
I. Introduction

The prevalence of mobile phones, the internet-of-things 
technology, and networks of sensors has led to an 
enormous and ever increasing amount of data that are 
now more commonly available in a streaming fashion 

[1]–[5]. Often, it is assumed – either implicitly or explicitly – 
that the process generating such a stream of data is stationary, 
that is, the data are drawn from a fixed, albeit unknown proba-
bility distribution. In many real-world scenarios, however, such 
an assumption is simply not true, and the underlying process 
generating the data stream is characterized by an intrinsic non-
stationary (or evolving or drifting) phenomenon. The nonsta-
tionarity can be due, for example, to seasonality or periodicity 
effects, changes in the users’ habits or preferences, hardware or 
software faults affecting a cyber-physical system, thermal drifts 
or aging effects in sensors. In such nonstationary environments, 
where the probabilistic properties of the data change over time, 
a non-adaptive model trained under the false stationarity 
assumption is bound to become obsolete in time, and perform 
sub-optimally at best, or fail catastrophically at worst.

Given the increasingly common applications that are driven 
by “nonstationary” or “drifting” data generation processes, the 
need for effective and efficient algorithms for learning from 
(and adapting to) evolving or drifting environments can hardly 
be overstated. Such a need has recently provided a welcome 
boost to research in learning in nonstationary environments. A 
comprehensive review of these recent advances is the primary 
focus of this paper. This survey article serves both as a supple-
mentary as well as a complementary effort to the very short list 
of other review articles available on concept drift, e.g., [6], [7]. 
Specifically, we describe the problem of learning in nonstation-
ary environments from two core perspectives: active versus pas-
sive approaches to learning in nonstationary environments. Fur-
thermore, we also cover more recent efforts in the areas of 
learning from initially labeled nonstationary environments, and 
learning in nonstationary environments that provide imbal-
anced data, not previously reviewed elsewhere.

To set the stage, let us start with three real-world examples 
of applications driven by a nonstationary process:

 ❏ Environmental monitoring and forecasting involves a network of 
sensors that collects data from a physical phenomenon and 
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transmits them to a control location for fur-
ther processing. In most real-world settings, 
sensing units typically suffer from inevitable 
aging effects, or faults in their embedded 
electronics/sensors. In addition, the physical 
phenomena under monitoring can also 
evolve with time, e.g., due to seasonality or 
climate changes. In such settings, the sta-
tionarity assumption is simply incorrect.

 ❏ Recommendation systems provide users with 
products or services in which they are likely 
to have an interest, based on their purchas-
ing or browsing history. User interests in 
products and services can, of course, change 
due to a variety of reasons such as personal 
needs, current trends, employment status 
and age, among others [8], [9]. Building a 
model for a user and expecting it to be reli-
able in the distant future is therefore unreal-
istic. Hence, recommendation systems 
operate in nonstationary environments, and 
therefore the model that is providing the 
recommendations must be able to adapt to 
the users’ changing interests.

 ❏ Predicting energy demand is one of the most 
important tasks for the effective opera-
tion of the power grid. Historical data are 
generally available to construct predictive 
models, but making energy demand pre-
dictions is a nonstationary problem due im
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Abstract—Applications that generate data from 
nonstationary environments, where the underlying 

phenomena change over time, are becoming increasingly 
prevalent. Examples of these applications include making 

inferences or predictions based on financial data, energy demand 
and climate data analysis, web usage or sensor network monitoring, and 

malware/spam detection, among many others. In nonstationary environ-
ments, particularly those that generate streaming or multi-domain data, the prob-

ability density function of the data-generating process may change (drift) over time. 
Therefore, the fundamental and rather naïve assumption made by most computational 

intelligence approaches – that the training and testing data are sampled from the same fixed, 
albeit unknown, probability distribution – is simply not true. Learning in nonstationary 

environments requires adaptive or evolving approaches that can monitor and track the 
underlying changes, and adapt a model to accommodate those changes accordingly. 

In this effort, we provide a comprehensive survey and tutorial of established as 
well as state-of-the-art approaches, while highlighting two primary per-

spectives, active and passive, for learning in nonstationary environ-
ments. Finally, we also provide an inventory of existing real and 

synthetic datasets, as well as tools and software for getting 
started, evaluating and comparing different approaches.
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to a variety of factors that affect supply and demand, such as 
climate fluctuations that change throughout the year. Ener-
gy-demand prediction algorithms must also be able to deal 
with long-term gradual changes due to, for example, increas-
ing populations, improvements in the efficiency of the ener-
gy production, as well as increasingly ubiquitous new 
disruptive technologies such as electric vehicles and solar 
powered homes that can return access energy to the grid.
As these examples illustrate, the problem of learning in non-

stationary environments – also referred to as learning in 
dynamic, evolving or uncertain environments, or more com-
monly as learning “concept drift” – requires novel and effective 
approaches that can track and adapt to changes in the data gen-
erating process.

Against this background, our aim in this paper is twofold. 
First, we formalize the process of learning in nonstationary 
environments for classification tasks, and present the broad 
spectrum of scenarios that can be categorized under the non-
stationary environment framework. Second, we describe the 
two primary families of strategies commonly used for learning 
concept drift. These two families are generally referred to as 
active and passive approaches, terms that are first coined in [10]. 
They differ in the adaptation mechanism employed to cope 
with the change: active approaches rely on an explicit detection 
of the change in the data distribution to activate an adaptation 
mechanism, while passive approaches continuously update the 
model over time (without requiring an explicit detection of 
the change). We present and review commonly cited algo-
rithms from both strategies. Finally, we describe the open prob-
lems for current and future research for learning in nonstation-
ary environments, and provide pointers to several 
freely-available software tools and benchmark datasets to serve 
as references in hopes of stimulating future research.

II. Learning in Nonstationary  
Environments as a Framework

A. The Data Generating Process
Let P  be the data generating process providing a sequence of 
tuples ( , )x yt t  sampled from an unknown probability distribu-
tion ( , ),xp yt  and let xp yt ^ h and ( )xpt  be posterior and evi-
dence distributions, respectively, at some arbitrary time .t  The 
distributions are deliberately subscripted with time t  to 
explicitly emphasize their time-varying nature. In particular, 
x Rt

d!  represents a feature vector modeled as a random vari-
able, and yt ! K  is a discrete class label, both at time .t  The 
data may arrive in an online manner, i.e., one single instance at 
a time, or in a batch setting. In a single instance setting, only 
the tuple ,x yS t t t= ^ h" , is provided to the learning algorithm, 
whereas a batch setting provides a finite set of tuples 

, , , , .x xy yS t t t t
N

t
N1 1 f= ^ ^h h" ,  Obviously, when N 1=  the 

learning problem would be reduced to a single instance set-
ting. Specific terminology is often used to indicate the cause 
or nature of changes in the data. In terms of “what” is chang-
ing [6], we have:

 ❏ Real Drift: the posterior probability xp yt ^ h varies over 
time, independently from variations in the evidence ;xpt ^ h

 ❏ Virtual Drift: the evidence or the marginal distribution of 
the data, ,xpt ^ h  changes without affecting the posterior 
probability of classes .xp yt ^ h
The change in probability distributions can be further bro-

ken down with respect to the rate at which the drift is taking 
place. For example, the concept drift can be abrupt, resulting in 
a sudden drift, e.g., drift induced by faults affecting a sensor. 
Such cases are also referred to as “abrupt concept drift” or 
“concept change.” The concept drift can also be gradual [11], 
[12], which is defined as slowly evolving distributions over 
time, e.g., as induced by thermal drifts or aging effects in a sen-
sor. Such cases are referred to as “gradual concept drift.”

The drifts, whether abrupt or gradual, can be further clas-
sified as:

 ❏ Permanent: the effect of the variation is not limited in time, or
 ❏ Transient: after a certain amount of time, the effect of the 
drift disappears.
The types of drifts in the data stream can be further charac-

terized as cyclical or recurrent variations, the latter of which is 
also known as recurrent concepts. In such settings, the ability to 
retrieve previously acquired knowledge from similar concepts is 
a valuable and desired quality sought in adaptive algorithms.

B. Algorithmic Considerations for Learning  
in Nonstationary Environments
There are several important considerations in designing an 
algorithm for learning and making predictions in nonstationary 
environments. First, recall that the process P  generates a 
sequence of data S t  for , , ,t 1 2 f=  assumed to be sampled 
from potentially different probability distributions. If data are 
sampled from a potentially infinite (or very long) length 
sequence, then it is unrealistic to expect that all acquired data 
can always be available, a consideration that is especially acute 
with big data applications [13]. A more realistic assumption, 
which also defines incremental learning, is therefore to accept 
that S t  is only available for learning or evaluation at the time 
first presented to the algorithm [14]–[18], which is also charac-
terized as one-pass learning.

Second, most concept drift algorithms expect that the pre-
dictions made by the classifier will be verified with the labels for 
S t  arriving along with the next training dataset .S t 1+  This set-
ting allows the algorithm to measure a loss at each time step and 
is referred to as the test-then-train scenario [19], [20], where an 
evaluation of the previous dataset is conducted prior to training 
with the next dataset. If the labels do not become available 
immediately as the next batch of data arrives, this scenario is 
called “verification latency,” the extreme case of which – labels 
never becoming available beyond the initialization step – leads 
to “initially labeled environments” as discussed in Section III-C.

Finally, concept drift can also be simply perceived, rather 
than actual, caused by insufficient, unknown or unobservable 
attributes, a phenomenon known as “hidden context” [21], or 
unknown unknown. In hidden context, there is a static 
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underlying process, which is hidden from the learner’s view. 
Having the benefit of the hidden context would remove the 
nonstationarity. Since the hidden context can never be known, 
the learner must rely on the aforementioned probabilistic defi-
nition of concept drift to describe nonstationary environments.

All these aspects should be taken into account in designing 
algorithms for learning in nonstationary environments.

C. Related Problems Under the  
Nonstationary Learning Framework
Learning in nonstationary environments can be seen as a frame-
work, under which several machine learning concepts and prob-
lem domains can be listed, as depicted in the mindmap of Fig-
ure 1. First, there is the choice of a learning modality, such as 
supervised, unsupervised, or semi-supervised [22], [23], and the 
rate at which data arrive (e.g., incremental [14], [24], [25], or in 
an online manner [26]). Each of these learning modalities would 
traditionally assume that the data for both training and testing are 

sampled from a fixed unknown probability distribution. Concept 
drift detection mechanisms represent effective solution to detect 
the occurrence of changes within incremental and online learn-
ing algorithms (please refer to Section III-A for an analysis of 
available concept drift detection mechanisms). These different 
learning modalities by themselves do not necessarily describe a 
formal nonstationary environment; they are, however, still at the 
core of learning in a nonstationary setting.

The fields of covariate shift, domain adaption and transfer 
learning are all characterized by some shift from the training to 
testing probability distributions, but only for one set of consecu-
tive time instances, rather than a streaming setting. For example, 
covariate shift describes a perceived change in sampled data dis-
tributions between training (source) and test (target) data, with-
out an actual change in the true labeling function, and hence 
assumes that ,x xp y p yt t 1= +^ ^h h  with, ,x xp pt t 1! +^ ^h h  
where pt  and pt 1+  denote probability distributions on the 
source and target [27]–[30].
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Figure 1 Mindmap of concept drift describing the connections the field has with different areas within machine learning and applications 
where concept drift can be found.
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Transfer learning addresses the issue that training and future 
data must be in the same feature space, and have the same dis-
tribution [31]. In domain adaptation, training and test data are 
sampled from different but related domains (e.g., in a movie 
recommendation system, given training data sampled from 
romantic comedies, the problem is to predict the user interest 
on test data sampled from dramas) [32]–[34]. These problem 
domains are subsets of the nonstationary learning problem, as 
the data distribution changes from training data to test data. 
However, unlike streaming data examples, there is no notion of 
continuing time. The source (training) and target (test) data can 
be interpreted as obtained at time instances t 1=  and ,t 2=  
respectively, with no future data.

The most general form of a nonstationary environment 
typically involves streaming or continuously arriving data from 
time-series applications [35], such as tweet classification [36], or 
genomics [37], [38], etc. Big Data applications, which may or 
may not be associated with a streaming time-series data, also 
constitute one of the major application domains of learning in 
nonstationary environments. It is important to note that time-
series analysis of data does not imply that the learning process is 
nonstationary.

III. Learning in Nonstationary Environments:  
Active and Passive Approaches
Adaptation algorithms for learning in the presence of concept 
drift are primarily based on either an active or passive approach 
[10], [39]. Algorithms following the active approach specifically 

aim at detecting concept drift, while algorithms following the 
passive one continuously update the model every time new data 
are presented, regardless whether drift is present. Both active and 
passive approaches intend to provide an up-to-date model; how-
ever, the mechanisms used by each to do so are different.

We emphasize that both active and passive approaches can be 
successful in practice; however, the reason for choosing one 
approach over the other is typically specific to the application. In 
fact, before choosing a specific algorithm for learning in a non-
stationary environment, it is important to consider the dynamics 
of the learning scenario (e.g., drift rates, whether the data arrive 
online or in batches, etc.), computational resources available (e.g., 
embedded systems or high-performance computers), and any 
assumptions that can be made about the distributions of the data. 
In general, passive approaches have been shown to be quite 
effective in prediction settings with gradual drifts and recurring 
concepts [10]. While coping with gradual drift can be achieved 
with active approaches (e.g., see [40]), the change detection with 
gradual drift is nevertheless more difficult. Active approaches 
work quite well in settings where the drift is abrupt. In addition, 
passive approaches are generally better suited for batch learning, 
whereas active approaches have been shown to work well in 
online settings as well (e.g., [41]–[43]).

In the following section, we discuss active and passive 
approaches, and highlight popular implementations of these 
approaches. A more formal and comprehensive treatment of 
learning in nonstationary environments can be found in [11].

A. Active Approaches: Change  
Detection & Adaptation
As shown in Figure 2, the active approach for 
learning in presence of concept drift is based 
on a change detection mechanism that trig-
gers, whenever advisable, an adaptation mech-
anism aiming at reacting to the detected 
change by updating or building a new classi-
fier. The change detector aims at asserting 
“there is a change in the process P” [44] by 
inspecting features extracted from the data-
generating process for change detection pur-
poses and/or analysis of the classification error 
(evaluated over labeled samples): the analysis 
of the extracted features monitors the station-
arity of the estimated ,xpt ^ h  whereas the 
analysis of the classification error aims at 
detecting variations in the estimated .xp yt ^ h  
The adaptation phase, which updates or 
rebuilds the classification model, is activated 
only when a change is detected. Adaptive 
strategies following this mechanism are also 
known as “detect & react” approaches [11]: 
once a change is detected, the classifier dis-
cards the obsolete knowledge, and adapts to 
the new environment. Popular change detec-
tion mechanisms are reviewed below.
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Figure 2 Active approach for learning a classifier in nonstationary environments. The fea-
ture extraction aims at extracting features from the data-generating process both for 
change detection and classification. The change detector inspects features extracted for 
change detection purposes and/or the classification error evaluated over labeled samples. 
Once a change has been detected, the adaptation phase is activated to update or rebuild 
the classifier. The black, blue and red dashed lines refer to the classification, the change 
detection and the adaptation phase, respectively.



novEmbEr 2015 | IEEE CompuTaTIonal InTEllIgEnCE magazInE    17

1) Change Detection: Change detection mechanisms rarely 
operate directly on the raw data [45]–[47]. Rather, change 
detection is typically carried out by inspecting independent 
and identically distributed (i.i.d.) features extracted from the 
incoming data stream, e.g., the sample mean, the sample vari-
ance [42], [43], [48]–[52], and/or the classification error [41], 
[43], [52]–[56].

Most existing approaches to detect changes in data generat-
ing processes can be grouped into four main families: Hypothe-
sis Tests, Change-Point Methods, Sequential Hypothesis Tests, and 
Change Detection Tests. These families of change detection 
mechanisms share the ability to inspect variations through the-
oretically-grounded statistical techniques, but differ in the way 
data are processed.

The aim of Hypothesis Tests (HTs) is to assess the validity of a 
hypothesis according to a predetermined confidence (e.g., a set 
of samples has been drawn from a distribution with a specific 
mean value, two sets of samples have been drawn from two dis-
tributions with the same mean value, or two sets of samples 
have been drawn from the same distribution). These statistical 
techniques operate on fixed-length sequences (no sequential 
analysis), and can control the false positive rate in change detec-
tion. Examples of HTs applied to the concept drift scenarios 
can be found in [47], [57]. In particular, the use of the normal-
ized Kolmogorov-Smirnov distance measuring the differences 
between cumulative density functions estimated on training 
samples and a window of recent data is suggested in [47]. A 
change detection mechanism based on the statistical test of 
equal proportions to inspect variations in the classification error 
is proposed in [57].

Similarly to HTs, Change-Point Methods (CPMs) operate on a 
fixed data sequence. These statistical techniques [58] aim at veri-
fying whether the sequence contains a change-point (i.e., the 
time instant the data-generating process changes its statistical 
behavior) or not by analyzing all possible partitions of the data 
sequence. The main characteristic of this family of statistical 
techniques is the ability to jointly address the problems of 
detecting the presence of a change, and estimating the time 
instant where the change occurred. The main drawback of such 
techniques is the high computational complexity that is 
required to analyze all the partitions of the data sequence, which 
makes their use in a streaming scenario costly. Approximate for-
mulations of CPMs, meant to work in an online manner, have 
been recently presented in the literature (e.g., [59]), but the 
complexity of these solutions remains a significant concern.

Differently from HTs and CPMs that operate on fixed data 
sequences, Sequential Hypothesis Tests (SHTs) are able to sequen-
tially inspect incoming samples (one at the time) up to when a 
decision to accept or refuse the no-change hypothesis can be 
taken. In other words, these statistical techniques analyze the 
stream of data until they have enough statistical confidence to 
decide either that a “change” or “no change” has occurred. 
Samples acquired after the decision are not considered. Exam-
ples of SHTs are the sequential probability ratio test [60] and 
the repeated significance test [61]. The main drawback of SHTs 

resides in the need to make a decision about the null hypothe-
sis (i.e., either change or no-change) once they gain enough 
statistical confidence. In fact, after the decision, the SHTs stop 
analyzing the datastreams (once the decision is made by the 
SHT, there is no need to analyze additional data) and this is a 
strong limitation in a sequential analysis where the goal is to 
keep on operating up to when a concept drift affected the data 
generating process.

The need to operate in a fully sequential manner is 
addressed by Change Detection Tests (CDTs), which are specifi-
cally designed to sequentially analyze the statistical behavior of 
streams of data/features. These methods are usually character-
ized by a reduced computational complexity (since they have 
to continuously monitor the data streams), but cannot guaran-
tee a control of the false positive rates (as HTs, CPMs and 
SHTs do).

The simplest CDT is based on a threshold: a change is 
detected whenever a feature value or the classification error 
exceeds the threshold. For example, a fixed threshold based on 
the Hoeffding bound applied to the difference between sample 
means of two non-overlapping data windows is suggested in 
[42], [48]. A different solution is proposed in [54], where the 
detection of the change is triggered by comparing the valida-
tion error computed on the latest data window with the vali-
dation error coming from a window of data randomly sampled 
from previously acquired data.

Another thresholding mechanism based on the classification 
error is proposed in [53], where the threshold is a function of 
the variance of the difference between the training and valida-
tion error rates. A thresholding mechanism, based on the analy-
sis of the Bernoulli Exponential Weighted Moving Average 
(EWMA) of errors can be introduced by the last-added classi-
fier as suggested in [55], where the threshold is a function of 
the proportion of errors of the last-added classifier and a user-
defined sensitivity parameter. The mechanism suggested in [41] 
detects a change when the classification error overcomes a 
threshold function of the standard deviation of the associated 
Bernoulli distribution. This mechanism has been extended in 
[56] by relying on the analysis of the distance between two 
classification errors (i.e., the current and the lowest value) 
instead of the proportion of errors. The distance based compar-
ison allows the suggested mechanism to improve the detection 
performance in cases of slow concept drift. A concept change 
detection mechanism aiming at assessing variations in the 
expectation of the classification error between a reference and a 
sliding detection window is suggested in [62], where the 
threshold is based on Bernstein bounds. A more effective 
detection threshold paired with a random sampling mechanism 
to store samples in the detection window has been presented in 
[63]. Similarly, a two-moving average mechanisms where the 
detection thresholds are based on Hoeffding’s Bounds is sug-
gested in [64].

The use of the Hellinger distance to measure the distribu-
tion divergence between the current data distribution esti-
mated on batches of data and a reference one is suggested in 
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[46] with the adaptive threshold based on the t-statistics. In line 
with [46], a family of distance measures between distributions 
(based on the comparison between windows of data) and a 
threshold-based algorithm to inspect variations in both discrete 
and continuous distributions is proposed in [45].

While thresholding mechanisms are quite straightforward to 
design and implement, their main drawback is the difficulty to 
set the threshold at design time (without assuming any a priori 
information about the possible changes): too low values may 
induce many false positive detections, while false negative ones 
may occur in cases of too large thresholds.

A different approach is suggested in [49], where an adaptive 
CDT based on the CUmulative SUM (CUSUM) test [44] for 
monitoring the stationarity of sample mean of the data over 
time is presented. Here, the log-likelihood ratio between two 
automatically estimated pdfs (i.e., the null and an alternative 
pdf) is sequentially evaluated over time to inspect changes in 
the data-generating process. A computational intelligence 
extension of the adaptive CUSUM test to inspect variations in 
sample statistical moment features as well as internal core vari-
ables coming from other statistical tests is presented in [50]. The 
Intersection of Confidence Intervals (ICI) CDT and its vari-
ants have been presented in [43], [51], [52], [65]. These CDTs 
are particularly effective when features are generated by a 
Gaussian distribution with a fixed variance. ICI CDTs come 
with a refinement procedure that provides an estimate of the 
time instant the change occurred (once detected). This ability is 
crucial for the adaptation phase of Just-in-Time Adaptive Clas-
sifiers described in the next subsection.

Interestingly, HTs can be jointly used with CDTs to vali-
date a change detected in a data stream. Change detection 
mechanisms following this approach are generally referred to as 
hierarchical CDTs, and are typically able to provide a reduction 
in false positive detections without increasing the change 
detection delay [66]. CPMs can also be jointly considered with 
CDTs within a hierarchical approach. For example, the joint 
use of the change detection layer based on the ICI CDT and a 
validation layer based on CPM is suggested in [67].

2) Adaptation: Once a change has been detected, the classi-
fier needs to adapt to the change by learning from the newly 
available information, and discarding the obsolete one. The dif-
ficulty consists in designing adaptive mechanisms able to effec-
tively distinguish between obsolete and up-to-date samples. 
The adaptation mechanisms for active classifiers can be 
grouped into three main families: windowing, weighting and 
random sampling.

Windowing is the most common and eas-
iest mechanism. Once a change is detected, a 
sliding window over the last acquired samples 
includes only the up-to-date training set for 
the learner, while previous samples that have 
fallen out of the window are considered 
obsolete. Then, all samples within the current 
window are used to re-train the classifier (or 
the CDT when needed), whereas older ones 

are simply discarded. The choice of the appropriate window 
length is a critical issue and can be determined based on the 
expected change ratio as suggested in [39], or be adaptive as 
proposed in [41]–[43], [48], [52], [53], [65]. An adaptive length 
windowing mechanism based on the analysis of the mean val-
ues of subwindows opened on the latest samples is proposed in 
[42]: the window widens in stationary conditions and shrinks 
when a change is detected. A detection mechanism based on 
separate warning and detection thresholds applied to the classi-
fication error is suggested in [41], where the length of the win-
dow is modified to collect all samples acquired between the 
instant a feature overcomes the warning threshold and the time 
instant the detection threshold is exceeded.

A new generation of adaptive classifiers, called Just-In-Time 
(JIT) adaptive classifiers, able to operate in nonstationary envi-
ronments is proposed in [43], [52], [65]. These algorithms rely 
on an adaptive window whose length is estimated through the 
ICI-based refinement procedure. These algorithms suggested 
the use of two CDTs to jointly monitor the distributions of 
the input data and the classification error. In addition, these JIT 
adaptive classifiers are able to integrate supervised information 
coming from the data-generating process over time to improve 
the classification accuracy in stationary conditions. More 
recently, a JIT adaptive classifier specifically designed to operate 
with gradual concept drifts has been proposed in [68]. There, a 
CDT aims at detecting variations in the polynomial trend of 
the expectation of the data generating process. Once a change 
has been detected, an adaptive length windowing mechanism 
based an estimate of the drift dynamics is used to modify the 
window length.

A pseudocode of the JIT adaptive classifier family is given 
in Figure 3. An initial training sequence ST0  is used to config-
ure both the classifier and the ICI-based CDT (line 1). After 
the training phase, when a new sample x i  arrives (with super-
vised information yi  whenever available), the CDT monitors 
the stationarity of P   (line 5). If a change is detected at time ,T  
an estimate Tt  of the time instance the change occurred is pro-
vided by the ICI-based refinement procedure (line 7). All sam-
ples acquired before Tt  are considered to belong to the previ-
ous state of the process and, thus, are discarded. The samples 
acquired between Tt  and ,T  representing the up-to-date data 
of the adaptive window, are coherent with the new status, and 
are used to retrain both the classifier and the CDT (line 8). In 
stationary conditions, the supervised information ,x yi i^ h is 
integrated into the classifier to improve (whenever possible) its 
classification accuracy (line 11).

[In many applications] the fundamental and rather 
naïve assumption made by most computational 
intelligence approaches – that the training and 
testing data are sampled from the same fixed, albeit 
unknown, probability distribution – is simply not true.
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A hybrid fixed-adaptive approach where the learner is ini-
tially trained on a fixed length data window, followed by an 
adaptation mechanism modifying the window length is sug-
gested in [53].

Differently from windowing approaches, which select a 
subset of samples from the data stream, weighting mechanisms 
consider all available samples but, suitably weighted, e.g., 
according to their age or relevancy with respect to the classi-
fication accuracy of the last batch(es) of supervised data [40], 
[69]–[71]. A gradual-forgetting weighting mechanism is sug-
gested in [69], where the weights of the samples linearly 
decrease with time (recent samples have larger weights than 
older ones). Similarly, a time-based weighting mechanism is 
presented in [70]. There, a set of decay functions for the 
weights (ranging from polynomial to exponential) is pre-
sented and compared. A different approach is presented in 
[40], where weights depend on a change index measuring the 
variation of the data-generating process over time (w.r.t. a ref-
erence training set). As suggested in [71], samples can also be 
weighted according to the classification accuracy/error com-
puted on the last batch of supervised data. The main draw-
back of weighting mechanisms is the need to keep in mem-
ory all previously acquired data, an assumption hard to meet 
in big data applications.

Sampling represents a viable alternative to windowing and 
weighting. In particular, reservoir sampling [72] is a well 
known sampling technique (based on randomization) able to 
select a subset of elements (without replacement) from a data 
stream. The basis of reservoir sampling is as follows: the sample 

,x yt t^ h acquired at time t  is stored in the reservoir with a 
probability / ,p k t=  where k  is the user-defined size of the 
reservoir; if a sample is inserted beyond the reservoir capacity, 
one randomly selected sample present in the reservoir must be 
discarded. An example of the use of reservoir sampling in pres-
ence of stream evolution can be found in [73], while a reser-
voir-sampling based change detection mechanism is described 
in [74].

While ensembles of models are mainly considered in passive 
approaches (as described in the next section), a few active 
approaches based on ensemble models are also available in the 
literature. For example, the idea to create a new model in the 
ensemble as soon as a triggering mechanism (based on the 
analysis of the classification error) gets activated is suggested in 
[55]. JIT adaptation mechanisms have also been proposed in 
the scenario of ensemble of classifiers [52].

B. Passive Approaches
As the name indicates, passive approaches do not seek to 
“actively” detect the drift in the environment, but rather sim-
ply accept that the underlying data distributions may (or may 
not) change at any time with any rate of change. To accom-
modate the uncertainty in the presence of change, passive 
approaches perform a continuous adaptation of the model 
parameters every time new data arrive. The continuous adap-
tation allows passive approaches to maintain an up-to-date 

model at all times, thus, avoiding the potential pitfall associated 
with the active approaches, that is, failing to detect a change or 
falsely detecting a non-existent change (false alarm).

There are two main categories of passive approaches, those 
that are based on updating a single classifier and those that add/
remove/modify members of an ensemble based system.

1) Single Classifier Models: The single classifier approaches 
generally provide a lower computational cost than an ensem-
ble based approach, which makes single-classifier approaches 
an attractive solution for massive data stream. Decision trees 
are the mostly common classifiers used for data stream mining 
with the very-fast decision tree (VFDT) learner being one of 
the most popular [75]. The concept drift VFDT (CVFDT) 
was proposed to cope with a nonstationary data stream by 
using an adaptive sliding window for training [76]. CVFDT 
was extended to examine multiple options at each node 
whenever a node needs to be split [77]. Another single classi-
fier method is the online information network (OLIN), a 
fuzzy-logic based approach that also exploits a sliding window 
over the training data stream [78], [79]. More recently, neural 
networks have also been gaining a renewed popularity for 
learning in nonstationary environments. For example, a recent 
work described an online extreme learning machine (ELM) 
combined with a time-varying neural network for learning 
from nonstationary data [80].

2) Ensemble Classifier Models: Among all passive based ap-
proaches for learning in nonstationary environments, ensem-
ble based models appear to be more popular, perhaps with 
justifiable reasons. Ensemble based approaches provide a natu-
ral fit to the problem of learning in a nonstationary setting 

Input: A Training Sequence ST0
 :=  {(xi, yi) : i e {1, ..., T0}};

1: Configure the classifier and the ICI-based CDT on ST0
;

3: while (1) do
4:  Input receive new data xi (with supervised information
 yi whenever available);
5:  if (ICI-based CDT detects a variation in the statistical
 distribution of inputs or in the classification error) then

12:    end if

10:    else

14: end while

6: Let T be the time of detection;

2: i =  T0 +  1;

11:   Integrate the available information (xi, yi) in the
   knowledge base of the classifier;

7: Activate the ICI-based refinement procedure to 
 provide an estimate T (the time the change started);^

8: Characterize the new ST as the set of samples 
 acquired between T and T;

^
^

9: Configure the classifier and the CDT on ST;^

13:     Predict the output yi of the input samples xi (whenever
          yi is not available);

^

Figure 3 An active approach for learning in nonstationary environ-
ments: the JIT adaptive classifier.
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and offer some distinct advantages: (i) they tend to be more 
accurate than single classifier-based systems due to reduction 
in the variance of the error; (ii) they have the flexibility to 
easily incorporate new data into a classification model when 
new data are presented, simply by adding new members to 
the ensemble; (iii) they provide a natural mechanism to forget 
irrelevant knowledge, simply by removing the corresponding 
old classifier(s) from the ensemble [16], [81]. The latter two 
points can be summarized by the so-called stability-plasticity 
dilemma [82], which refers to the ability of a model either to 
retain existing knowledge or learn new knowledge, but not 
being able to do both at the same time equally well. Ensem-
ble-based systems provide a delicate balance along the stabili-
ty-plasticity spectrum, thanks to their ability to add or remove 
classifiers (see Figure 4). This quality also makes ensemble sys-
tems a good fit for learning in nonstationary environments, as 
the drift may only impact some subset of the existing knowl-
edge base, while leaving others portions of the previously ac-
quired knowledge still relevant. Ensembles can continuously 
adapt the voting weights of the classifiers in a strategic man-
ner by measuring the loss of a single model on the most re-
cent data to provide more smaller error rates than a single 
classifier solution.

The advantage of ensemble based learning in nonstation-
ary environments has also been shown theoretically, specifi-
cally proving that ensemble-based systems can provide more 
stable results than single classifier based approaches in nonsta-
tionary settings [83], [84]. Theoretical advantages of ensemble 
systems have also been shown with respect to their diversity, 
as the diversity of an ensemble has been of particular interest 
to the nonstationary learning community. Recent work has 
shown that using both high and low diversity ensembles can 

be beneficial for tracking different rates of 
drift in the data stream [85], [86].

The streaming ensemble algorithm (SEA) 
was one of the earliest examples of the 
ensemble approaches for learning in nonsta-
tionary environments [87]. SEA simply adds 
new classifiers as new batches of data arrive. 
Once the ensemble reaches a predetermined 
size, classifiers are removed from the ensem-

ble, based on a measure of quality of the classifier (e.g., an 
examination of a single classifier’s predictions versus the 
ensemble’s prediction, or simply the age of the classifier). Such 
a strategy makes it possible for SEA to reduce any effect of the 
stability-plasticity dilemma. Other similar approaches have also 
been proposed that follow the “remove the least contributing 
member” philosophy [81], [88].

Some of the other popular approaches for passive learning 
include clever modifications of traditional learning algorithms. 
For example, online bagging & boosting form the basis of 
online nonstationary boosting algorithm (ONSBoost) [89], 
which adds an update period to Oza’s traditional online boost-
ing [35] to remove classifiers with poor performance. Bifet et 
al. developed several popular extensions to online bagging/
boosting, some of which have integrated techniques from pas-
sive and active approaches to track fast and gradual drifts [15], 
[19]. Dynamic weighted majority (DWM) [90], is an extension 
of the weighted majority algorithm (WM) [26] that extends 
WM to data streams with concept drift, and uses an updated 
period to add/remove classifiers. While sounding similar to 
ONSBoost, DWM allows for an adaptive ensemble size, 
whereas ONSBoost has a fixed sized ensemble. Other 
approaches, such as the accuracy updated ensemble (AUE), fol-
low a similar methodology of examining how to keep/remove 
classifiers in a fixed ensemble size [91]. Brieman’s popular ran-
dom forest algorithm has also been extended to learning non-
stationary data streams, as described in [92].

Another popular batch-based learning algorithm for non-
stationary environments is Learn++.NSE (NSE for nonsta-
tionary environments) [10], whose pseudocode is shown in 
Figure 5. Learn++.NSE maintains an ensemble that applies a 
time-adjusted loss function to favor classifiers that have been 
performing well in recent times, not just the most recent 
chunk of data. One of the advantages of the time-adjusted, or 
discounted, loss is that it allows a classifier that performed 
poorly a long time ago – and hence previously received a low 
or zero voting weight – to be reactivated and be given a large 
current voting weight, if it becomes relevant again, based on 
its performance on the current environment, perhaps due to a 
recurring or cyclic drift [83]. The algorithm processes a 
sequence of datasets ,S t  sampled from different, or drifting, 
probability distributions, , .xp yt ^ h  At each time step Learn++.
NSE measures the loss of the existing ensemble on the most 
recent data in S t  (line 2 and Equation (1)). Similar to Ada-
boost [93], Learn++.NSE holds a set of weights over the 
instances (not to be confused with voting weights 

S1, ...,St
Update WeightsAdd Expert ht to H

Measure ,(H, ft +  1)
,(H, ft +  1)

Predict St +  1

Figure 4 High-level block diagram used by incremental learning 
ensembles in nonstationary environments. Data are received in 
batches St  over time. A classifier ht  is built with the new data, which 
is then added to the ensemble .H  Unlabeled data from St 1+  is classi-
fied using the ensemble H  and a loss is measured when labels from 
St 1+  arrive.

Learning in an environment where the labels do 
not become immediately available is also known as 
verification latency, and requires a mechanism to 
propagate class information forward through several 
time steps of unlabeled data.
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over classifiers) in the data such that a large sampling weight 
corresponds to instances that are more difficult to classify than 
those with a low weight (line 3 and Equation (2)). In the 
context of a drifting distribution, an instance from a new dis-
tribution is yet unlearned, and hence difficult to classify with 
the existing ensemble. Unlike Adaboost, however, when 
building a new classifier (line 4), Learn++.NSE does not min-
imize the loss on S t  according to the weight distribution, but 
uses the time-adjusted loss (see Equations (3), (4) and (5)), 
giving the performance on recent times a higher voting 
weight than the performances at distant past. Specifically, 
unlike other ensemble approaches that use the most recent 
loss [87], [94], Learn++.NSE applies a sigmoidal averaging 
(line 6) to the classifiers’ loss history, which then favors classi-
fiers that are performing well in recent times. This time-
adjusted loss is one of the key strengths of Learn++.NSE that 
allows the ensemble decision to be most up to date with 
recent data. Learn++.NSE time-adjusted loss function has 
been empir ically evaluated against existing ensemble 
approaches, such as SEA, and the time-adjusted weighting has 
shown to be quite effective for leveraging stability by recall-
ing previously learned concepts [10], [83]. Unlike many of 
the other ensemble approaches, Learn++.NSE does not dis-
card old classifiers, but instead simply gives them a dynamic 
voting weight, which of course allows the classifiers to be 
reactivated during recurrent concepts. A three-way compari-
son of age (i.e., time) and error (i.e., accuracy) based weight-
ing that keeps the ensemble size fixed to discounted loss dis-
cussed above is described in [95], which showed that retaining 
all classifiers and simply adjusting their weights using the sig-
moidal discounted loss function is preferable over fixed 
ensemble approaches when classification performance is the 
most important figure of merit.

Ensemble based approaches have also been applied to other 
nonstationary learning settings, such as transfer learning and 
multi-task learning (see Figure 1). For example, Efficient Life-
long Learning Algorithm (ELLA) was proposed to extend the 
concept of multi-task learning to learn sparsely shared basis for 
all task models presented over time [96], [97]. Knowledge is 
transferred from a shared basis of task models to aid in learning 
new tasks as they are presented.

C. Recent Challenges and Trends in  
Nonstationary Environments
While learning from a nonstationary data stream is itself chal-
lenging, additional constraints, some of which are well known 
standalone problems of machine learning on their own right, 
can make the problem even more difficult. For example, class 
imbalance, which occurs when the number of data instances 
(or class priors) from different classes are disproportionately 
different, is a well-studied problem in machine learning [98]–
[100]. Furthermore, in class imbalance problems, it is generally 
the case that the under-represented class is the one that has  
the higher misclassification cost. While class imbalance has 
been extensively studied in stationary conditions, the field of 

nonstationary learning of imbalanced data has received rela-
tively less attention. Uncorrelated bagging is one of the first 
algorithms to address the joint problem of nonstationary and 
imbalanced data by considering an ensemble of classifiers 
trained on under sampled data from the majority class and 
combining the ensemble models using an average of the classi-
fier outputs [101]–[103]. The Selectively Recursive Approach 
(SERA) and Recursive Ensemble Approach (REA) are similar 
approaches to uncorrelated bagging, which use a weighted 
majority vote [94], [104], [105], though these approaches do 
require access to historical data. Learn++.CDS (Concept Drift 
with SMOTE) is a more recent batch-based incremental 
learning algorithm for imbalanced-nonstationary data streams 
that does not require access to historical data [106], [107]. 

Input: Datasets St :=  {(xi, yi) : i e [Nt]}, supervised
  learning algorithm BASE, and parameters a & b.
  Initialize: h1 =  BASE(S1) and W1

1 =  1.
1:  for t =  2,3, . . . do
2:      Compute loss of the existing ensemble

where 1x evaluates to 1 if x =  True otherwise it is 0.

3:  Update instance weights

4:  ht =  BASE(St)

5:  Evaluate existing classifiers with new data

where Zt  is a normalization constant.

6:  Compute time-adjusted loss

Set bk
t =  fk

t / (1-fk
t ).

8:  end for
Output: Learn++ .NSE’s prediction on x

(1)1Ht–1(xj) ! yj
,

j =  1

Nt

Et = /1
Nt

(2)
Et     Ht–1 (xj) =  yj

1      otherwise
Dt( j ) = 1

Zt

7:  Update classifier voting weights: Wk
t =  log 1

tk
t

(6) Ht(x) =  arg max Wk
t 1hk(x) =  ~.

k =  1~eX

t

/

,

,

.

(3)fk
t = Dt( j )1hk(xj) ! yj

.

j =  1

Nt

/

(5)

(4)
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t = {k

t -  j bk
t -  j.

j =  0

t -  k

/

1

Zt
l 1 +  exp(-a(t -  k -  b))

1{k
t =

Figure 5 Learn++.NSE is a passive approach for learning in nonsta-
tionary environments.
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More recent works have extended these concepts to online al-
gorithms, such as those in [108], [109]. Developing a true on-
line algorithm for concept drift that does not require access to 
historical data is extremely challenging due to difficulties asso-
ciated with measuring minority class statistics without violat-
ing the one-pass assumption using only a single instance at a 
time. A recent effort examined the aforementioned learning 
problem with multi-label classification [110], however, the 
field of multi-label classification in nonstationary environ-
ments still remains an open area of research [110].

Another set of machine learning topics that are well-estab-
lished and studied in stationary settings is semi-supervised, 
unsupervised, transductive and active learning modalities, 
whose applications to nonstationary environments have only 
recently been examined. In semi-supervised and transductive 
learning, unlabeled data from the test set is leveraged to help 
tune the parameters of the model [111]–[113]. In unsupervised 
learning/clustering, the learning is done without using labeled 
data [114]–[116], whereas in active learning (not to be con-
fused with active approaches to learning in nonstationary envi-
ronments, discussed in Section III-A) the algorithm identifies 
the most important instances for the learning problem and 
requests labels for those instances [117].

A particularly challenging form of semi-supervised or unsu-
pervised learning in nonstationary environments involves the 
very practical scenario, where labeled data are scarce or only 
available initially, followed by a stream of unlabeled data drawn 
from a drifting distribution. We refer to such data as initially 
labeled nonstationary streaming (ILNS) data, whose examples 
include management of power grids, remote-sensing, cyber 
security and malware detection, and data collection from haz-
ardous or hard to reach locations (e.g., nuclear plants, toxic sites, 
underground pipelines), where labeled data can be rare or 
expensive due to human expertise required for annotation.

Learning in an environment where the labels do not 
become immediately available is also known as verification 
latency, and requires a mechanism to propagate class informa-
tion forward through several time steps of unlabeled data. 
Zhang et al. proposed an ensemble approach that combines 
classifiers and clusters [118], which works well when labeled 
data are available at least intermittently: labeled data are used to 
train a classifier, whereas unlabeled data are used to form clus-
ters. New instances are then labeled by a majority vote that 
includes label mapping between classifiers and clusters of the 
ensemble. Another approach involves representing each drifting 
class as a mixture of subpopulations, each drawn from 

a particular parametric distribution. Given 
initial labeled data, the subpopulations of the 
unlabeled data can be tracked and matched 
to those known sub-populations, as shown in 
[119], [120], [121], and Krempl’s Arbitrary 
subPopulation Tracker (APT) algorithm 
[122]. The aforementioned approaches gener-
ally assume that (i) the drift is gradual and 
can be represented as a piecewise linear func-

tion; (ii) each subpopulation is present at initialization, whose 
covariance matrix remains unchanged; and (iii) the rate of drift 
remains constant. APT involves a two-step process: first, expec-
tation maximization is used to determine the optimal one-to-
one assignment between the unlabeled and the drift-adjusted 
labeled data (based on piecewise linearity of the drift), and then 
the classifier is updated to reflect the population parameters of 
newly received data.

Most recently, the COMPOSE framework (COMPacted 
Object Sample Extraction) was introduced, which can handle 
multiclass data, including the scenario of new classes or new 
subpopulations, making only the gradual (limited) drift 
assumption [123], [124]. Given labeled data only at the initial 
time step, followed by entirely unlabelled data from a drifting 
distribution, COMPOSE iteratively: (i) combine initial (or 
current) labeled data with the new unlabeled data and train a 
semi-supervised learning (SSL) algorithm to label the unla-
beled data; (ii) for each class, form a tight-envelope around 
the data by using a density estimation approach that can 
model multi-modal regions, such as a-shapes or Gaussian 
mixture model; and (iii) compact (shrink) this envelope to 
obtain the core support region of each class from which labeled 
samples, core supports, can be drawn. These samples constitute 
the new “labeled” instances to be used at the next iteration, 
and are combined with the new unlabeled data, which are 
then labeled using the SSL algorithm. COMPOSE is 
intended for extreme verification latency, where new labeled 
data is never available. However, if the nonstationary environ-
ment provides additional labeled data, perhaps only intermit-
tently, such data can naturally be used to update the core sup-
ports, and also help relax or remove the algorithm’s limited 
drift assumption. Furthermore, if the problem domain allows 
additional labeled data to be requested from the user in an 
active learning setting, COMPOSE can easily be integrated 
with an active learning algorithm to take advantage of such 
an availability [125].

IV. Open Source Software and  
Available Benchmarks
Many authors have made the code and data used in their publi-
cations available to the public. The references provided in this 
section contain software implementations for algorithms that 
can learn in nonstationary environments, and data sets that have 
become standard benchmarks in the field. We do not claim this 
list to be exhaustive, however, we believe that it provides several 
opportunities for novices to get started, and established 

Most existing approaches to detect changes in  
data generating processes can be grouped into 
four main families: Hypothesis Tests, Change-Point 
Methods, Sequential Hypothesis Tests, and  
Change Detection Tests.
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researchers to expand their contributions, all the while advanc-
ing the field by solving some of the open problems described 
in the next section.

 ❏ Hierarchical ICI-based Change-Detection Tests (Matlab): Imple-
mentation of the hierarchical ICI-based CDT composed of 
the ICI-based CDT at the detection layer and the Multivar-
iate Hotelling HT at the validation layer [126]. The ICI-
based CDT and the Hotelling HT can also be used as 
stand-alone routines.
http://home.deib.polimi.it/boracchi/Projects/HierarchicalICI-
basedCDT.html

 ❏ Learn++.NSE (Matlab): Implementation of Learn++.NSE 
(see Figure 5) with a CART base classifier [10].
https://github.com/gditzler/IncrementalLearning

 ❏ Massive Online Analysis (Java): Collection of online super-
vised, unsupervised and active learning models in Java [127].
http://moa.cms.waikato.ac.nz/

 ❏ Scalable Advanced Massive Online Analysis (Java): Collection 
of distributed algorithms for mining big data streams in 
Java [128].
http://jmlr.org/papers/v16/morales15a.html

 ❏ Online Nonstationary Boosting (Java): Pocock’s et al.’s imple-
mentation of ONSBoost [89].
http://www.cs.man.ac.uk/+pococka4/ONSBoost.html
The following datasets and code for generating datasets are 

commonly used for assessing the performances of proposed 
concept drift algorithms.

 ❏ Minku & Yao’s Concept Drift Generator (Matlab): Framework 
for generating synthetic data streams [85].
http://www.cs.bham.ac.uk/+minkull/opensource.html

 ❏ Kuncheva’s Concept Drift Generator (Matlab): Framework for 
generating data streams with concept drift [129].
http://pages.bangor.ac.uk/+mas00a/EPSRC_simulation_
framework/changing_environments_stage1a.htm

 ❏ Airlines Flight Delay Prediction: 100M+ instances contain 
flight arrival and departure records. The goal is to predict if 
a flight is delayed.
http://sourceforge.net/projects/moa-datastream/files/ 
Datasets/Classification/airlines.arff.zip

 ❏ Spam Classification: Collection of spam & ham emails col-
lected over two years [130].
http://www.comp.dit.ie/sjdelany/Dataset.htm

 ❏ Chess.com: Game records for a player over approximately 
three years [131].
https://sites.google.com/site/zliobaite/resources-1

 ❏ KDD Cup 1999: Collection of network intrusion detec-
tion data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

 ❏ POLIMI Rock Collapse and Landslide Forecasting: Sensor mea-
surements coming from monitoring systems for rock col-
lapse and landslide forecasting deployed on the Italian Alps.
http://roveri.faculty.polimi.it/software-and-datasets
More software and data – with links provided – can be 

found at http://github.com/gditzler/ConceptDriftResources 
and http://roveri.faculty.polimi.it/software-and-datasets.

V. Topics of Future Interest & Conclusions
Learning in nonstationary environments represents a challeng-
ing and promising area of research in machine learning and 
computational intelligence due to its increasing prevalence in 
real-world applications, which has received a further recent 
boost with proliferation of streaming and big data applications. 
In such applications, using traditional approaches that ignore 
the underlying drift is inevitably bound to fail, necessitating 
effective algorithms that can track and adapt to changes. In this 
paper, we provided a survey of the field of learning in nonsta-
tionary environments, the associated problems and challenges, 
and recent developments for addressing those challenges.

While there is now a significant body of work, there are still 
several open problems in learning in nonstationary environ-
ments. Some of these open problems – certainly not an 
exhaustive list – include the following.

 ❏ Theoretical frameworks for learning: The field of 
learning in nonstationary environments can benefit from a 
more in-depth theoretical analysis of a general framework, 
where performance bounds can be established with respect 
to the drift type and rate.

 ❏ Nonstationary consensus maximization [132]–[134]: 
Data sets are assumed to be labeled when presented to a 
supervised algorithm, or unlabeled for an unsupervised one. 
However, what if the data stream contains a mixture of 
labeled and unlabeled data? Consensus maximization aims 
at providing a framework to build and combine multiple 
supervised and unsupervised models for prediction. One 
interesting avenue of research is to examine the use of con-
sensus maximization in nonstationary environments.

 ❏ Unstructured and heterogeneous data streams: One 
of the central issues with mining from big data is the need 
to accommodate vast amounts of unstructured and heterog-
enous data (e.g., texts, images, graphs). Furthermore, the 
data acquired for learning may have different characteristics, 
such as multi-dimensionality, multi-label, multi-scale and 
spatial relationships. The ongoing research on learning in 
presence of concept drift should include new modeling and 
adaptive strategies to be able to cope with such data.

 ❏ Definition of limited/gradual drift: “Limited” or “grad-
ual” drift is one of the primary assumptions commonly 
made by algorithms for learning in nonstationary environ-
ments, particularly for unsupervised or semi-supervised  
approaches. However, the formal definition of what consti-
tutes limited drift is an elusive one. Not only do we not 
have established approaches to address those cases when the 
limited drift assumption is violated, we do not even have a 
formal definition of the limited drift that follows a concise 
mathematical formulation. A mathematical definition would 
allow the community to better understand the limitations of 
an algorithm in a nonstationary environment.

 ❏ Transient concept drift and limited data: This setting 
refers to evolving environments where concept drift is tran-
sient, and the number of instances related to the change in sta-
tionarity may be very limited. This is particularly challenging 
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because estimating the features that are used by change detec-
tion mechanisms are then computed using a very small sample 
size, thus, adding an extra level of difficulty to confidently learn 
the parameters of the nonstationary distribution.
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