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Analysis  of DNA  sequences  isolated  directly  from  the environment,  known  as  metagenomics,  produces
a  large  quantity  of  genome  fragments  that need  to be classified  into  specific  taxa.  Most  composition-
based  classification  methods  use  all features  instead  of  a  subset  of  features  that  may  maximize  classifier
accuracy.  We  show  that  feature  selection  methods  can  boost  performance  of taxonomic  classifiers.  This
work proposes  three  different  filter-based  feature  selection  methods  that stem  from  information  theory:
(1) a  technique  that  combines  Kullback–Leibler,  Mutual  Information,  and  distance  information,  (2)  a
text mining  technique,  TF-IDF,  and  (3)  minimum  redundancy-maximum-relevance  (mRMR).  The  feature
selection methods  are  compared  by  how  well  they  improve  support  vector  machine  classification  of

genomic  reads.  Overall,  the  6mer  mRMR  method  performs  well,  especially  on  the  phyla-level.  If  the
number  of  total  features  is very  large,  feature  selection  becomes  difficult  because  a small  subset  of  features
that captures  a majority  of  the  data  variance  is less  likely  to  exist.  Therefore,  we conclude  that  there  is  a
trade-off  between  feature  set size  and  feature  selection  method  to  optimize  classification  performance.
For  larger  feature  set sizes,  TF-IDF  works  better  for finer-resolutions  while  mRMR  performs  the  best  out
of  any  method  for N  =  6 for all taxonomic  levels.

©  2011  Elsevier  Ltd.  All  rights  reserved.
. Introduction

Traditional genomics studies have focused on culturing and
equencing a single microbe and studying its genome. This
pproach becomes problematic because over 99% (Handelsman,
007) of microbes cannot be cultured and thus their genomes can-
ot be sequenced. The field of metagenomics has evolved to solve
his problem. The goal of metagenomics is to take environmental
amples containing many different organisms in their natural habi-
ats, changing their focus from “how does one organism work?”
o “how do many organisms interact with one another in their
atural habitats?” (Konforti et al., 2008; Bohannon, 2008). These
nvironmental mixtures of DNA are then sequenced by using high
hroughput sequencing techniques producing large quantities of
enome sequence fragments that researchers wish to assemble into
ull genomes (Mardis, 2008; Pop and Salzberg, 2008).

The problem is that high throughput sequencing methods often

roduce small fragments of DNA, ranging from 35 base pairs (bp)
o about 450bp (Venter et al., 2004; Wommack et al., 2008; Mardis,
008). These short fragment sizes present significant challenges for
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the assembly, annotation and classification of genome fragments
from multiple organisms.

In order to solve the classification problem, many automated
classification algorithms, used to identify genomes based on
the features derived from the DNA fragments, have been pro-
posed. However, more powerful classifiers, such as support vector
machines (SVM), cannot work with a large set of features (the
so-called curse of dimensionality problem). Therefore, feature
extraction and selection techniques are needed to determine the
most useful and distinguishing features for classification. This
work utilizes three different filtered feature selection methods
that stem from information theory: (1) a technique that combines
Kullback–Leibler, Mutual Information, and distance information
(Garbarine and Rosen, 2008); (2) a text mining technique,
TF-IDF (Gadia and Rosen, 2008); and (3) minimum-redundancy-
maximum-relevance (Ding and Peng, 2003). Previously, we have
developed (1) but have not shown its performance with a classi-
fier, and we  have only shown the performance of (2) only with a
simple Euclidean-distance classifier. In this work, we  compare the
performance of mRMR  and previously implemented feature selec-

tion methods using a support vector machine (SVM) classifier to
assign taxonomic labels. SVM has been shown to be efficient at this
task (McHardy et al., 2007), but it uses all possible features, which
may  not be optimal. By varying the feature size of the N-mers and
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he feature vector size (the number of N-mers), we assess the per-
ormance of the SVM, trained with features extracted by each of
he aforementioned techniques, to determine the feature selection

ethod that is best suited for genome discrimination.

.1. Background on fragment identification for taxonomy

Metagenomics projects such as Venter Institute’s Sorcerer II
lobal Ocean Expedition project (Rusch et al., 2007) and the
etaHIT project (Qin et al., 2010) (sequencing microbiomes from

24 people) are generating millions of reads. Large amounts of
equence fragments, created by these and similar studies, must
hen be assembled and annotated. To annotate unknown frag-

ents, we wish to classify them to the closest taxa within a
hylogeny and to the most specific taxa-level. The field of phyloge-
etics is focused on building clades which contain organisms that
ave derived traits. It is important to place fragments from previ-
usly uncultured organisms into a particular clade because doing
o provides us information about traits that these unstudied organ-
sms may  have. This classification process can be a difficult problem
ue to the limited set of organisms that we have fully sequenced
nd the fact that the contents of the metagenomic mixtures are
argely unknown.

Fragment classification for taxonomy can be broken down into
wo primary areas (Rosen et al., 2009): supervised (Huson et al.,
007; McHardy et al., 2007; Rosen et al., 2008) and unsupervised
ethods (Teeling et al., 2004; Chan et al., 2008). For our purposes,
e are interested in supervised methods, because they leverage

he existing knowledge of current databases to place metagenomic
ata of known and unknown origins into context.

One primary class of supervised methods are homology based
pproaches, which align sequence fragments to known genomes
ased on similarity. Homology-based methods such as BLAST
Madden, 2003), CARMA (Gerlach et al., 2009), and MEGAN (Huson
t al., 2007) fall into this category. Studies of BLAST’s performance
Wommack et al., 2008; Manichanh et al., 2008) have shown that its
erformance depends largely on whether close relatives of a given
equence are available for comparison. To solve this issue, MEGAN
dds the use of a lowest common ancestor algorithm (LCA) to
LAST, which allows a fragment to generalize up to a higher branch

n the tree instead of simply matching to the nearest neighbor
Wommack et al., 2008; Manichanh et al., 2008). CARMA imple-

ents the LCA algorithm and only matches the sequences that
elong to particular protein families, which are acquired from the
fam database (Finn et al., 2008).

Another category of supervised methods are composition-based
pproaches. These methods use N-length words or N-mers as fea-
ures. The N-mers are used to build frequency profiles (how often
ach word occurs in a given sequence), which are then used to
uild models for classifiers. Methods such as Naive Bayes clas-
ifiers (NBC) (Sandberg et al., 2001; Rosen et al., 2008), TACOA
a k-nearest neighbor (k-NN) approach using a genomic feature
ectors (GFVs) (Diaz et al., 2009)), and a support vector machine
ethod, Phylopythia (McHardy et al., 2007), fall into this category.

ACOA uses the word vector space model to form probabilities
nto the GFVs, which are then classified to database genomes using
he k-NN algorithm. Support vector machines have been used with
trong results for biological datasets and show significant promise
or this type of application. Although Phylopythia also has good per-
ormance, TACOA has been shown to provide better classification
erformance (Diaz et al., 2009). On the other hand, while compo-
ition based approaches work very well, they suffer from c urse of

imensionality, as N-mers of sizes larger than 6 produce extremely

arge sets of features, which may  produce too many dimensions
McHardy et al., 2007) and worsen performance. In order to address
his issue, we propose an information theory-based feature selec-
 and Chemistry 35 (2011) 199–209

tion method that extracts the most relevant information provided
by the high dimensional feature set and represents such informa-
tion in a (lower dimensional) subspace.

1.2. Composition-based fragment classification

As previously mentioned, N-mers are often used as features in
supervised methods for fragment identification. An N-mer is sim-
ply a word composed of letters A, T, C, G (the four bases of DNA) of
a particular length N. N-mers have been well established as usable
classifier features. They have been used with Naive Bayes classifiers
(Sandberg et al., 2001; Rosen et al., 2008) for fragment identifica-
tion and more recently as features for an SVM classifier for the same
purpose (McHardy et al., 2007). Both methods have shown strong
results for fragment identification. The challenge of using N-mers
as features for optimization-based classifiers, such as neural net-
works or SVMs, is that as N increases, the number of possible words
increases exponentially. The total number of possible combinations
can be represented by words = 4N .

In our previous work with Naive Bayes classifiers, all possible
N-mers were used as features for the classifier with varying sizes
(up to N = 15); in general, larger N performed as well or better
for the classification (Rosen et al., 2008). In the case of an SVM,
or any other optimization-based classifier, however, using large
N is not currently computationally tractable. The (SVM) classi-
fier, when trained with N-mer frequency profiles, is a supervised
classifier which constructs a 4N-dimensional hyperplane to opti-
mally separate data into categories. The 4N-dimensions, chosen
by the information theoretic measures discussed in Section 2, are
the features input into the support vector machine. The SVM then
seeks to classify an incoming, unknown fragment into one of the
genomes in the training dataset by using the training data’s N-
mer features. Without feature selection the number of N-mers for
larger word sizes would be overwhelming for the SVM, especially
for N > 6.

A 6mer (N = 6) produces 4096 total possible words (or features)
for the classifier; 7mers increase the number of potential features
to 16,384. This means that 16,384 features describes each of 635
genomes, resulting in a 16, 384 × 635 dimensional space, which is
computationally challenging for current desktop computers. On the
other hand, a generative classifier, the naïve Bayes approach, shows
clearly that longer N-mers produce better classification (general-
ization) (Rosen et al., 2008), but this is simply due to the fact that
as N increases, the number of possible words increases, and con-
sequently the uniqueness of each individual word increases (Robin
and Schbath, 2002). Conversely, we can think of this as the vari-
ance of a word occurrence decreasing across example fragment
instances of a genome, which in turn makes the identification eas-
ier. In order to take advantage of the learning capabilities of SVMs,
as well as the classification benefits that comes with the unique-
ness of longer N-mers as features, some form of feature selection is
necessary.

The uniqueness of each word increases with N. For example,
for N = 3, there are only 43 = 64 possible words (AAA, AAG, AAC,...,
TTT), and each of these 64 3-letter words can and usually do appear
many times in the genome. For N = 15, however, there are 415 = 1,
073, 741, 824 (15-letter) words. It is much less likely for each one of
these 15-letter words (e.g., AGTGGCTACGTACGTA) to occur many
times compared to three-letter words.

1.3. Review of feature selection and information-theoretic

approaches

In any pattern recognition problem, of utmost importance, per-
haps more so than choosing the right classification algorithm, is
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hoosing the correct features (predictors) to train the classifica-
ion algorithm; after all, it is the features where the information
ies. In the presence of a large number of predictors, it may  be dif-
cult to determine which of these predictors are really relevant
o the problem, and which ones are irrelevant. Irrelevant features
ffectively amount to noise, making the classifiers job all the more
ifficult. On the other hand, in the absence of prior knowledge on
hich features are relevant, it is tempting to use all of them to

rain the classifier and let the classifier to determine how to weight
he features. This “brute-force approach” is not only inefficient,
ut also counterproductive, as using irrelevant features can – and
sually do – deteriorate the classifiers performance. As described
ery elegantly in their aptly titled work, Greiner et al. showed that
knowing what does not matter” matters (Greinera et al., 1997) and
lassifier performance can be improved significantly by removing
rrelevant features.

Several approaches have been developed over the years to
etermine the most relevant features for a given classification
lgorithm. These approaches are generally divided into two  groups:
lter approaches and wrapper approaches. Wrapper approaches
re so-called because the feature selection is “wrapped” around the
lassifier being used. Essentially, wrapper approaches use a guided
earch such as forward or backward selection, to methodically add
r eliminate features one a time, and trying each resulting com-
ination of features to determine which subset of features provide
he best classification performance when used with the chosen
lassifier. Random subspace methods, which use resampling to
hoose a random subset of features to generate a large number of
ub-classifiers that are then combined using voting procedures,
onstitutes another subcategory of wrapper approaches (Ho,
998). Necessarily, then, wrapper approaches are computationally
xpensive, as they require the classifier to be trained and evaluated

 large number of times with different subsets of features. It is
herefore important to choose a classifier that has a large enough
redictive capacity but low enough computational complexity.
upport vector machines (SVMs), which create linear hyperplanes
n high dimensional space through kernel trick based computations
n low dimensional space, are therefore good choices, and have
een routinely used in many such applications including those

nvolving genomic data (Guyon et al., 2002; Bi et al., 2003).
On the other hand, filter approaches apply a “filter” to the

ntire feature set to remove a subset of them deemed irrele-
ant by the chosen filter approach. Filter approaches typically
se some transformation function, such as computing the fre-
uency response of time-series data and choosing those spectral
oefficients with the highest amplitudes. Information theoretic
eature selection algorithms constitute a different subcategory
f filter approaches, where the features are determined based
n the amount of “information” they carry for the given clas-
ification problem, as measured by the joint probability of the
eatures and the correct labels. The features that maximize an
bjective function, such as the mutual information, are then cho-
en as the most relevant features (Torkkola, 2003; Nenadic, 2007).
nformation theoretic feature selection approaches have been suc-
essfully used particularly in extremely large dimensional domains,
uch as text categorization (Dhillon et al., 2003; Novovicova
nd Malik, 2005), as in such domains with thousands or tens
f thousands of features, wrapper approaches become compu-
ationally prohibitive. More recently, efforts in combining filter
nd wrapper based approaches have also been fruitful, as shown
y Francoisa et al. (2007).

An overview of feature selection approaches can be

ound in Guyon et al.’s review article (Guyon and Elisseeff,
003), whereas a more thorough treatment of informa-
ion theoretic approaches can be found in Principe’s recent
ext (Principe, 2010).
 and Chemistry 35 (2011) 199–209 201

2. Information-theoretic approach for N-mer feature
selection

The goal of traditional information theory is to maximize chan-
nel capacity by preserving the parts of the signal which hold the
most information while simultaneously ignoring the non informa-
tive signal parts. This fundamental concept is vital to our ability
to classify fragments to specific genomes or taxa. In this scenario
of fragment classification the goal is to choose features which
maximize our ability to distinguish between genomes while simul-
taneously ignoring the parts of the genomes which hold little
information for this purpose.

2.1. Kullback–Leibler, Mutual Information and Difference method
for N-mer feature selection

In the case of smaller N-mer sizes, such as 3 and 6, there are a
tractable number of words for computing the genome frequency
profiles, therefore we can use all of the N-mer frequency profiles
as available features for a classifier. As N gets larger, the number
of available words far exceeds the computational capabilities of an
SVM classifier. Preliminary work has been conducted in this area to
investigate which N-mers from a large set can distinguish between
two organisms in a mixture (Garbarine and Rosen, 2008). In this
feature selection method, three primary measures were used to
select N-mers: Kullback–Leibler divergence, mutual information,
and the frequency difference between N-mer counts in the two
genomes.

Given two organisms, genome A and genome B, we  can compute
the Kullback–Leibler divergence for the mth N-mer between each
genome in the set C = {A, B}. Denoting the probability of the mth
N-mer in genome set C represented by pC(m):

DKL(A(m), B(m)) = pA(m)log2
pA(m)
pB(m)

+ pB(m)log2
pB(m)
pA(m)

(1)

where DKL is the symmetric Kullback–Leibler distance. pC(m)  is cal-
culated by the number of the mth N-mer in one of the genomes from
the set C = {A, B}, XC(m), divided by the total number of N-mers
in that genome. The microbial strains genome lengths range from
160 k(bp) for Candidatus Carsonella to 13 Mil(bp) for Sorangium Cel-
lulosum, so pC(m)  estimates vary depending on the genome size.
The genome sizes range from 300 kbp to 10 Mbp, This provides us
with a measure of the divergence between genome A and genome
B due to the mth N-mer.

Mutual information (MI) is a metric that provides a measure
of the information between the N-mer and the set of genomes. To
derive the mutual information between an N-mer and associated
genomes, we have the genomes, C, and an M-dimensional feature
vector XC = {XC(1), XC(2), XC(3), . . .,  XC(M)}, where each XC(m)  rep-
resents the number of the mth N-mer present in a genome C. In
our problem, we  want to find the N-mers with the maximum MI
between the N-mer and the set of genomes, I(X(m), C) which are
the X(m)’s that satisfy:

argmaxX(m)I(X(m), C) = arg max
∑
c ∈ C

p(XC (m), c)log2
p(XC (m), c)

p(XC (m))p(c)

(2)

MI can be rewritten as I(X(m), C) = H(C) − H(C | X(m)), where H is
the entropy. Since the conditional entropy of the genomes given an
N-mer, H(C | X(m)), is always negative, I(X(m), C) is maximized by

maximizing H(C | X(m)) as the marginal entropy of the genomes,
H(C), is constant. Therefore, the best N-mers that discriminate
between genomes can be interpreted as the ones with the highest
conditional entropy.
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Fig. 1. Algorithm flow of the three measures used are Kullback–Leibler (KL), Mutual
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hen we  say we  select the top-50 features, T1 = T2 = T3 = 50.

The final measure is the difference in frequency count of the mth
-mer between genome A and genome B, and is defined as:

(n) = |XA(m) − XB(m)| (3)

e tested this measure with two other measures, the
ullback–Leibler divergence and difference method on two
acteria. The goal was to select N-mers using the three measures
hich would strongly distinguish between the two  organisms in

he mixture. The KL, MI  and difference measures were computed,
nd the results were intersected to find the top measures across
ll three measures seen in Fig. 1.

Fig. 1 illustrates the feature selection process with each of the
teps of the process detailed in Garbarine and Rosen (2008).  It is
mportant to note that all measures are performed on a pair of
enomes such that one genome can be identified from another
enome. In order to extend these pairwise measures to the 100
enomes, we intersect all the Tf feature sets and choose the top-
coring 50, 100, 150, etc. features across all genomes to be used for
raining the SVM classifier.

.2. TF-IDF method for N-mer feature selection

Text mining approaches such as Term Frequency-Inverse Doc-
ment Frequency (TF-IDF) can also be applied to N-mer feature
election in a genome classification problem (Gadia and Rosen,
008). TF-IDF can be viewed as an information theoretic measure,
he amount of information of a term weighted by it’s occurrence
robability. More specifically, the IDF term represents a change in
he amount of information after observing a specific term, while
he TF term expresses the probability estimation that the term is
ctually observed (Aizawa, 2003).

The TF-IDF measure is broken into two components. First, we
alculate the term frequency, which is usually defined as the word
requency divided by the total number of words in the document,
. In our case, the term frequency is the N-mer count divided by
he total number of N-mers in the genome. The TF measure is then
omputed as:
fml = dml

M∑
m=1

dml

(4)
 and Chemistry 35 (2011) 199–209

The inverse document frequency can be computed as:

idfm = log
(

L

# of documents that have word m

)
(5)

where L is the total number of genomes.
The IDF measure generally assumes that the M terms are sparse

and only exist in a few documents. To adjust for the fact that with
small N-mer sizes, there is a possibility of all words existing in all
genomes we  adjust IDF to:

idfm = log

⎛
⎜⎜⎜⎜⎝

L
L∑

l=1

dml

⎞
⎟⎟⎟⎟⎠

(6)

Therefore, our proposed TF-IDF measure is:

TF − IDFm =
L∑

l=1

⎛
⎜⎜⎜⎜⎝

dml

M∑
m=1

dml

log

⎛
⎜⎜⎜⎜⎝

L
L∑

l=1

dml

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

(7)

2.3. Preliminary results for TF-IDF and Mutual
Information/Kullback–Leibler methods

Both the KL/MI/frequency difference and the TF-IDF methods
described in the previous section have been applied to genome
classification (Garbarine and Rosen, 2008). In the case of the MI,  KL
and difference measures, the test case was that of a mixture of two
bacteria. The goal was  to select N-mers using the three measures
which would strongly distinguish between the two  organisms in
the mixture. The KL, MI  and difference measures were computed,
and the results were intersected to find the top measures across all
three measures seen in Fig. 1.

In addition to demonstrating the KL/MI/frequency difference
method on pairwise genomes, we  also apply the TF-IDF method
to hundreds of genomes to reduce the feature set needed for frag-
ment classification. Our preliminary results for TF-IDF are based on
a database of 635 microbes that belong to 470 distinct species and
260 distinct genera. One hundred 500bp fragments are chosen from
each of the genomes and classified using only those features cho-
sen by the TF-IDF (and variants). The overall accuracy is computed
as the read being assigned the correct taxa. The TF-IDF measure
is employed to sort the N-mers in the order of importance of the
words. The order of importance is selected in three ways: (1) the
“highest frequency of words in the least number of genomes (doc-
uments in the text-mining literature is called the tfidf sort, (2)
the lowest frequency of words in most number of documents is
called the inverse-tfidf sort, and (3) a random order to compare its
performance with the others. Subsets of the important words are
chosen, and the fragments are classified using the Euclidean clas-
sifier. Subset intervals in increments of 10% are chosen to compare
the performance of selection of different cardinalities of features
against selection of all features. Figs. 2 and 3 compare the identi-
fication accuracy performance for N = 6 and N = 9, respectively. For
N = 6, randomly selected words perform better than the measures
up until 40% of the words are chosen. The inverted TF-IDF using
90% of words performs 4% above the full-word performance (16%
improvement). For N = 9, randomly selected words perform better
than the TF-IDF measure. Inverse TF-IDF is again the best performer,

particularly when more then 70% of the words are used for clas-
sification. We  hypothesize that this could be due to the genetic
structure of the genomes. In TF-IDF, the most frequent N-mers in
a genome are chosen that are the least common across genomes;
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Fig. 2. Percentage of words taken vs. accuracy of a Euclidean classifier for TF-IDF
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easure with N = 6. If a genome were chosen by chance, the accuracy rate would be,
/635 or 0.2%, so while 20–30% accuracy may  seem low, it is 100-fold higher than
hance.

he idea is to choose features that characterize a few genomes that
an be used to discern those from others. But in biology, genomes
hat share the same genes have frequent N-mers, and frequently,
ith certain genes being prevalent within a phyla class! There-

ore, inverse TF-IDF works better, since it is essentially choosing
-mers that are frequent and frequently found across all genomes.
he inverted TF-IDF using 80% of words performs 2% above the full-
ord performance (a 10% improvement), showing that classifier
erformance can be improved by intelligently choosing a subset of
ords (Gadia and Rosen, 2008).

The text mining method demonstrates that the application of
F-IDF to genome classification and its ability to successfully reduce
he number of features necessary to perform classification (Gadia
nd Rosen, 2008). While the reduction in features is only 10%, it
ears noting that this reduction in features was observed for a very
imple Euclidean classifier. As we show in our experimental results
ater in this paper, TF-IDF can be a particularly effective feature
election technique when paired with a stronger classifier.

.4. mRMR method for N-mer feature selection

The minimum-Redundancy-Maximum-Relevance (mRMR)
ethod of feature selection seeks to choose features that best

haracterize the statistical property of the target classification

ariable under the constraint that the chosen features are as
utually dissimilar to each other while still being as marginally

imilar to the classification variable as possible. Essentially the
ethod chooses features as maximally relevant to the classifica-

ig. 3. Percentage of words taken vs. accuracy of Euclidean classifier for TF-IDF
easure with N = 9.
Fig. 4. Equations for mRMR method of feature selection for continuous and discrete
variables.

tion variable as possible while still being minimally redundant
(Ding and Peng, 2003). The ideas of “relevance” and “redundancy”
can be based on mutual information, statistical t-tests/F-tests,
correlation, or distances.

For discrete variables, we wish to minimize redundancy by min-
imizing:

WI = 1
|S|2

∑
i,j ∈ S

I(i, j) (8)

Additionally we want to maximize relevancy by maximizing:

VI = 1
|S|

∑
i ∈ S

I(h, i) (9)

where S is the set of features, I(i, j) is the mutual information
between features i and j and h is the target class.

The mRMR  equations can also be defined for continuous vari-
ables simply by replacing mutual information with an F-statistic
or correlation. Relevance and redundancy for continuous variables
can also be defined using mutual information of hybrid vari-
ables (Peng et al., 2005). There are two methods to combine the
ideas of maximum relevance and minimum redundancy, namely –
additive combination max  (V − W)  and multiplicative combination,
max  (V/W). Fig. 4 displays the final equation for both continuous
and discrete variables for the mRMR  method. For our mRMR  imple-
mentation, we  use MID  (Fig. 4), the mutual information difference
equation between discrete variables (since the N-mer distributions
are discrete representations).

The mRMR  feature selection method has been used in microar-
ray data related to gene expression in cancer samples (Ding and
Peng, 2003, 2005), and more recently for recognition and annota-
tion of gene expression patterns in fly embryos (Zhou and Peng,
2007). The method has not been applied to feature selection for
classification of bacterial genomes, which chooses features from
the entire genome instead of simply using genes.

3. Materials and methods

To investigate feature selection with an SVM, 100 bacterial
genomes were chosen for the training database. While 100 strains
is nowhere near the complexity of a soil sample, it is representa-

tive of a diverse sample (e.g. in Mavromatis et al., 2007, where 113
genomes were used to construct high complexity samples). The
list of organisms used in our work can be found in Tables 3 and 4
in Appendix. The 100 strains belong to 3 phyla, 14 genera and 64
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Table  1
SVM classification results for 6mers (in %).

Taxonomic level Method 50 features 100 features 150 features 500 features 1000 features All features CARMA TACOA

TF-IDF 3.96 2.53 2.78 1.54 1.00
Strain mRMR 1.39 6.73 7.13 2.03 1.01 1.01 N/A N/A

MI/KL 4.19 3.53 2.68 1.00 1.00
Variance 5.54 5.39 3.87 1.00 1.00

TF-IDF 7.23 3.86 3.63 2.09 1.00
Species mRMR 2.3 13.68 14.78 7.98 1.04 3.00 17.40 N/A

MI/KL 7.92 6.41 6.04 3.00 3.00
Variance 10.60 10.41 7.59 3.00 3.00

TF-IDF 20.93 10.97 15.68 10.89 8.00
Genus  mRMR  10.92 29.57 29.21 12.06 7.06 7.00 25.10 10.40

MI/KL 21.53 17.39 13.76 7.00 7.00
Variance 24.30 21.69 16.25 7.00 7.00

TF-IDF 20.04 8.83 13.81 10.54 8.00
Family mRMR  10.90 28.31 27.87 11.89 7.06 7.00 26.40 N/A

MI/KL 19.58 14.87 12.41 7.00 7.00
Variance 22.57 19.43 14.14 7.00 7.00

TF-IDF 22.67 11.21 15.68 10.89 8.00
Order  mRMR  17.86 32.86 32.87 18.13 7.06 7.00 27.00 12.8

MI/KL 22.77 17.90 14.14 7.00 7.00
Variance 26.39 22.99 17.01 7.00 7.00

TF-IDF 39.80 26.18 23.55 12.29 8.00

s
i
t
e
b
r
o

T
S

Phyla  mRMR  40.87 53.34 51.94 

MI/KL 36.16 25.77 41.21 

Variance 44.27 42.23 41.07 

pecies, according to NCBI Taxonomy (Benson et al., 2011), though
t is of note that NCBI Taxonomy does not necessarily reflect the
rue taxonomy in nature (as described by Bergey’s manual) (Wang

t al., 2007). Of the 14 genera, 6 belong to the firmicutes phyla, 6
elong to the proteobacteria phyla and 2 belong to the cyanobacte-
ia phyla. Most genera have 7 example strains with the exception
f lactobacillus and mycoplasma which have 8 strains. Further, 50

able 2
VM classification results for 9mers (in %).

Taxonomic level Method 50 features 100 feat

TF-IDF 1.92 1.96 

mRMR  1.04 1.15 

Strain MI/KL 1.43 1.85 

MI  One vs. All 1.42 1.75
Variance 1.74 1.85 

TF-IDF  1.92 1.96 

mRMR  1.04 4.16 

Species MI/KL 2.14 6.89 

MI  One vs. All 2.54 3.40 

Variance 6.44 4.88 

TF-IDF 13.24 13.96 

mRMR  7.59 8.12 

Genus MI/KL 10.42 10.19 

MI  One vs. All 9.22 11.24 

Variance 8.86 9.53 

TF-IDF  13.24 13.96 

mRMR  7.59 8.12 

Family MI/KL 10.59 10.30 

MI  One vs. All 9.22 11.24 

Variance 8.88 9.48 

TF-IDF  13.24 13.96 

mRMR  8.23 9.59 

Order MI/KL 10.59 10.33 

MI  One vs. All 10.15 11.28 

Variance 9.07 9.56 

TF-IDF  38.50 35.94 

mRMR  42.74 43.68 

Phyla MI/KL 16.60 20.78 

MI  One vs. All 43.93 40.06 

Variance 23.68 20.15 
33.63 36.06 42.00 29.00 22.20
42.00 42.00
42.02 42.00

species have one example strain, 7 species have 2 example strains, 2
species have 3 example strains, 1 species has four example strains,
2 species have 6 example strains and finally 2 species have seven

example strains.

The training dataset consists of the frequency profiles of the
N-mers obtained from 50,000 long fragments. These frequency pro-
files include the number of times each possible combination of

ures 150 features 500 features 1000 features

1.96 1.91 1.69
1.22 1.46 1.53
1.77 1.41 1.12
1.70 1.78 1.79
1.85 1.54 1.43

1.96 1.91 1.69
4.63 6.46 7.40
5.31 2.26 2.47
3.35 3.55 3.56
4.67 3.2 0 2.85

14.08 13.13 11.90
8.57 10.25 10.40
9.38 8.61 8.31
11.25 12.17 12.25
10.03 9.08 8.70

14.10 8.78 8.61
8.57 10.25 10.40
9.38 8.63 8.31
11.30 12.17 12.25
10.03 9.08 8.70

14.08 13.13 11.90
10.69 14.47 16.47
9.38 8.64 8.31
11.37 12.17 12.25
10.03 9.08 8.70

34.39 14.40 12.82
44.25 45.18 42.14
14.17 10.89 8.92
39.44 37.68 37.60
16.93 13.95 13.90
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Fig. 5. Feature Set Size vs. Classification Accuracy at the Strain level, N = 6.

,T,C,G of the given N-mer length appears in each genome. A large
atrix is created with the frequency of all possible words in each

enome. The word, or N-mer, sizes used to create these frequency
rofiles are 6 and 9. One-hundred 50,000bp-long fragments are
hosen randomly, and the process is repeated 100 times, once for
ach of the 100 genomes. All results are therefore averages of 100
rials. Once the SVM classifiers are trained (for each of the 100 tri-
ls), fragments of 500 base pairs were randomly selected from each
enome and used as the test data for the classifier. While the test
ata comes from the training data, it is still a difficult problem since
here is great intra-genome variation among the short fragments.

From this set, the entire genomes were used for the TF-IDF, infor-
ation theory and mRMR  methods to select sets of features. TF-IDF
as applied on the 100 genome frequency tables, and the results
ere sorted using the TF-IDF sort method discussed in the previous
ork (Gadia and Rosen, 2008). This generates a list of words with

he highest frequency that are in the least number of genomes. From
his sorted list, features were chosen to pass to the SVM classifiers
or training.

The mRMR  method was also applied to the 100 genome data
et. In order to use mRMR,  the frequency profiles were discretized.

hile mRMR does not require discretized data, it has been shown
hat discretizing the data produces much better results (Ding and

eng, 2005). Given this information, we chose to discretize the
requency profiles into 3 states using the method suggested by
he researchers who developed mRMR  (Ding and Peng, 2005). We

Fig. 6. Feature Set Size vs. Classification Accuracy at the Genus level, N = 6.
Fig. 7. Feature Set Size vs. Classification Accuracy at the Strain level, N = 9.

found the mean and standard deviation of all word frequencies.
Then, states were created that discretize frequencies that fall below
mean − std as −2, frequencies that fall above mean + std as +2, and
frequencies that fall in between these two  values as 0. The mRMR
algorithm, using mutual information difference (MID), was then
applied to the now discretized data to select features.

Finally, the Information-Theoretic approach combining Mutual
Information and Kullback–Leibler Divergence was  applied to the
frequency profiles. This method must be applied to the data in a
pairwise fashion. In other words, MI/KL must be applied to the set
genome1/genome 2 then again to genome 1/genome 3, etc. all the
way through until genome 99/genome 100. This process creates
a large matrix of results for 4950 possible pairs, which must now
be combined into one set of features. To do this, a thresholding
method was used. First, the results for all pairs were sorted. Next,
the top 25% of the sorted matrix is considered and the number of
occurrences of each word in this top 25% for all pairs are counted
and the results are sorted. From this final, sorted vector features
were chosen to pass to the SVM classifier.

To compare our methods to a non-information theoretic
method, we  chose the features with the highest variance and
compared our methods to those results. For each feature, m,
we computed �2

m = (1/N)
∑N

i=1X(m)i − � where � is the average
counts for all features and X(m) is the count for feature, m.  Features
were rank-ordered from the highest �2 to lowest, similar to the
rank-ordering procedure of the information-theoretic selection.

The feature set sizes selected by all of the methods were
50,100,150, 500, and 1000. Once features were selected, fragments
of 50,000 base pairs are randomly selected from the genomes and
used in conjunction with the sets of features to train an ensemble
of SVM classifiers. 4950 SVM classifiers were trained, one for each
possible pair of genomes from the original set of 100. For example,
SVM1 is a classifier for genomes 1 and 2, SVM2 for 1 and 3, etc. The
same selected features were used to train all classifiers.

Once the SVM classifiers were trained, fragments of 500 base
pairs – not included in the training data – were selected from each
genome and used as the test data for the classifier. In our imple-
mentation, each fragment is passed into a one-vs.-one SVM, which
generates a vote on which genome the fragment most likely to
belongs to. The genome that receives the majority of the votes is
then chosen by the classifier as the most likely source of the frag-
ment. It is important to note that with this ensemble of classifiers

an SVM which does not contain the genome in question is equally
likely to vote for either of the genomes it was originally trained on.
For example, if a fragment comes into the system from genome 9
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Fig. 8. Feature Set Size vs. Classification Accuracy at the Genus level, N = 9.

nd it goes to SVM1 (genome 1 and genome 2), that SVM has an
qual chance of classifying the fragment as genome 1 or genome 2.

We compared our methods to two methods, CARMA and TACOA,
either of which is based on information theoretic features. Internal
efault parameters were used for both. CARMA was  executed by
sing WebCARMA 1.0 (Gerlach et al., 2009) in March 2010. The
eads were uploaded to the server. For TACOA and CARMA, each
rogram requires no input parameters.

. Results

The accuracy of the SVM classifier for the features selected
sing TF-IDF, MI/KL and mRMR  were recorded for all feature set
izes for each of the two N-mer sizes. The accuracy of the classi-
er was tracked for all levels of taxonomy from lowest to highest.
hese are ordered as follows: Strain, Species, Genus, Family, Order,
lass, Phyla. Table 1 shows the classification accuracy for all 3
ethods for feature set sizes 50, 100, 150, 500, 1000, and 4096

all) for 6mers while Table 2 displays the 3 methods plus MI
ne vs. All for feature set sizes 50, 100, 150, 500, 1000 for the
mer tests, since it was computationally intractable to use all fea-
ures in the 9mer case. In Table 1, we compare the results to two
ther methods, CARMA and TACOA. The highest performance accu-
acy is bolded. CARMA was chosen since it is the most intricate
omology-based method, which uses a last-common ancestor algo-
ithm, and selectively chooses protein families. TACOA was  chosen
ince it is a composition-based method, and the authors show that it
btains better performance than Phylopythia, another SVM-based
pproach (McHardy et al., 2007). We  show that feature selection
reatly improves the performance of an SVM classifier compared
o these current methods.

Fig. 5 displays the 6mer results for TF-IDF, mRMR, and MI/KL
t the Strain taxonomy level. Fig. 6 shows the results of the three
ethods at the Genus level. The same two plots can be seen for

mers in Figs. 7 and 8. The 9mer plots have an additional set of data
oints for sets of features that were randomly selected.

Given the results from the MI/KL, TF-IDF and mRMR methods
n 9mers further runs were attempted to improve the classifica-
ion accuracy. A mutual information only approach was  employed
o find the mutual information of a word in one genome vs. the aver-
ge mutual information of the same word in all other genomes. This
one vs. all” mutual information computation was repeated for all

00 genomes generating a large matrix of results for each of the 100
enomes vs. the other 99 genomes in the set. This matrix was then
ombined by again sorting the results from each genome, thresh-
lding the sorted matrix and counting the number of occurrences of
 and Chemistry 35 (2011) 199–209

each word in the sorted and thresholded matrix. The results of the
mutual information “one vs. all” method compared to other 9mer
results can be found in Table 2 and Figs. 7 and 8.

To explore how similar top-percentages affect the SVM classifi-
cation, we selected the top-0.37% of the 6mer features (top-15) and
compared them to the top-0.38% (top-1000) of the 9mer features.
A direct comparison for mRMR  is (top-15 6mers/top-1000 9mers)
1.9%/1.5% for strain, 5.0%/7.4% for species, 12.5%/10.4% for genera,
11.7%/10.4% for family, 14.0%/16.5% for order, and 45.5%/42.1% for
phyla. For ML/KI, top-15 6mers/top-1000 9mers performance is
1.3%/1.1% for strain, 4.0%/2.5% for species, 9.7%/8.3% for genera,
8.4%/8.3% for family, 11.2%/8.3% for order, and 32.4%/8.9% for phyla.
This shows that the mRMR  performance with the same top-% of
features is comparable between 6mers and 9mers, while the MI/KL
method decreases in performance for 9mers. Therefore, we expect
the top-6400 mRMR  using 9mers to achieve similar performance
to the top-100 mRMR  using 6mers, but using only 100 features is
less computationally complex. Our goal of feature selection is to use
less features while obtaining better accuracy, so it is more feasible
to use 6mers.

5. Discussion

The classification results indicate that for 6mers with feature
sets of 100 or 150 at the Strain level, mRMR  is clearly the best
method achieving much higher classification accuracy than other
methods for genus-level and above (i.e.: genus, family, order, phy-
lum). Also, mRMR  performs well for larger feature sets, especially
at the higher taxonomic levels like order and phylum for feature
sets of 500 and 1000. The same observations hold true for 6mers at
the genus-level. Table 1 demonstrates that as we  move up through
the taxonomic levels, mRMR  and MI/KL both outperform TF-IDF
especially at the Class and Phyla levels.

In Table 1, we compare the feature selection methods for SVM
with a homology-based method, CARMA and a composition-based
method, TACOA. Neither CARMA nor TACOA provide strain-level
classifications. TACOA also only classifies at the genus-level and
above, and the results were also missing the family-level classifi-
cation. An “N/A” is placed in that column when there are missing
taxonomic levels. Only for the species-level, CARMA outperforms
the MI/KL feature selection method by about 3% accuracy. Classifi-
cation accuracy improves when classifying to higher levels on the
taxonomic tree, with mRMR  yielding a 24% increase over CARMA at
the phyla-level. This demonstrates that the SVM is able to capture
higher-level taxonomies better. Also, using 6mer feature selection
for 100 to 150- features, boosts performance by over 17% than not
using any feature selection at all.

The 9mer results demonstrate decreased classification accuracy
as compared to 6mers for all methods. For the family-level and
finer-resolution, 100-150 features that we selected still yielded the
best results for 9mers, similar to the number of features needed
to yield the best results for 6mers. Promisingly, we  see that 1000-
long feature sets performs the best for order-level classification,
and 500-long feature sets perform the best for phyla-level classifi-
cation. This shows that more features may  be necessary to capture
the variance of the data when such features are available. But it still
remains that SVM using 6mers performs better; the SVM performs
better if each feature of a small set represents more data variation.
This is probably due to the discriminative classification nature of
SVM, compared to the generative classification of NBC which causes
NBC to “memorize” the data.
TF-IDF outperforms all other methods at the strain and genus
levels with the exception of the Mutual Information one vs. all
method (applied to attempt to improve on the results of the MI/KL
method). The mRMR  method performs well even for 9-mers. It
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ears noting here that for feature set sizes of 50, 100, 150 and
00, mRMR  is capable of selecting features from the very large set
f 262,144 in approximately 8 min  on a 2.5 GHz Intel Core 2 Duo
rocessor with 4 GB of RAM. However, the algorithm is not opti-
ized for over 500 features and the computation time increases

o almost 40 h on the same machine to choose 1000 features with
ery minimal benefits. In this situation the Mutual Information one
s. all method or TF-IDF would be much more desirable being able
o run in approximately 10 min  and 1 h, respectively regardless of

he feature set size to be chosen. Another important note is that

utual Information one vs. all and mRMR  outperform other meth-
ds in terms of classification accuracy at the Class and Phyla levels
nd Mutual Information one vs. all consistently has high classifica-

able 3
acterial genomes.

Strain Species

Bacillus amyloliquefaciens FZB42 Bacillus amy
Bacillus anthracis str. Sterne Bacillus anth
Bacillus clausii KSM-K16 Bacillus claus
Bacillus licheniformis ATCC 14580 Bacillus liche
Bacillus subtili Bacillus subt
Bacillus thuringiensis str. Al Hakam Bacillus thur
Bacillus weihenstephanensis KBAB4 Bacillus weih
Burkholderia cenocepacia AU 1054 Burkholderia
Burkholderia cenocepacia HI2424 Burkholderia
Burkholderia mallei ATCC 23344 Burkholderia
Burkholderia pseudomallei 1106a Burkholderia
Burkholderia pseudomallei 1710b Burkholderia
Burkholderia pseudomallei K96243 Burkholderia
Burkholderia xenovorans LB400 Burkholderia
Clostridium beijerinckii NCIMB 8052 Clostridium b
Clostridium botulinum A Clostridium b
Clostridium botulinum A Hall Clostridium b
Clostridium perfringens Clostridium p
Clostridium perfringens ATCC 13124 Clostridium p
Clostridium perfringens SM101 Clostridium p
Clostridium phytofermentans ISDg Clostridium p
Escherichia coli 536 Escherichia c
Escherichia coli APEC O1 Escherichia c
Escherichia coli E24377A Escherichia c
Escherichia coli HS Escherichia c
Escherichia coli O157H7 Escherichia c
Escherichia coli O157H7 EDL933 Escherichia c
Escherichia coli W3110 Escherichia c
Lactobacillus acidophilus NCFM Lactobacillus
Lactobacillus brevis ATCC 367 Lactobacillus
Lactobacillus casei ATCC 334 Lactobacillus
Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 Lactobacillus
Lactobacillus gasseri ATCC 33323 Lactobacillus
Lactobacillus helveticus DPC 4571 Lactobacillus
Lactobacillus plantarum subsp. plantarum Lactobacillus
Lactobacillus sakei 23K Lactobacillus
Mycoplasma gallisepticum Mycoplasma
Mycoplasma genitalium Mycoplasma
Mycoplasma hyopneumoniae 232 Mycoplasma
Mycoplasma hyopneumoniae J Mycoplasma
Mycoplasma mobile 163K Mycoplasma
Mycoplasma pneumoniae Mycoplasma
Mycoplasma pulmonis Mycoplasma
Mycoplasma synoviae 53 Mycoplasma
Prochlorococcus marinus AS9601 Prochlorococ
Prochlorococcus marinus CCMP1375 Prochlorococ
Prochlorococcus marinus MED4 Prochlorococ
Prochlorococcus marinus MIT  9313 Prochlorococ
Prochlorococcus marinus MIT  9303 Prochlorococ
Prochlorococcus marinus MIT  9312 Prochlorococ
Prochlorococcus marinus MIT  9515 Prochlorococ
Pseudomonas aeruginosa Pseudomona
Pseudomonas aeruginosa PA7 Pseudomona
Pseudomonas fluorescens Pf-5 Pseudomona
Pseudomonas fluorescens PfO-1 Pseudomona
Pseudomonas mendocina ymp Pseudomona
Pseudomonas putida GB 1 Pseudomona
Pseudomonas stutzeri A1501 Pseudomona
 and Chemistry 35 (2011) 199–209 207

tion accuracy at the Phyla level while the mRMR  method accuracy
decreases with feature set size as can be seen in Table 2.

The low classification accuracy, seen for 9mers as compared to
6mers, is due largely to the significant difference in number of pos-
sible features. For 6mers there are only 4096 possible combinations
of A, T, C, G that are length 6, while at length 9, the number of
possible combinations is 262,144. Thus, there is lower variance for
each 9mer feature, and it is harder to capture the variance of the
data with few selected features. This means that for 6mers, 500

features represents approximately 12% of the total number of fea-
tures, while for 9mers it only represents 0.2% of the total number
of features. While we show that mRMR  performs similarly with the
same top-percentage of features, MI/KL does not, and this is due to

Genera Phyla

loliquefaciens Bacillus Firmicutes
racis Bacillus Firmicutes
ii Bacillus Firmicutes
niformis Bacillus Firmicutes
ili Bacillus Firmicutes
ingiensis Bacillus Firmicutes
enstephanensis Bacillus Firmicutes

 cenocepacia Burkholderia Proteobacteria
 cenocepacia Burkholderia Proteobacteria
 mallei Burkholderia Proteobacteria
 pseudomallei Burkholderia Proteobacteria
 pseudomallei Burkholderia Proteobacteria
 pseudomallei Burkholderia Proteobacteria
 xenovorans Burkholderia Proteobacteria
eijerinckii Clostridium Firmicutes
otulinum Clostridium Firmicutes
otulinum Clostridium Firmicutes
erfringens Clostridium Firmicutes
erfringens Clostridium Firmicutes
erfringens Clostridium Firmicutes
hytofermentans Clostridium Firmicutes

oli Escherichia Proteobacteria
oli Escherichia Proteobacteria
oli Escherichia Proteobacteria
oli Escherichia Proteobacteria
oli Escherichia Proteobacteria
oli Escherichia Proteobacteria
oli Escherichia Proteobacteria

 acidophilus Lactobacillus Firmicutes
 brevis Lactobacillus Firmicutes
 casei Lactobacillus Firmicutes
 delbrueckii Lactobacillus Firmicutes
 gasseri Lactobacillus Firmicutes
 helveticus Lactobacillus Firmicutes
 plantarum Lactobacillus Firmicutes
 sakei Lactobacillus Firmicutes

 gallisepticum Mycoplasma Tenericutes
 genitalium Mycoplasma Tenericutes
 hyopneumoniae Mycoplasma Tenericutes
 hyopneumoniae Mycoplasma Tenericutes
 mobile Mycoplasma Tenericutes
 pneumoniae Mycoplasma Tenericutes
 pulmonis Mycoplasma Tenericutes
 synoviae Mycoplasma Tenericutes
cus marinus Prochlorococcus Cyanobacteria
cus marinus Prochlorococcus Cyanobacteria
cus marinus Prochlorococcus Cyanobacteria
cus marinus Prochlorococcus Cyanobacteria
cus marinus Prochlorococcus Cyanobacteria
cus marinus Prochlorococcus Cyanobacteria
cus marinus Prochlorococcus Cyanobacteria
s aeruginosa Pseudomonas Proteobacteria
s aeruginosa Pseudomonas Proteobacteria
s fluorescens Pseudomonas Proteobacteria
s fluorescens Pseudomonas Proteobacteria
s mendocina Pseudomonas Proteobacteria
s putida Pseudomonas Proteobacteria
s stutzeri Pseudomonas Proteobacteria
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Table  4
Bacterial genomes (cont.).

Strain Species Genera Phyla

Rickettsia bellii OSU 85-389 Rickettsia bellii Rickettsia Proteobacteria
Rickettsia canadensis McKiel Rickettsia canadensis Rickettsia Proteobacteria
Rickettsia conorii Rickettsia conorii Rickettsia Proteobacteria
Rickettsia felis URRWXCal2 Rickettsia felis Rickettsia Proteobacteria
Rickettsia prowazekii Rickettsia prowazekii Rickettsia Proteobacteria
Rickettsia rickettsii Iowa Rickettsia rickettsii Rickettsia Proteobacteria
Rickettsia rickettsii Sheila Smith Rickettsia rickettsii Rickettsia Proteobacteria
Shewanella sp. ANA-3 Shewanella Shewanella Proteobacteria
Shewanella sp. MR-7 Shewanella Shewanella Proteobacteria
Shewanella amazonensis SB2B Shewanella amazonensis Shewanella Proteobacteria
Shewanella denitrificans OS217 Shewanella denitrificans Shewanella Proteobacteria
Shewanella frigidimarina NCIMB 400 Shewanella frigidimarina Shewanella Proteobacteria
Shewanella halifaxensis HAW EB4 Shewanella halifaxensis Shewanella Proteobacteria
Shewanella putrefaciens CN-32 Shewanella putrefaciens Shewanella Proteobacteria
Staphylococcus aureus JH1 Staphylococcus aureus Staphylococcus Firmicutes
Staphylococcus aureus JH9 Staphylococcus aureus Staphylococcus Firmicutes
Staphylococcus aureus N315 Staphylococcus aureus Staphylococcus Firmicutes
Staphylococcus aureus NCTC 8325 Staphylococcus aureus Staphylococcus Firmicutes
Staphylococcus aureus USA300 Staphylococcus aureus Staphylococcus Firmicutes
Staphylococcus aureus USA300 TCH1516 Staphylococcus aureus Staphylococcus Firmicutes
Staphylococcus saprophyticus Staphylococcus saprophyticus Staphylococcus Firmicutes
Streptococcus mutans Streptococcus mutans Streptococcus Firmicutes
Streptococcus pyogenes MGAS10270 Streptococcus pyogenes Streptococcus Firmicutes
Streptococcus pyogenes MGAS10750 Streptococcus pyogenes Streptococcus Firmicutes
Streptococcus pyogenes MGAS2096 Streptococcus pyogenes Streptococcus Firmicutes
Streptococcus pyogenes MGAS315 Streptococcus pyogenes Streptococcus Firmicutes
Streptococcus pyogenes MGAS5005 Streptococcus pyogenes Streptococcus Firmicutes
Streptococcus pyogenes MGAS8232 Streptococcus pyogenes Streptococcus Firmicutes
Synechococcus CC9311 Synechococcus sp. CC9311 Synechococcus Cyanobacteria
Synechococcus CC9605 Synechococcus sp. CC9605 Synechococcus Cyanobacteria
Synechococcus CC9902 Synechococcus sp. CC9902 Synechococcus Cyanobacteria
Synechococcus JA-3-3Ab Synechococcus sp. JA-3-3Ab Synechococcus Cyanobacteria
Synechococcus WH 7803 Synechococcus sp. WH 7803 Synechococcus Cyanobacteria
Synechococcus elongatus PCC 6301 Synechococcus elongatus Synechococcus Cyanobacteria
Synechococcus WH8102 Synechococcus sp. WH8102 Synechococcus Cyanobacteria
Yersinia enterocolitica 8081 Yersinia enterocolitica Yersinia Proteobacteria
Yersinia pestis Antiqua Yersinia pestis Yersinia Proteobacteria
Yersinia pestis CO92 Yersinia pestis Yersinia Proteobacteria
Yersinia pestis KIM Yersinia pestis Yersinia Proteobacteria
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Yersinia pestis Pestoides F Yersinia pestis 

Yersinia pseudotuberculosis IP32953 Yersinia pseudotu
Yersinia pseudotuberculosis IP31758 Yersinia pseudotu

ach 9mer feature capturing less variation in the data. Some of the
ethods for 9mers such as mRMR  and Mutual Information one vs.

ll show an upward trend of classification accuracy as the number
f features increases and indicates that a larger percentage of fea-
ures could lead to better classification results for these methods.
owever, the current classification scheme is limited in that using
ore features with an SVM can often lead to much longer compu-

ation times. Therefore, we deduce that 6mer feature selection is a
ufficient trade-off between time and accuracy.

. Conclusions

In this paper we present an information-theoretic approach to
eature selection that improves SVM genome classification. Most
omposition-based methods use all features and do not use an
ntelligent feature selection, and we show that feature selection

ethods can boost performance of these methods. We  also show
hat feature selection may  not work as well if the number of fea-
ures is too large, where there may  not be a small set of features that
apture most of the data variance. There are trade-offs between
eature set sizes and methods. Therefore, we conclude that N = 6
ields better results than both N = 3 or N = 9 showing that there is
 trade-off between feature set size and performance; although,
F-IDF works better on the N = 9 level for fine-resolutions. Overall,
RMR  using N = 6 performs well in our benchmark study in most

ases, and especially performs well on the phyla-level.
Yersinia Proteobacteria
losis Yersinia Proteobacteria
losis Yersinia Proteobacteria
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