nD^2 - 1L � 2;

c@n_D := b@nD + 1;

8a@nD, Simplify@b@nDD, Simplify@c@nD, Assumptions ® Element@n, IntegersD && n > 0D<
91 + 2 n, 2 n H1 + nL, 1 + 2 n + 2 n2=

where n ranges over the positive integers.  Here is a table listing the first ten solutions:

Pythagorean Triples 8a,b,c< with c=b+1

n an=2n+1 bn=2nHn+1L cn=2n2+2n+1

1 3 4 5
2 5 12 13
3 7 24 25
4 9 40 41
5 11 60 61
6 13 84 85
7 15 112 113
8 17 144 145
9 19 180 181
10 21 220 221

FURTHER  EXPLORATION:  Can  you  find  formulas  to  describe  Pythagorean  triples  where  the  hypotenuse  and  longer  leg
differ by 2?

Step 3

A  more  challenging  problem  is  to  find  Pythagorean  triples  where  both  legs  are  consecutive  integers,  i.e.,  triples  8a, b, c<  with
b = a + 1.  Substituting this restriction into a2

+ b2
= c2 yields 
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Simplify@a^2 + b^2 � c^2 �. 8b ® a + 1<D
a2 + H1 + aL2 � c2

This equation is not as useful as in previous cases.  All we can conclude here is that c must be odd.  This follows from the fact if

a2  is even (or odd), then Ha + 1L2  is odd (or even, respectively); thus, c2
= a2

+ b2  must be odd, or equivalently, c  must be odd.
Here is a table of the first seven solutions obtained through a brute force search:

Pythagorean Triples 8a,b,c< with b=a+1

n an bn=an+1 cn= a2 + Ha + 1L2

1 3 4 5
2 20 21 29
3 119 120 169
4 696 697 985
5 4059 4060 5741
6 23660 23 661 33 461
7 137903 137 904 195 025

These are enough solutions for Mathematica to find a formula and recurrence for an:

Simplify@FindSequenceFunction@dataconsecutivelegs@@All, 1DD, nDD
1

12 + 8 2
I-6 - 4 2 - I3 - 2 2 Mn I1 + 2 M + I3 + 2 2 Mn I7 + 5 2 MM

FindLinearRecurrence@dataconsecutivelegs@@All, 1DDD
87, -7, 1<

As for cn, we find

Simplify@FindSequenceFunction@dataconsecutivelegs@@All, 3DD, nDD
1

12 + 8 2
II3 - 2 2 Mn I2 + 2 M + I3 + 2 2 Mn I10 + 7 2 MM

FindLinearRecurrence@dataconsecutivelegs@@All, 3DDD
86, -1<

NOTE: Mathematica  doesn’t  seem to  recognize that  an  satisfies  an even more simple,  although non-homogeneous,  recurrence:
an+1 = 6 an - an-1 + 2.

RecurrenceTable@8a@n + 1D � 6 a@nD - a@n - 1D + 2, a@1D � 3, a@2D � 20<, a, 8n, 1, 7<D
83, 20, 119, 696, 4059, 23 660, 137 903<

Part 2 - Describing Pythagorean Triples by Height
As a  generalization to  the  FURTHER EXPLORATION in  Step 2  above,  we describe  a  recursive  method for  parametrizing all
Pythagorean Triples by their height.  Let 8a, b, c< be a Pythagorean triple.  We define its height to be H = c - b.  We saw earlier
that for H = 1, 

a = 2 n + 1

b = 2 nHn + 1L
c = 2 n2

+ 2 n + 1

Hopefully, the reader was able to show that for H = 2,

Chapter 3

117



a = 2 n

b = n2
- 1

c = n2
+ 1

Step 1

Let’s complete the analysis for all higher values of H .  Substituting c = b + H  into a2
+ b2

= c2 yields

Clear@a, b, cD;

sol = Solve@Simplify@a^2 + b^2 � c^2 �. 8c ® b + H<D, bD
::b ®

a2 - H2

2 H
>>

We now use the formula above for b to tabulate values of Pythagorean triples for H  ranging from 1 to 10:

H=c-b=1

n an bn cn

1 3 4 5
2 5 12 13
3 7 24 25
4 9 40 41
5 11 60 61

H=c-b=2

n an bn cn

1 4 3 5
2 6 8 10
3 8 15 17
4 10 24 26
5 12 35 37

H=c-b=3

n an bn cn

1 9 12 15
2 15 36 39
3 21 72 75
4 27 120 123
5 33 180 183

H=c-b=4

n an bn cn

1 8 6 10
2 12 16 20
3 16 30 34
4 20 48 52
5 24 70 74

H=c-b=5

n an bn cn

1 15 20 25
2 25 60 65
3 35 120 125
4 45 200 205
5 55 300 305

H=c-b=6

n an bn cn

1 12 9 15
2 18 24 30
3 24 45 51
4 30 72 78
5 36 105 111

H=c-b=7

n an bn cn

1 21 28 35
2 35 84 91
3 49 168 175
4 63 280 287
5 77 420 427

H=c-b=8

n an bn cn

1 12 5 13
2 16 12 20
3 20 21 29
4 24 32 40
5 28 45 53

H=c-b=9

n an bn cn

1 15 8 17
2 21 20 29
3 27 36 45
4 33 56 65
5 39 80 89

H=c-b=10

n an bn cn

1 20 15 25
2 30 40 50
3 40 75 85
4 50 120 130
5 60 175 185

An analysis of the differences between consecutive values of an in the first few tables seems to suggest the following:

an+1 - an = : H if H even

2 H if H odd

If true, this would imply

an = : H Hn + 1L if H even

HH2 n + 1L if H odd

However, this pattern fails for H = 8 and H = 9.  A check of the higher values of H  (up to H = 50) shows that this pattern also
fails for the following values: 16, 18, 24, 25, 27, 32, 36, 40, 45, 48, and 50 as shown in the table below:
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Formula for an

H an

1 1 + 2 n
2 2 H1 + nL
3 3 H1 + 2 nL
4 4 H1 + nL
5 5 H1 + 2 nL
6 6 H1 + nL
7 7 H1 + 2 nL
8 4 H2 + nL
9 3 H3 + 2 nL
10 10 H1 + nL

H an

11 11 H1 + 2 nL
12 12 H1 + nL
13 13 H1 + 2 nL
14 14 H1 + nL
15 15 H1 + 2 nL
16 8 H2 + nL
17 17 H1 + 2 nL
18 6 H3 + nL
19 19 H1 + 2 nL
20 20 H1 + nL

H an

21 21 H1 + 2 nL
22 22 H1 + nL
23 23 H1 + 2 nL
24 12 H2 + nL
25 5 H5 + 2 nL
26 26 H1 + nL
27 9 H3 + 2 nL
28 28 H1 + nL
29 29 H1 + 2 nL
30 30 H1 + nL

H an

31 31 H1 + 2 nL
32 8 H4 + nL
33 33 H1 + 2 nL
34 34 H1 + nL
35 35 H1 + 2 nL
36 12 H3 + nL
37 37 H1 + 2 nL
38 38 H1 + nL
39 39 H1 + 2 nL
40 20 H2 + nL

H an

41 41 H1 + 2 nL
42 42 H1 + nL
43 43 H1 + 2 nL
44 44 H1 + nL
45 15 H3 + 2 nL
46 46 H1 + nL
47 47 H1 + 2 nL
48 24 H2 + nL
49 7 H7 + 2 nL
50 10 H5 + nL

Observe that this list includes the odd perfect squares 9, 25, and 49.  Let’s focus then on just these types of values:

Formula for an

H an

1 1 + 2 n
3 3 H3 + 2 nL
5 5 H5 + 2 nL
7 7 H7 + 2 nL
9 9 H9 + 2 nL
11 11 H11 + 2 nL
13 13 H13 + 2 nL
15 15 H15 + 2 nL
17 17 H17 + 2 nL
19 19 H19 + 2 nL

H an

21 21 H21 + 2 nL
23 23 H23 + 2 nL
25 25 H25 + 2 nL
27 27 H27 + 2 nL
29 29 H29 + 2 nL
31 31 H31 + 2 nL
33 33 H33 + 2 nL
35 35 H35 + 2 nL
37 37 H37 + 2 nL
39 39 H39 + 2 nL

Aha!  We find that if H = H2 h + 1L2, then

an = H K H + 2 nO = H2 h + 1L HH2 h + 1L + 2 nL
Let's now check to see if this pattern holds for the even perfect squares:
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Formula for an

H an

2 4 H1 + nL
4 8 H2 + nL
6 12 H3 + nL
8 16 H4 + nL
10 20 H5 + nL
12 24 H6 + nL
14 28 H7 + nL
16 32 H8 + nL
18 36 H9 + nL
20 40 H10 + nL

H an

22 44 H11 + nL
24 48 H12 + nL
26 52 H13 + nL
28 56 H14 + nL
30 60 H15 + nL
32 64 H16 + nL
34 68 H17 + nL
36 72 H18 + nL
38 76 H19 + nL
40 80 H20 + nL

If we distribute a factor of 2 through each formula for an, then indeed the same pattern holds in the case H = H2 hL2.

What about those other exceptional values of H  that are not perfect squares such as 8, 18, 24, 27, 32, etc.  It appears that these
values are multiples of perfect squares.  As a start, let’s focus on double perfect squares, i.e., H = 2 h2:

Formula for an

h= H � 2 an

1 2 H1 + nL
2 4 H2 + nL
3 6 H3 + nL
4 8 H4 + nL
5 10 H5 + nL
6 12 H6 + nL
7 14 H7 + nL
8 16 H8 + nL
9 18 H9 + nL
10 20 H10 + nL

h= H � 2 an

11 22 H11 + nL
12 24 H12 + nL
13 26 H13 + nL
14 28 H14 + nL
15 30 H15 + nL
16 32 H16 + nL
17 34 H17 + nL
18 36 H18 + nL
19 38 H19 + nL
20 40 H20 + nL

A nice pattern emerges for an:

an = 2 H K H �2 + 2 nO = 2 hHh + 2 nL
What about triple perfect squares, i.e., H = 3 h2?
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Formula for an

h= H � 3 an

1 3 H1 + 2 nL
2 12 H1 + nL
3 9 H3 + 2 nL
4 24 H2 + nL
5 15 H5 + 2 nL
6 36 H3 + nL
7 21 H7 + 2 nL
8 48 H4 + nL
9 27 H9 + 2 nL
10 60 H5 + nL

h= H � 3 an

11 33 H11 + 2 nL
12 72 H6 + nL
13 39 H13 + 2 nL
14 84 H7 + nL
15 45 H15 + 2 nL
16 96 H8 + nL
17 51 H17 + 2 nL
18 108 H9 + nL
19 57 H19 + 2 nL
20 120 H10 + nL

If we manipulate each formula so that the factor Hh + 2 nL appears, then we find that a similar pattern holds:

an = 3 H K H �2 + 2 nO = 2 hHh + 2 nL
The  reader  is  encouraged  to  verify  this  pattern  for  higher  multiples  of  perfect  squres.   Thus,  we  conclude  with  the  following
theorem:

Theorem:  The  following  formulas  generate  Pythagorean  triples  8a, b, c<  of  height  H=c-b:
a) If H is NOT a multiple of a perfect square, then

(3.29)

an = : 2 hHn + 1L if H = 2 h even

H2 h + 1L H2 n + 1L if H = 2 h + 1 odd

bn =

an
2

- H2

2 H
= : h nHn + 2L if H = 2 h even

2 H2 h + 1L nHn + 1L if H = 2 h + 1 odd

cn = bn + H = : hIn2
+ 2 n + 2M if H = 2 h even

H2 h + 1L I2 n2
+ 2 n + 1M if H = 2 h + 1 odd

b) If H multiple of a perfect square, i.e., H = mh2 with m square-free, then

(3.30)

an = m hHh + 2 nL
bn =

an
2

- H2

2 H
= 2 m nHh + nL

cn = bn + H = m Ih2
+ 2 h n + 2 n2M

Step 2

Let’s  investigate  whether  Pythagorean  triples  satisfy  any  recurrences.   It  suffices  to  consider  the  different  cases  as  in  Step  1
depending on whether the height H  equals a multiple of a perfect square.  Let’s begin with H  an even integer, but not a multiple
of a perfect square:
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H=c-b=2

n an bn cn

1 4 3 5
2 6 8 10
3 8 15 17
4 10 24 26
5 12 35 37

H=c-b=6

n an bn cn

1 12 9 15
2 18 24 30
3 24 45 51
4 30 72 78
5 36 105 111

H=c-b=10

n an bn cn

1 20 15 25
2 30 40 50
3 40 75 85
4 50 120 130
5 60 175 185

H=c-b=14

n an bn cn

1 28 21 35
2 42 56 70
3 56 105 119
4 70 168 182
5 84 245 259

H=c-b=22

n an bn cn

1 44 33 55
2 66 88 110
3 88 165 187
4 110 264 286
5 132 385 407

By examining the sums an + bn, it appears that the values for bn in the tables above satisfy the following recurrence:

bn+1 = an + bn + H �2

Does a similar recurrence hold for H  an odd integer, but not a multiple of a perfect square?  Let’s analyze the tables below:

nMax = 500;

Hmax = 5;

dataPythagoreantriplesheightsumab =

Map@Take@DeleteCases@Table@8ð, a, sol@@1, 1, 2DD �. H ® ð,

Simplify@sol@@1, 1, 2DD + HD �. H ® ð<, 8a, 1, nMax<D,

x__ �; H! HIntegerQ@x@@3DDD && x@@3DD > 0LLD, 5D &, 83, 5, 7, 11, 13<D;

Row@Table@ColumnDataDisplay@Table@ReplacePart@
dataPythagoreantriplesheightsumab@@HDD@@nDD, 1 -> nD,

8n, 1, Length@dataPythagoreantriplesheightsumab@@HDDD<D,

10, 8"n", "an", "bn", "cn"<, "

H=c-b=" <> ToString@dataPythagoreantriplesheightsumab@@HDD@@1, 1DDD <> "",

88Left, Left, Left, Left<, Automatic<D,

8H, 1, Length@dataPythagoreantriplesheightsumabD<D, " "D
H=c-b=3

n an bn cn

1 9 12 15
2 15 36 39
3 21 72 75
4 27 120 123
5 33 180 183

H=c-b=5

n an bn cn

1 15 20 25
2 25 60 65
3 35 120 125
4 45 200 205
5 55 300 305

H=c-b=7

n an bn cn

1 21 28 35
2 35 84 91
3 49 168 175
4 63 280 287
5 77 420 427

H=c-b=11

n an bn cn

1 33 44 55
2 55 132 143
3 77 264 275
4 99 440 451
5 121 660 671

H=c-b=13

n an bn cn

1 39 52 65
2 65 156 169
3 91 312 325
4 117 520 533
5 143 780 793

This time we find that

bn+1 = 2 an + bn + 2 H

We now move on to the case where H  is a multiple of a perfect square.  Let’s begin with H = h2:
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H=c-b=1

n an bn cn

1 3 4 5
2 5 12 13
3 7 24 25
4 9 40 41
5 11 60 61
6 13 84 85
7 15 112 113
8 17 144 145
9 19 180 181
10 21 220 221

H=c-b=4

n an bn cn

1 8 6 10
2 12 16 20
3 16 30 34
4 20 48 52
5 24 70 74
6 28 96 100
7 32 126 130
8 36 160 164
9 40 198 202
10 44 240 244

H=c-b=9

n an bn cn

1 15 8 17
2 21 20 29
3 27 36 45
4 33 56 65
5 39 80 89
6 45 108 117
7 51 140 149
8 57 176 185
9 63 216 225
10 69 260 269

H=c-b=16

n an bn cn

1 24 10 26
2 32 24 40
3 40 42 58
4 48 64 80
5 56 90 106
6 64 120 136
7 72 154 170
8 80 192 208
9 88 234 250
10 96 280 296

H=c-b=25

n an bn cn

1 35 12 37
2 45 28 53
3 55 48 73
4 65 72 97
5 75 100 125
6 85 132 157
7 95 168 193
8 105 208 233
9 115 252 277
10 125 300 325

H=c-b=36

n an bn cn

1 48 14 50
2 60 32 68
3 72 54 90
4 84 80 116
5 96 110 146
6 108 144 180
7 120 182 218
8 132 224 260
9 144 270 306
10 156 320 356

H=c-b=49

n an bn cn

1 63 16 65
2 77 36 85
3 91 60 109
4 105 88 137
5 119 120 169
6 133 156 205
7 147 196 245
8 161 240 289
9 175 288 337
10 189 340 389

H=c-b=64

n an bn cn

1 80 18 82
2 96 40 104
3 112 66 130
4 128 96 160
5 144 130 194
6 160 168 232
7 176 210 274
8 192 256 320
9 208 306 370
10 224 360 424

H=c-b=81

n an bn cn

1 99 20 101
2 117 44 125
3 135 72 153
4 153 104 185
5 171 140 221
6 189 180 261
7 207 224 305
8 225 272 353
9 243 324 405
10 261 380 461

H=c-b=100

n an bn cn

1 120 22 122
2 140 48 148
3 160 78 178
4 180 112 212
5 200 150 250
6 220 192 292
7 240 238 338
8 260 288 388
9 280 342 442
10 300 400 500

It appears that for H = 1, we have bn+1 = 2 an + bn + 2, but for H = 4, we have bn+1 = an + bn + 2.  No recurrence seems to exist

for H = 9, 16, 25.  However, in these cases, if we restrict to triples that are spaced H  rows apart, then an+k - an  is a multiple
of  H  and  the  pattern  holds.   For  example,  if  H = 9,  then  every  third  triple  satisfies  the  recurrence  bn+3 = 2 an + bn + 18,  for
example,

8a1, b1, c1<, 8a4, b4, c4<, 8a7, b7, c7<, ...
On the other hand, if H = 16, then every fourth triple satisfies the recurrence bn+4 = an + bn + 8, for example,
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8a1, b1, c1<, 8a5, b5, c5<, 8a9, b9, c9<, ...
This leads to the recurrence

(3.31)bn+h = : an + bn + H �2 if H = h2 even

2 an + bn + 2 H if H = h2 odd

when H  is a perfect square.  

FURTHER EXPLORATION:

1. Determine recurrences for bn where H  is a multiple of a perfect square, i.e., H = m h2 with h square-free.

2. Find similar recurrence formulas for cn by assuming the various cases for H  discussed in the steps above.

NOTE: For a more detailed treatment and a proof that these recurrences generate all Pythagorean triples of height H , see [WW]
and [MW].

3.4 Permutations

Recall that a permutation of a set is a just an ordering of the set.  The following experiments reveal the wide range of properties
of permutations.

3.4.1 Catching Your Graduation Cap
Concrete Mathematics, Section 5.3, p. 193

Suppose upon receiving their high school diplomas at graduation, all students celebrate by throwing this graduation caps into the
air.   Assuming that  the  caps  randomly fall  back  down and each student  catches  exactly  one  cap,  what  is  the  probability  that  a
quarter of the students will catch their own caps in a graduating class of 20 students?

Let’s  solve this  problem more generally  by considering a  graduating class  of  n  students  and denoting by cHn, kL  the  number of
ways in which k students catch their own caps.  The following table gives the first several rows of values of cHn, kL.

perm = Permutations@8A, B, C, D<D
88A, B, C, D<, 8A, B, D, C<, 8A, C, B, D<, 8A, C, D, B<, 8A, D, B, C<, 8A, D, C, B<,

8B, A, C, D<, 8B, A, D, C<, 8B, C, A, D<, 8B, C, D, A<, 8B, D, A, C<, 8B, D, C, A<,
8C, A, B, D<, 8C, A, D, B<, 8C, B, A, D<, 8C, B, D, A<, 8C, D, A, B<, 8C, D, B, A<,
8D, A, B, C<, 8D, A, C, B<, 8D, B, A, C<, 8D, B, C, A<, 8D, C, A, B<, 8D, C, B, A<<

temp = 4 - HammingDistance@ð, 8A, B, C, D<D & �� perm

84, 2, 2, 1, 1, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 1, 2, 0, 0<
c@n_, k_D :=

Count@n - HammingDistance@ð, Range@1, nDD & �� Permutations@Range@1, nDD, kD
nMax = 5;

Table@c@n, kD, 8n, 0, nMax<, 8k, 0, n<D �� Grid

1
0 1
1 0 1
2 3 0 1
9 8 6 0 1
44 45 20 10 0 1

We immediately observe that  cHn, n - 1L = 0 and cHn, nL = 1.  The latter identity is  clear:  there is  only one permutation, namely
the identity permutation, in which every student catches his or her own cap.  The former identity can be explained as follows: ifHn - 1L  students  catch  their  own  caps,  then  the  remaining  student  must  also  catch  his  or  her  own  cap  since  it  is  the  only  cap
remaining; thus, cHn, n - 1L = 0.    
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We immediately observe that  cHn, n - 1L = 0 and cHn, nL = 1.  The latter identity is  clear:  there is  only one permutation, namely
the identity permutation, in which every student catches his or her own cap.  The former identity can be explained as follows: ifHn - 1L  students  catch  their  own  caps,  then  the  remaining  student  must  also  catch  his  or  her  own  cap  since  it  is  the  only  cap
remaining; thus, cHn, n - 1L = 0.    

Observe that since the number of permutations  equals n ! and grows rapidly, a brute force computation of cHn, kL is impractical
here for large n, as demonstrated by the amount of time (in seconds) required to compute cHn, 0L for n = 1, 2, ... 10:

temp = Table@8n, Timing@c@n, 0DD<, 8n, 1, 10<D �� Grid

1 80., 0<
2 80., 1<
3 80., 2<
4 80., 9<
5 80., 44<
6 80.015, 265<
7 80.11, 1854<
8 80.343, 14 833<
9 83.016, 133 496<
10 830.969, 1334 961<

Thus it is useful to find a more efficient formula for cHn, kL.  Let’s start by trying to find a pattern for the values cHn, 0L in the first
column:

datahn0 = Table@c@n, 0D, 8n, 1, 8<D
80, 1, 2, 9, 44, 265, 1854, 14 833<
FindSequenceFunction@datahn0, nD
Subfactorial@nD

This shows that cHn, 0L represents the number of permutations where no student retrieves his or her own cap, i.e., the number of
derangements (discussed in Chapter 2).  Thus,

(3.32)cHn, 0L = n
i

where  n
i
 is  the  subfactorial  function.   This  leads  us  to  suspect  that  cHn, kL  should  involve  the  subfactorial  Hn - kL

i
 since  in  this

case Hn - kL students will NOT have retrieved his or her own cap.  Thus, we consider values of cHn, kL divided by Hn - kL
i
:

Quiet@Table@c@n, kD � Subfactorial@n - kD, 8n, 0, 5<, 8k, 0, n<D �� GridD
1

Indeterminate 1
1 Indeterminate 1
1 3 Indeterminate 1
1 4 6 Indeterminate 1
1 5 10 10 Indeterminate 1

We quickly recognize this  table as  Pascal’s  triangle consisting of  binomial  coefficients  (the Indeterminate values resulted from
division of cHn, n - 1L by Hn - Hn - 1LL

i
= 1

i
= 0).  Thus, the formula for cHn, kL in terms of the factorial function becomes clear:

(3.33)cHn, kL =
n
k

cHn - k, 0L =
n
k

cHn - k, 0L
FindSequenceFunction@Table@Subfactorial@kD, 8k, 1, 5<D, nD
Subfactorial@nD

NOTE: We can of  course have reasoned further  by viewing cHn, kL  as  the number of  ways of  choosing k  students  who end up
retrieving their own cap multiplied with the number of ways in which the remaining Hn - kL students who do NOT retrieve their
own cap, i.e., cHn - k, 0L.  Thus,

(3.34)cHn, kL =
n
k

Hn - kL
i
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This formula now allows us to quickly compute cHn, kL:
Subfactorial@10D
1334961

Thus, the probability that k students will catch their own caps equals cHn, kL �n !.  

(3.35)
cHn, kL

n !

=
n
k

Hn - kL
i

n !

=

n ! Hn - kL
i

k ! Hn - kL ! n !

=

Hn - kL
i

k ! Hn - kL !

To answer the original problem, the probability that exactly 5 out of 20 students will catch their own caps equals 

cH20, 5L
20 !

=

H15L
i

5 ! ×15 !

=

48 066 515 734

120 ×1 307 674 368 000
» 0.003,

which is quite remote.

NOTE:  Much more  likely  is  when no  student  catches  his  or  her  own cap.   The  probability  of  this  occuring  out  of  20  students
equals

cH20, 0L
20 !

=

H20L
i

20 !

=

895 014 631 192 902 121

2 432 902 008 176 640 000
» 0.368

or more than a third chance.

FURTHER  EXPLORATION:  Can  you  determine  the  limiting  value  of  cHn, kL �n !  as  n ® ¥?   If  necessary,  use  the  in-house
Mathematica command ISC or go directly to the Inverse Symbolic Calculator (ISC) website.

3.4.2 Runs
ACP Vol. 3, p.34

An ascending run of a permutation is an increasing contiguous subsequence of the permutation that cannot be extended at either
end.   For  example,  the  permutation 82, 4, 1, 3, 5<  contains  the  run 81, 3, 5<.   To find all  runs,  we use  the  Mathematica  comm-
mand Runs. 

Runs@82, 4, 1, 3, 5<D
882, 4<, 81, 3, 5<<

Thus, 82, 4, 1, 3, 5< has two runs, 82, 4< and 81, 3, 5<.  Note that runs specify a partition for the permutation.

Denote by [ n
k

_ to be the number of permutations of length n that have k  runs each.  For example, here is a table listing the runs

for each permutation of length 3:

Runs for Permutations of Length 3

Σ Runs of Σ81, 2, 3< 881, 2, 3<<81, 3, 2< 881, 3<, 82<<82, 1, 3< 882<, 81, 3<<82, 3, 1< 882, 3<, 81<<83, 1, 2< 883<, 81, 2<<83, 2, 1< 883<, 82<, 81<<
We now use the table to calculate [ 3

k
_:
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Runs@ðD & �� Permutations@81, 2, 3<D
8881, 2, 3<<, 881, 3<, 82<<, 882<, 81, 3<<,

882, 3<, 81<<, 883<, 81, 2<<, 883<, 82<, 81<<<
Count@Runs@ðD & �� Permutations@81, 2, 3<D, t_ �; Length@tD � 3D
1

datanumberofruns = Table@
8k, Count@Runs@ðD & �� Permutations@81, 2, 3<D, t_ �; Length@tD � kD<, 8k, 1, 3<D;

ColumnDataDisplayBdatanumberofruns, 10, :"k", "X3
k

\">, "Distribution of Runs"F
Distribution of Runs

k X3
k

\
1 1
2 4
3 1

Let's now make an array of values for [ n
k

_:

Xn
k

\ k=1 k=2 k=3 k=4 k=5 k=6 k=7

n=1 1 0 0 0 0 0 0
n=2 1 1 0 0 0 0 0
n=3 1 4 1 0 0 0 0
n=4 1 11 11 1 0 0 0
n=5 1 26 66 26 1 0 0
n=6 1 57 302 302 57 1 0
n=7 1 120 1191 2416 1191 120 1

Using Mathematica, we find that the second column satisfies the formula

FindSequenceFunction@80, 1, 4, 11, 26, 57, 120<, nD
-1 + 2n - n

Can you find other patterns in the table above?

NOTE: The values [ n
k

_ are referred to as the Eulerian numbers.

3.4.3 Alternating Runs
ACP Vol. 3, p. 46

In  the  previous  subsection,  we  considered  purely  ascending  runs  in  partitioning  a  permutation.   Of  course,  we  couuld  have
replaced ascending runs by descending runs.  However, it is also possible to consider ascending and descending runs that alter-
nate in a given permutation as follows.  Let Σ = 8a1, a2, ..., an< be a permutation of 81, 2, ..., n<.  We define the first run to begin
at a1 and prescribe it to be ascending or descending based on whether a1 < a2 or a1 > a2, respectively.  Suppose the first run ends
at ai before changing its climb, i.e., changes from ascending to descending or vice versa.  Then ai becomes the start of the second
run and its ascension or descension is opposite that of the first run.  By continuing this process down the last element of Σ,  we
obtain a sequence of alternating runs.  For example, the permutation 82, 5, 3, 1, 4< has three alternating runs: 82, 5<, 85, 3, 1<, and
81, 4<.  The in-house Mathematica command AlternatingRuns will generate alternating runs of a permutation.
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In  the  previous  subsection,  we  considered  purely  ascending  runs  in  partitioning  a  permutation.   Of  course,  we  couuld  have
replaced ascending runs by descending runs.  However, it is also possible to consider ascending and descending runs that alter-
nate in a given permutation as follows.  Let Σ = 8a1, a2, ..., an< be a permutation of 81, 2, ..., n<.  We define the first run to begin
at a1 and prescribe it to be ascending or descending based on whether a1 < a2 or a1 > a2, respectively.  Suppose the first run ends
at ai before changing its climb, i.e., changes from ascending to descending or vice versa.  Then ai becomes the start of the second
run and its ascension or descension is opposite that of the first run.  By continuing this process down the last element of Σ,  we
obtain a sequence of alternating runs.  For example, the permutation 82, 5, 3, 1, 4< has three alternating runs: 82, 5<, 85, 3, 1<, and
81, 4<.  The in-house Mathematica command AlternatingRuns will generate alternating runs of a permutation.

AlternatingRuns@82, 5, 3, 1, 4<D
882, 5<, 85, 3, 1<, 81, 4<<

Let’s now generate a table of alternating runs for all permutations of length 3.

Alternating Runs for Permutations of Length 3

Σ Alternating Runs of Σ Number of Alternating Runs81, 2, 3< 881, 2, 3<< 181, 3, 2< 881, 3<, 83, 2<< 282, 1, 3< 882, 1<, 81, 3<< 282, 3, 1< 882, 3<, 83, 1<< 283, 1, 2< 883, 1<, 81, 2<< 283, 2, 1< 883, 2, 1<< 1

To investigate further, denote by [[ n
k

__ to be the number of permutations of length n which have exactly k  alternating runs.  For

example, we see from the table above that [[ 3

1
__ = 2 and [[ 3

2
__ = 4.  Here is an array of values for [[ n

k
__.

Xn
k

\ k=1 k=2 k=3 k=4 k=5 k=6 k=7

n=1 1 0 0 0 0 0 0
n=2 2 0 0 0 0 0 0
n=3 2 4 0 0 0 0 0
n=4 2 12 10 0 0 0 0
n=5 2 28 58 32 0 0 0
n=6 2 60 236 300 122 0 0
n=7 2 124 836 1852 1682 544 0

Can you find any patterns in the array above for [[ n
k

__?

3.4.4 Involutions
ACP Vol. 3, p. 65

A permutation Σ of length n can also be thought of as a mapping of the set 81, 2, ..., n<.  For example, if Σ = 82, 3, 1<, then we
can view it as the function

ΣH1L = 2

ΣH2L = 3

ΣH3L = 1

More  generally,  if  Σ = 8k1, k2, ..., kn<,  then  ΣHiL = ki,  i.e.,  the  integer  i  is  mapped  to  ki.   Every  permutation  has  an  inverse,
denoted by Σ-1, which maps ki back to i.  For example, if Σ = 82, 3, 1<, then Σ-1

= 83, 1, 2< since we require

Σ
-1H1L = 3

Σ
-1H2L = 1

Σ
-1H3L = 2

 Thus, Σ-1 satisfies the properties Σ-1HΣHiLL = i and ΣIΣ
-1HiLM = i.  

An involution is a permutation which is equal to its inverse, namely Σ = Σ
-1.   For example, Σ = 83, 2, 1<  is an involution.  We

confirm this using the Mathematica command InversePermutation.
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InversePermutation@83, 2, 1<D
83, 2, 1<

Let’s investigate the numer of involutions of a given length.  Towards this end, denote by IHnL to be the number of involutions of
length n.  Here is a table of values of IHnL:

Number of Involutions of Length n

n IHnL
1 1
2 2
3 4
4 10
5 26
6 76
7 232
8 764

FURTHER EXPLORATION: Can you find a recurrence relation for IHnL?

3.5 Partitions

3.5.1 Partitions of Integers
Recall that a partition of a positive integer n  is a way of writing n  as a sum of positive integers.  For example, n = 5 has seven
partitions.  We can verify this using Mathematica’s IntegerPartitions command:

IntegerPartitions@5D
885<, 84, 1<, 83, 2<, 83, 1, 1<, 82, 2, 1<, 82, 1, 1, 1<, 81, 1, 1, 1, 1<<

3.5.1.1 Partition Congruences

Consider  the  partition  function  pHnL  which  counts  the  number  of  ways  that  a  positive  integer  n  can  be  expressed  as  a  sum  of
positive integers.   Since n = 5 has seven partitions,  we have pH5L = 7.  The partition function in Mathematica  is  defined by the
command PartitionsP.

PartitionsP@5D
7

Let’s consider the partition congruences, i.e., the congruence of pHnL mod q, where q is a positive integer.  The table below gives
congruences for the first thirty values of pHnL mod 2.

Partition Congruences

n pHnL pHnL mod 2
1 1 1
2 2 0
3 3 1
4 5 1
5 7 1
6 11 1
7 15 1
8 22 0
9 30 0
10 42 0

n pHnL pHnL mod 2
11 56 0
12 77 1
13 101 1
14 135 1
15 176 0
16 231 1
17 297 1
18 385 1
19 490 0
20 627 1

n pHnL pHnL mod 2
21 792 0
22 1002 0
23 1255 1
24 1575 1
25 1958 0
26 2436 0
27 3010 0
28 3718 0
29 4565 1
30 5604 0
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Unfortunately,  no  pattern  is  evident.   A  similar  dead-end  arises  if  we  consider  congruences  of  pHnL mod q  for  q = 3  and  q = 4.
However, when q = 5, we find an interesting pattern:

Partition Congruences

n pHnL pHnL mod 2
1 1 1
2 2 2
3 3 3
4 5 0
5 7 2
6 11 1
7 15 0
8 22 2
9 30 0
10 42 2

n pHnL pHnL mod 2
11 56 1
12 77 2
13 101 1
14 135 0
15 176 1
16 231 1
17 297 2
18 385 0
19 490 0
20 627 2

n pHnL pHnL mod 2
21 792 2
22 1002 2
23 1255 0
24 1575 0
25 1958 3
26 2436 1
27 3010 0
28 3718 3
29 4565 0
30 5604 4

If we isolate those congruences where pHnL º 0 mod 5, then a pattern emerges:

Partition Congruences

n pHnL mod 2
4 0
7 0
9 0
14 0
18 0
19 0
23 0
24 0
27 0
29 0

n pHnL mod 2
34 0
38 0
39 0
44 0
49 0
54 0
58 0
59 0
61 0
64 0

Observe that the table above includes those integers n ending in 4 or 9, i.e., integers of the form 5 n + 4.  Thus, we’ve discovered
the first of Ramanujan’s congruences for the partition function.

(3.36)pH5 n + 4L º 0 mod 5

FURTHER INVESTIGATION: There are two other Ramanujan congruences.  See if you can discover them by testing different
values of the modulus q.

3.5.1.2 Number of Smallest Parts

http://www.math.psu.edu/vstein/alg/antheory/preprint/andrews/17.pdf

The total number of smallest parts appearing in all the partitions of a positive integer n is defined to be sptHnL.  For example, the
partitions of n = 4 are:

Replace@ð, ð@@Length@ðDDD ® Style@ð@@Length@ðDDD, UnderlinedD, 2D & ��

IntegerPartitions@4D
884<, 83, 1<, 82, 2<, 82, 1, 1<, 81, 1, 1, 1<<

The smallest  parts  in  each partition are underlined in the above output.   The table  below lists  the number of  smallest  parts  for
each partition:
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Partition Number of Smallest Parts84< 183, 1< 182, 2< 282, 1, 1< 281, 1, 1, 1< 4

Thus, we have sptH4L = 10.  Let’s define spt as the command spt in Mathematica:

Clear@sptD
spt@n_D := Total@Count@ð, ð@@Length@ðDDDD & �� IntegerPartitions@nDD

The following table lists the first 30 values of spt.

n sptHnL
1 1
2 3
3 5
4 10
5 14
6 26
7 35
8 57
9 80
10 119

n sptHnL
11 161
12 238
13 315
14 440
15 589
16 801
17 1048
18 1407
19 1820
20 2399

n sptHnL
21 3087
22 3998
23 5092
24 6545
25 8263
26 10486
27 13165
28 16562
29 20630
30 25773

We follow the trail blazed in the previous part by considering congruences of sptHnL mod 5.

n sptHnL mod 5
1 1
2 3
3 0
4 0
5 4
6 1
7 0
8 2
9 0
10 4

n sptHnL mod 5
11 1
12 3
13 0
14 0
15 4
16 1
17 3
18 2
19 0
20 4

n sptHnL mod 5
21 2
22 3
23 2
24 0
25 3
26 1
27 0
28 2
29 0
30 3

We find that the same congruence holds for sptHnL as it does for the partition function, namely

(3.37)sptH5 n + 4L º 0 mod 5

FURTHER EXPLORATION: Find two other congruence relations for sptHnL.
3.5.1.3 Palindromic Compositions

http://www.fq.math.ca/Scanned/41-3/heubach.pdf

A composition of n is an ordered sequence of positive integers whose sum is n.  Thus, a composition is an ordered partition where
the order of the terms is taken into account.  For example, there are five partitions of n = 4.  
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IntegerPartitions@4D
884<, 83, 1<, 82, 2<, 82, 1, 1<, 81, 1, 1, 1<<

On the other hand, n = 4 has 16 compositions.

Permutations@ðD & �� IntegerPartitions@4D
8884<<, 883, 1<, 81, 3<<, 882, 2<<, 882, 1, 1<, 81, 2, 1<, 81, 1, 2<<, 881, 1, 1, 1<<<

A palindromic composition is a composition that reads the same forwards and backwards (palindrome).  For example, n = 4 has
three palindromic compositions: 

4
1 + 2 + 1
1 + 1 + 1 + 1

Let’s investigate the number of palindromic compositions of an arbitrary positive integer n.

3.5.2 Partitions of Sets
A  partition  of  a  set  A  is  a  collection  of  disjoint  subsets  8A1, A2, ..., Ak<  whose  union  equals  A.   For  example,  the  collection881, 3<, 82<< is a partition of 81, 2, 3<.  There are five different partitions of 81, 2, 3<.  Let’s generate them using the Mathematica
command SetPartitions:

SetPartitions@81, 2, 3<D
8881, 2, 3<<, 881<, 82, 3<<, 881, 2<, 83<<, 881, 3<, 82<<, 881<, 82<, 83<<<

3.5.2.1 Congruences of Bell Numbers

http://oeis.org/A000110

The Bell numbers Bn are defined to be the number of partitions of a set consisting of n elements.  We’ve already seen that the set
81, 2, 3< has five partitions.  Thus, B3 = 5.  The Bell numbers can be generated in Mathematica using the command BellB.  Here
is a list of the first 10 Bell numbers:

Table@BellB@nD, 8n, 1, 10<D
81, 2, 5, 15, 52, 203, 877, 4140, 21 147, 115975<

Let's consider congruences of Bell numbers Bn mod 2.

http://oeis.org/A054767

n Bn mod 2
1 1
2 0
3 1
4 1
5 0
6 1
7 1
8 0
9 1
10 1

n Bn mod 2
11 0
12 1
13 1
14 0
15 1
16 1
17 0
18 1
19 1
20 0

The pattern is clear: the residues above are periodic with period 3, i.e.,

(3.38)BHn + 3L º BHnL mod 2

Let’s continue this trail by considering congruences of Bn mod 3.
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n Bn mod 2
1 1
2 2
3 2
4 0
5 1
6 2
7 1
8 0
9 0
10 1

n Bn mod 2
11 0
12 1
13 1
14 1
15 2
16 2
17 0
18 1
19 2
20 1

n Bn mod 2
21 0
22 0
23 1
24 0
25 1
26 1
27 1
28 2
29 2
30 0

Here, the residues seem to have period 13 over a range of 2 periods.  We should experimentally verify this over a wider range.
Towards this end, we use our in-house Mathematica command SequencePeriod to experimentally determine whether this period
holds for the first 100 terms:

? SequencePeriod

SequencePeriod@dataD experimentally determines the period p of a finite sequence data

by detecting a subsequence of p consecutive terms that repeats, i.e., runs for at least two periods;

returns p if such a subsequence exists, else returns 0.

SequencePeriod@Table@Mod@BellB@nD, 3D, 8n, 1, 100<DD
13

The  reader  can  confirm this  over  an  even  wider  range,  say  the  first  1000  terms.   Therefore,  we’ve  discovered  the  congruence
relation

(3.39)BHn + 13L º BHnL mod 3

What about other values for q?  Is the sequence of congruences Bn mod 3 always periodic for every q?  Define Πq to be the period

of Bn mod 3 q.  Below is a table of values for Πq for q ranging from 1 to 6:

q Πq

1 1
2 3
3 13
4 12
5 781
6 39

Observe that the periods in the table above are relatively small except for q = 5, which jumps to a period 781.

dataperiodBellnumbers = 81, 3, 13, 12, 781, 39, 137 257, 24,

39, 2343, 28 531 167 061, 156, 25 239 592 216 021, 411 771, 10 153, 48,

51 702 516 367 896 047 761, 117, 109 912 203 092 239 643 840 221, 9372, 1 784 341,

85 593 501 183, 949 112 181 811 268 728 834 319 677 753, 312, 3905, 117<
81, 3, 13, 12, 781, 39, 137 257, 24, 39, 2343, 28531167061, 156, 25239592216021,

411771, 10153, 48, 51 702 516 367 896047761, 117, 109912203092239643840221,

9372, 1784341, 85 593 501 183, 949112181811268728834319677753, 312, 3905, 117<

Chapter 3

133



FURTHER EXPLORATION:  

1. Make a table of periods for Bn mod 3 for q ranging from 1 to 20.  NOTE: Some of these periods will be extremely large.

2. Do you see a pattern for those values of q where the period jumps to a relatively large value (in comparison to its immediate
neighbors)?

3. Can you find a formula for the relatively large periods mentioned in part 2.

3.6 Hyper-Polyhedra

In this section we investigate patterns involving the number of vertices, edges, and faces of higher-dimensional polyhedra.

3.6.1 Regular Polyhedra
It is well known that there exists only five regular polyhedra: tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

Vertices, Edges, and Faces

Each  regular  polygon  has  a  certain  number  of  vertices,  edges,  and  faces.   Below is  a  table  listing  this  information  for  all  five
regular polygons:

Regular Polyhedra

Regular Polyhedron ð Vertices ð Edges ð Faces

Tetrahedron 4 6 4
Cube 8 12 6

Octahedron 6 12 8
Dodecahedron 20 30 12
Icosahedron 12 30 20

Euler’s polyhedron formula describes how V , E, and F are related for all convex polyhedra:

(3.40)V - E + F = 2

3.6.2 Hypertetrahedron
A  hypertetrahedron  (also  called  a  simplex  or  pentatope)  is  generalization  of  a  tetrahedron  to  four  dimensions  (4-D).   More
generally, an n-tetrahedron is a generalization of a tetrahedron to n dimensions.  An n-dimensional unit hypertrahedron is defined
to be the object obtained by inserting a vertex along the n-th dimension and forming edges of length 1 between it and all vertices
of  an  Hn - 1L-dimensional  unit  hypertetrahedron.   Essentially  an  n-dimensional  hypertetrahedron  can  be  represented  by  the
complete graph Kn on Hn + 1L vertices where any two vertices are connected by an edge.

Step 1

Let's determine the number of vertices and edges for a hypertetrahedron:
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Hypertetrahedra

Dimension ð Vertices ð Edges

0 1 0
1 2 1
2 3 3
3 4 6
4 5 10

The pattern for the number of vertices is clear.  Do you recognize the values for number of edges?

3.6.3 Hypercube
A hypercube is generalization of a cube to four dimensions (4-D).  More generally, an n-cube is a generalization of a cube to n
dimensions.  An n-dimensional unit hypercube is defined to be the object obtained by taking two copies of an Hn - 1L-dimensional
unit hypercube, parallel to each other along the n-th dimension, and forming edges of length 1 between corresponding vertices of
the two copies.  

Step 2

The following table lists the number of vertices and edges of an n-dimensional hypercube for n = 1, 2, 3, 4:

Hypercube

Dimension ð Vertices ð Edges

0 1 0
1 2 1
2 4 4
3 8 12
4 16 32
5 32 80

Do you recognize the pattern for the number of vertices and edges?  What about faces of a n-cube?  See if you can find a formula
for the number of faces.

Isaac Newton: The Generalized Binomial Theorem

Sir Isaac Newton H1643 - 1727L

http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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Binomial Theorem:

Newton's Discovery of the General Binomial Theorem
D. T. Whiteside
The Mathematical Gazette
Vol. 45, No. 353 (Oct., 1961), pp. 175-180
(article consists of 6 pages)
Published by: The Mathematical Association
Stable URL: http://www.jstor.org/stable/3612767

Newton, having studied Wallis’ Arithmetica Infinitorum, knew that Wallis had interpolated the definite integral Ù0
1I1 - x1�2M2

â x

that  led  to  his  infinite  product  representation  of  Π.   By  following  the  same  trail,  Newton  was  able  to  generalize  the  Binomial

Theorem  to  non-integer  exponents.   He  originally  succeeded  in  obtaining  infinite  series  expressions  for  Ù0
xIa2

- x2M1�2
â x,

Ù0
xIa2

+ x2M1�2
â x, and Ù0

x
a2Hb + xL-1

â x, representing the areas the circle y2
= a2

- x2  and hyperbolas yH b + xL = a2, respectively.

As  he  explains  it  in  [],  Newton  in  each  case  reduced  the  problem  to  interpolating  the  integrand,  say  a2Hb + xL-1,  from  the
sequence of  expansions a2Hb + xLn  for  non-negative integers  n,  whose coefficients  were already known to  be given by Pascal’s
triangle:

Binomial Expansion of a2Hb+xLn

n a2Hb+xLn

0 a2

1 a2 b + a2 x

2 a2 b2 + 2 a2 b x + a2 x2

3 a2 b3 + 3 a2 b2 x + 3 a2 b x2 + a2 x3

4 a2 b4 + 4 a2 b3 x + 6 a2 b2 x2 + 4 a2 b x3 + a2 x4

5 a2 b5 + 5 a2 b4 x + 10 a2 b3 x2 + 10 a2 b2 x3 + 5 a2 b x4 + a2 x5

Now, by creating a  table  of  these coefficients,  called binomial  coefficients  (see Chapter  2)  and denoted by 
n
k

 to  refer  to  the

coefficient of a2 bn-k xk  in the expansion of a2Hb + xLn , Newton was able to extend the recursive pattern for binomial coefficients
to negative integer exponents:

Binomial Coefficients Hn
k

L
k=0 k=1 k=2 k=3 k=4 k=5

n=-5 1 -5 15 -35 70 -126
n=-4 1 -4 10 -20 35 -56
n=-3 1 -3 6 -10 15 -21
n=-2 1 -2 3 -4 5 -6
n=-1 1 -1 1 -1 1 -1
n=0 1 0 0 0 0 0
n=1 1 1 0 0 0 0
n=2 1 2 1 0 0 0
n=3 1 3 3 1 0 0
n=4 1 4 6 4 1 0
n=5 1 5 10 10 5 1

As a result, this led him to the series expansion for a2Hb + xL-1 corresponding to n = -1:

(3.41)a2Hb + xL-1
=

a2

b
-

a2

b2
x +

a2

b3
x2

-

a2

b4
x3

+ ...
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Of course,  the  more difficult  problem was to  interpolate  the  binomial  coefficients  of  a2Hb + xLn  for  fractional  exponents  n.   To
achieve this, Newton made the spectacular observation that the values in each column followed a linear progression of the form 

Coefficients for xk in expansion of a2Hb+xLn

k=0 k=1 k=2 k=3 k=4 k=5

n=-5 a b - 5 c d - 5 e + 15 f g - 5 h + 15 i - 35 j k - 5 l + 15 m -

35 n + 70 o

p - 5 q + 15 r -

35 s + 70 t - 126 u

n=-4 a b - 4 c d - 4 e + 10 f g - 4 h + 10 i - 20 j k - 4 l + 10 m -

20 n + 35 o

p - 4 q + 10 r -

20 s + 35 t - 56 u

n=-3 a b - 3 c d - 3 e + 6 f g - 3 h + 6 i - 10 j k - 3 l + 6 m -

10 n + 15 o

p - 3 q + 6 r -

10 s + 15 t - 21 u

n=-2 a b - 2 c d - 2 e + 3 f g - 2 h + 3 i - 4 j k - 2 l +

3 m - 4 n + 5 o

p - 2 q + 3 r -

4 s + 5 t - 6 u

n=-1 a b - c d - e + f g - h + i - j k - l + m - n + o p - q + r - s + t - u
n=0 a b d g k p
n=1 a b + c d + e g + h k + l p + q
n=2 a b + 2 c d + 2 e + f g + 2 h + i k + 2 l + m p + 2 q + r
n=3 a b + 3 c d + 3 e + 3 f g + 3 h + 3 i + j k + 3 l + 3 m + n p + 3 q + 3 r + s
n=4 a b + 4 c d + 4 e + 6 f g + 4 h + 6 i + 4 j k + 4 l + 6 m + 4 n + o p + 4 q + 6 r + 4 s + t

n=5 a b + 5 c d + 5 e + 10 f g + 5 h + 10 i + 10 j k + 5 l + 10 m +

10 n + 5 o

p + 5 q + 10 r +

10 s + 5 t + u

where a = 1, b = 0, c = 1, d = 0, e = 0, f = 1, etc.

Newton then boldly assumed that a similar linear progression would continue to hold when values for half-integer exponents, i.e.,
n = m �2, were inserted into the Table? above (indicated by * since they are unknown for the moment):

Coefficients for xk in expansion of a2Hb+xLn

k=0 k=1 k=2 k=3 k=4
n=-4 a b - 8 c d - 8 e + 36 f g - 8 h + 36 i - 120 j k - 8 l + 36 m - 120 n + 330 o
n=-7�2 a b - 7 c d - 7 e + 28 f g - 7 h + 28 i - 84 j k - 7 l + 28 m - 84 n + 210 o
n=-3 a b - 6 c d - 6 e + 21 f g - 6 h + 21 i - 56 j k - 6 l + 21 m - 56 n + 126 o
n=-5�2 a b - 5 c d - 5 e + 15 f g - 5 h + 15 i - 35 j k - 5 l + 15 m - 35 n + 70 o
n=-2 a b - 4 c d - 4 e + 10 f g - 4 h + 10 i - 20 j k - 4 l + 10 m - 20 n + 35 o
n=-3�2 a b - 3 c d - 3 e + 6 f g - 3 h + 6 i - 10 j k - 3 l + 6 m - 10 n + 15 o
n=-1 a b - 2 c d - 2 e + 3 f g - 2 h + 3 i - 4 j k - 2 l + 3 m - 4 n + 5 o
n=-1�2 a b - c d - e + f g - h + i - j k - l + m - n + o
n=0 a b d g k
n=1�2 a b + c d + e g + h k + l
n=1 a b + 2 c d + 2 e + f g + 2 h + i k + 2 l + m
n=3�2 a b + 3 c d + 3 e + 3 f g + 3 h + 3 i + j k + 3 l + 3 m + n
n=2 a b + 4 c d + 4 e + 6 f g + 4 h + 6 i + 4 j k + 4 l + 6 m + 4 n + o
n=5�2 a b + 5 c d + 5 e + 10 f g + 5 h + 10 i + 10 j k + 5 l + 10 m + 10 n + 5 o
n=3 a b + 6 c d + 6 e + 15 f g + 6 h + 15 i + 20 j k + 6 l + 15 m + 20 n + 15 o
n=7�2 a b + 7 c d + 7 e + 21 f g + 7 h + 21 i + 35 j k + 7 l + 21 m + 35 n + 35 o
n=4 a b + 8 c d + 8 e + 28 f g + 8 h + 28 i + 56 j k + 8 l + 28 m + 56 n + 70 o

Since these values are known for those rows where n is an integer exponent, it suffices to solve the infinite family of equations
(assuming they are all consistent) for the variables a, b, c, d , ....  For example, the equations derived from the third column are

(3.42)...

(3.43)

d - 4 e + 10 f = 3

d - 2 e + 3 f = 1
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(3.43)

d = 0

d + 2 e + f = 0

d + 4 e + 6 f = 1

...

It  follows  that  d = 0,  e = -1 �8,  and  f = 1 �4.   By  applying  this  to  every  column,  Newton  was  able  to  fill  in  his  table  for  half-
integer exponents:

Coefficients for xk in expansion of a2Hb+xLn

k=0 k=1 k=2 k=3 k=4
n=-4 1 -4 10 -20 35

n=-7�2 1 -
7

2

63

8
-

231

16

3003

128

n=-3 1 -3 6 -10 15

n=-5�2 1 -
5

2

35

8
-

105

16

1155

128

n=-2 1 -2 3 -4 5

n=-3�2 1 -
3

2

15

8
-

35

16

315

128

n=-1 1 -1 1 -1 1

n=-1�2 1 -
1

2

3

8
-

5

16

35

128

n=0 1 0 0 0 0

n=1�2 1 1

2
-

1

8

1

16
-

5

128

n=1 1 1 0 0 0

n=3�2 1 3

2

3

8
-

1

16

3

128

n=2 1 2 1 0 0

n=5�2 1 5

2

15

8

5

16
-

5

128

n=3 1 3 3 1 0

n=7�2 1 7

2

35

8

35

16

35

128

n=4 1 4 6 4 1

In particular,

(3.44)Ia2
- x2M1�2

= a 1 -

x2

a2

1�2
= aB1 +

1

2

x2

a2
-

1

8

x2

a2

2

+

1

16

x2

a2

3

-

5

128

x2

a2

4

+ ...F
Lastly,  it  remains  to  find  a  general  formula  for  generating  binomial  coefficients  for  all  fractional  exponents  without  having  to
interpolate  each row individually.   This  is  where Newton must  have been influenced by Wallis’  use of  infinite  products  for  he
wrote down the formula 

(3.45)
p �q
k

=

1´ p´Hp - qL ´Hp - 2 qL ´Hp - 3 qL ´ × × ×

1´k ´2 k ´3 k ´4 k ´ × × ×

leading to the modern version of the Binomial Theorem, which holds for all real exponents n:

Theorem: If n is real-valued and |x|<1, then

(3.46)H1 + xLn
= 1 +

n

1
x +

nHn - 1L
1 ×2

x2
+

nHn - 1L Hn - 2L
1 ×2 ×3

x3
+

nHn - 1L Hn - 2L Hn - 3L
1 ×2 ×3 ×4

x4
+ ...
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