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Objective: To determine whether automated classifiers can be used for correctly identifying target cate-
gorization responses from averaged event-related potentials (ERPs) along with identifying appropriate
features and classification models for computer-assisted investigation of attentional processes.
Methods: ERPs were recorded during a target categorization task. Automated classification of average tar-
get ERPs versus average non-target ERPs was performed by extracting different combinations of features
from the P300 and N200 components, which were used to train six classifiers: Euclidean classifier (EC),
Mahalanobis discriminant (MD), quadratic classifier (QC), Fisher linear discriminant (FLD), multi-layer
perceptron neural network (MLP) and support vector machine (SVM).
Results: The best classification performance (accuracy: 91–92%; sensitivity: 85–86%; specificity: 95–99%)
was provided by QC, MLP, SVM on feature vectors extracted from P300 recorded at multiple sites. In gen-
eral, non-linear and non-parametric classifiers (QC, MLP, SVM) performed better than linear classifiers
(EC, MD, FLD). The N200 did not explain variance beyond that of P300 recorded at multiple sites.
Conclusions: The results suggest that automatic characterization and classification of average target and
non-target ERPs is feasible. Features of P300 recorded at multiple sites used to train non-linear classifiers
are recommended for optimal classification performance.
Significance: Automatic characterization of target ERPs can provide an objective approach for detecting
and diagnosing abnormalities and evaluating interventions for clinical populations, paving the way for
future real-time monitoring of attentional processes.
� 2008 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Attention is generally recognized as a complex cognitive pro-
cess: it allows for proper allocation of processing resources based
on the relevance of a stimulus and regulates the competition be-
tween different information channels (e.g. auditory and visual
channels) (Egeth and Yantis, 1997; Pessoa et al., 2003). Attention
is an area of intense interest and investigation because it plays a
critical role in the execution of everyday tasks and goal-directed
behaviors.

The ‘‘oddball” paradigm has been widely used for the investiga-
tion of attentional processes, their meaning and their neural corre-
lates (Basar-Eroglu et al., 1992, 2001; Polich, 1997; Ravden and
Polich, 1999; Struber and Polich, 2002; Sutton et al., 1965). The
oddball paradigm is a simple discrimination task in which subjects
are presented with two (or more) stimuli or classes of stimuli in a
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pseudo-random sequence. The probability of occurrence of one
type of stimulus is typically less than that of the others, e.g. 20%
of the trials might be designated as ‘‘target” stimuli, whereas the
remaining 80% of trials would be ‘‘non-target” or ‘‘context” stimuli.
The participant’s task is to count, identify or respond to the desig-
nated target stimulus. If correctly recognized by the subject, target
stimuli have been shown to elicit a characteristic brain response, a
so called event-related potential (ERP), that is predominant in
medial parietocentral regions (Polich and Kok, 1995). Target classi-
fication typically elicits a negative deflection (N200) that occurs
about 200 ms after the presentation of the infrequent target stim-
ulus, followed by a positive deflection (P300) occurring about 300–
500 ms after the target stimulus onset (Naatanen and Picton, 1986;
Polich et al., 1985).

The oddball paradigm studies have demonstrated that the aver-
age amplitude of the P300 component is sensitive to the probabil-
ity of task-relevant events, manifesting greater amplitude to the
infrequent ‘‘target” stimulus. In addition, a target stimulus with a
frequency of 10% elicits a P300 with amplitude that is on average
ed by Elsevier Ireland Ltd. All rights reserved.
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greater than that elicited by a target stimulus with a frequency of
say, 40%, both of which will be greater than the P300 amplitude to
the non-target (context) stimulus. Furthermore, it is the subjective
probability, rather than the objective probability, that dictates the
amplitude of the P300. Stimulus categories can be as varied as
the letter ‘‘S” versus the letter ‘‘H”; male versus female names;
the affective valence of a picture, pictures of famous people versus
unfamiliar people or, indeed, the absence of a stimulus. Under
these circumstances, the P300 has been found to be related to
the attention resources allocated to the task (Kok, 2001; Polich,
2003). Anomalies in P300 amplitude and latency have been shown
to be present in mental disorders and neurological diseases, such
as schizophrenia (Bramon et al., 2004; Coburn et al., 1998; Ford
et al., 1992), dementia and Alzheimer’s disease (Missonnier et al.,
1999; Polich et al., 1985; Polikar et al., 2008; Sumi et al., 2000),
attention deficit/hyperactivity disorder (Sangal and Sangal, 2006)
and traumatic brain injury (Keren et al., 1998; Lew et al., 2005).
Moreover, pharmacological interventions that target the attention
domain have also been shown to affect the amplitude and latency
of the P300 (Coburn et al., 1998; Sangal and Sangal, 2004, 2006).

The majority of the studies about the aforementioned abnor-
malities and modulation of P300 have so far been based on direct
statistical comparison of the responses to target and non-target
stimuli. Still, a computer-assisted characterization of the oddball
responses could be a valuable supplement to a standard clinical
evaluation. In general, using automated classification allows indi-
vidual diagnosis/characterization, which is typically not possible
with sample/population-based statistical analysis. The main po-
tential advantages of such a characterization would in fact be 2-
fold, as suggested by Coburn and colleagues (Coburn et al., 2006).
First, it would help in the detection and quantification of abnor-
malities in brain activity through the comparison of a subject’s
average target ERP with a normative healthy database. Second,
comparing a subject’s ERP to a database of ERPs recorded from a
variety of clinical populations would provide quantitative informa-
tion that could be valuable for the diagnosis of psychiatric illnesses
and mental disorders. Additionally, it would be possible to use a
collection of ERP features for the classification of subjects or pa-
tients into groups of clinical interest by means of a multivariate
comparison with clinical and normative healthy databases.

In this paper, we present a preliminary assessment of algo-
rithms for the quantitative characterization of average target ERPs
obtained from a pool of healthy subjects during a visual target cat-
egorization task. In particular we aim at discriminating between
average ERP responses to target and non-target stimuli. The non-
target ERPs are used as a proxy for the abnormal average target
ERP; it is in fact fairly reasonable to assume that methods that reli-
ably discriminate between target and non-target ERPs hold prom-
ise for the discrimination between normal and abnormal target
ERPs. Additionally, the same algorithms assessed for their ability
in differentiating between target and non-target ERPs can be fur-
ther investigated for their performance in the automated classifica-
tion of target and non-target ERPs on a single-trial basis. Automatic
recognition of single-trial target ERPs would in fact offer a useful
tool for the real-time monitoring of the attention level. Recent
studies suggest that monitoring the attention level and its fluctua-
tions throughout a task may indeed benefit from a single-trial anal-
ysis of the ERP responses, as decreases or fluctuations across the
time-on-task may be correlated to disease processes (Holm et al.,
2006; Roschke et al., 1996; Tomberg and Desmedt, 1999).

In order to achieve a reliable discrimination between target and
non-target ERPs, we evaluate the quantitative characterization of
the responses based on multiple features and different combina-
tions thereof. In fact, in addition to the widely-accepted use of
the averaged P300 amplitude, we investigated the potential contri-
bution of the N200 component in automated target categorization.
Like the P300, the N200 is elicited by target stimuli in target cate-
gorization tasks, but its suggested cognitive determinants are dif-
ferent. Neurocognitive studies suggest that N200 amplitude
reflects the cognitive resources allocated to conflict monitoring
processes (Donkers and van Boxtel, 2004; Nieuwenhuis et al.,
2003). This is based on the observation that the N200 peak appears
when, in order to respond correctly to an infrequent target, the
subjects must override their habituated response to the frequent
non-target stimuli (Botvinick et al., 2004).

In recognition of the no-free-lunch theorem, which proves that
no classifier (or statistical or probabilistic model) is superior to all
other classifiers in the absence of additional information (Wolpert
and Macready, 1997) and that different models must be evaluated
and compared against each other for any given application, we
evaluated six different classification algorithms, each of which em-
ploys a different model fitting structure: the Euclidean classifier
(EC), the Mahalanobis discriminant (MD), the quadratic classifier
(QC), the Fisher linear discriminant (FLD), the multi-layer percep-
tron neural network (MLP) and the support vector machine (SVM).
2. Methods

2.1. Experimental protocol

A total of 16 healthy adults (4 females) participated in the
study. Participants were right-handed non-smokers, with vision
correctible to 20/20. Participants denied any history of neurologi-
cal disorders, psychiatric illness, substance abuse or being on any
current medication. The experimental protocol was approved by
the Institutional Review Board at Drexel University and all partic-
ipants gave their written informed consent after a detailed expla-
nation of the procedure. The mean age of the participants was
20.8 years (standard deviation = 4.2 years).

Participants were seated in a dimly-lit, sound attenuated room.
ERPs were recorded from two surface Ag/AgCl electrodes placed at
International 10–20 System locations Cz and Pz, referenced to
linked mastoid leads. The choice of these two electroencephalogra-
phy (EEG) sites originated from the effort to investigate the feasi-
bility of an attention monitoring tool that could be used in
clinical settings, therefore a simplified framework was sought. Fur-
thermore, the P300 peak, arguably among the most widely investi-
gated EEG features in attention studies, is in fact known to be
maximal at the midline central and parietal sites (Polich and Kok,
1995).

Vertical and horizontal electrooculograms (VEOG and HEOG)
were monitored via electrodes placed above and below the left
eye, and at the left and right outer canthi, respectively. ERP signals
were collected using a SynAmps amplifier (Neuroscan Inc., El Paso,
TX); all impedances were systematically kept below 10 kX and the
amplification was set to 50 mV/mm. EEG signals were filtered be-
tween 0.15 and 100 Hz (�6 dB/octave), using an analog filter, and
sampled at 500 Hz.

Participants were asked to perform a visual discrimination task.
Visual stimuli were presented on a computer monitor using STIM
(Neuroscan, Inc.) software. Stimuli consisted of two strings of
white letters (XXXXX and OOOOO) presented against the center
of a dark background. A total of 516 stimuli were presented, 480
non-target stimuli (OOOOO; 93.02%) and 36 target stimuli
(XXXXX; 6.98%). Stimulus duration was 500 ms, with an interstim-
ulus interval of 1500 ms. Target stimuli were presented randomly
with respect to non-target stimuli and a minimum of 12 non-target
stimuli were presented between successive targets. However, to
prevent the participants from developing expectations about the
pattern of target presentation, 4 of the 36 target stimuli were pre-
sented more closely together. Participants were required to press
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one of two buttons on a response pad after each stimulus, using the
index finger of their non-dominant (left) hand for non-target stim-
uli and the middle finger of the same hand to identify targets.
Behavioral accuracy and response times were also recorded
through the STIM program.

2.2. Data analysis

2.2.1. Preprocessing
Eyeblink artifacts were minimized using Jung’s Independent

Component Analysis (ICA) approach (Jung et al., 2000a,b). Stimu-
lus-locked ERPs were extracted in 1000 ms epochs, using a
300 ms pre-stimulus baseline and a 700 ms post-stimulus re-
sponse window. Epochs were baseline corrected by subtracting
the mean of the baseline window from the full epoch. Epochs con-
taining significant movement or muscle artifact were discarded,
and only epochs containing correct subject responses were in-
cluded in the analysis. Mean target responses were calculated by
averaging across the remaining target stimuli for each subject
and channel. On average, this yielded to 30 available target trials
(minimum number: 22; maximum number: 36). To avoid creating
a bias in the signal to noise ratio for target and non-target stimuli, a
random sample of non-target trials was selected from the 480 non-
target trials; the size of the non-target trials subsample matched
that of the target trials for each given individual.

2.2.2. Feature extraction and selection
N200 and P300 peaks were automatically identified at each

channel and a series of features describing these peaks was ex-
tracted. The N200 peak was identified as the largest negative
deflection in the 160–330 ms post-stimulus response, whereas
the P300 was identified as the largest positive deflection in the
250–480 ms post-stimulus response. The features considered in
this study were the amplitudes of both N200 and P300 peaks, as
well as the amplitude differences between these peaks. A total of
6 features were extracted from the signals, 3 features each from
electrode sites Cz and Pz: amplitude of the N200, amplitude of
the P300, and the amplitude difference between N200 and P300.
These features were verified through an ANOVA test to show statis-
tical significance between the target and non-target classes.

Three different sets of feature vectors were formed from these
individual features extracted from the average ERPs:

– Feature Set 1: the feature vector consisted of a single element,
the P300 amplitude at Pz.

– Feature Set 2: the feature vector consisted of two elements: the
P300 amplitudes at Pz and Cz.

– Feature Set 3: principal component analysis (PCA) was used to
determine which minimum set of independent linear combina-
tion of the six features accounted for the most variation in the
data. Through PCA, we have retained only the principal compo-
nents which cumulatively accounted for 98% of the total vari-
ance of the data (for which three components were found to
be adequate).

Per subject single-trial target ERPs (and randomly selected sin-
gle-trial non-target ERPs) were averaged to obtain one average tar-
get ERP (and one average non-target ERP). Hence, a total of two
(averaged) signals were obtained for each of the 16 subjects. Under
each of the three feature sets, the pertinent features extracted from
the ERPs were combined in feature vectors, one for the target ERP
and one for the non-target ERP of each subject. Each of these fea-
ture vectors represented an instance (or sample) xi and was asso-
ciated with a label yi that stated if xi was a feature vector
extracted from a target ERP (yi = ‘‘target”) or from a non-target
ERP (yi = ‘‘non-target”). The total number of feature vectors (i.e., in-
stances xi) in each feature set was 32 and constituted the overall
set S of available instances: S = [xi, yi].

2.2.3. Classification
We investigated the relative performance of the following six

classifiers:
Euclidean (minimum distance) classifier (EC): The instance xi is

assigned to the class whose training data mean is closest to xi,
based on the Euclidean distance. For normally distributed data, un-
der the assumption that all variances are identical and all cross-
variances are zero for all classes (i.e., the covariance matrix is a
constant multiple of the unit matrix), the minimum distance clas-
sifier is equivalent to a Bayes classifier and hence is statistically the
optimum classifier (Duda et al., 2001).

Mahalanobis discriminant (MD): The instance xi is assigned to
the class whose training data is closest to xi, based on the Maha-
lanobis distance. This classifier is equivalent to the optimum
Bayes classifier if the data is normally distributed with identical
(but arbitrary) covariance matrices for all classes (Duda et al.,
2001).

Quadratic classifier (QC): Feature vectors are labeled using a
Bayesian error minimization approach, under the more general
hypothesis that the covariance matrices for all classes can assume
any arbitrary value (Duda et al., 2001; Kuncheva, 2004).

Fisher linear discriminant (FLD): It is a linear classifier that pro-
jects high-dimensional data onto a smaller dimensional space that
maximizes the separability between the groups. A simplified dis-
crimination is then performed in the projected space (Duda et al.,
2001) using minimum-error-rate classification, assuming a multi-
variate normal distribution of the data.

Multi-layer perceptron neural network (MLP): The MLP is a feed-
forward neural network that consists of several nodes grouped in
an input layer, one or more hidden layers and an output layer. In
this architecture, the hidden layer maps the inputs to a non-linear
space (where the features are presumably better separable) and
the output layer implements a (non-linear) discriminant function
in this new space. The mixing weights of the inputs are iteratively
adapted to minimize an error criterion function on the training
data through a gradient-descent based optimization algorithm,
called the backpropagation (Haykin, 1999; Werbos, 1974). The
number of input nodes is determined by the number of features
in the feature vector. The number of nodes in the hidden layer is
typically selected using a k-fold cross-validation approach (k = 8
was used in this study). In such an approach, the dataset is parti-
tioned into k blocks; multiple MLPs with different number of hid-
den nodes are trained on k � 1 subsets and tested on the remaining
kth block. The number of hidden layer nodes that provides the best
performance over k trials is then chosen. In this application, the
number of output nodes was one, whose computed value in the
[�1 1] interval determined the MLP predicted stimulus type as
non-target or target.

Support vector machine (SVM): Support vector machines are bin-
ary classifiers that use a non-linear mapping kernel function to
transform the given data into a higher dimensional space, where
the data is believed to be linearly separable. Classification is then
performed in the new space by finding the optimal hyperplane that
offers the maximum separating margin between the closest sam-
ples of the two classes. The performance of a given SVM depends
also on a tradeoff parameter C: the C parameter balances the rela-
tive importance of minimizing the training error and maximizing
the margins between the classes, which directly affect the classi-
fier’s generalization ability. In this work, a Gaussian radial basis
function was used as the kernel. As we have done for the MLP mod-
el selection, a k-fold validation (k = 8) was used to choose the stan-
dard deviation r of the kernel and the C parameter for each of the
three feature sets.
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For training and testing each of the six classifiers, a modified
leave-one-out (mLOO) cross-validation was implemented (Fig. 1).
One instance (xi,yi) from of the available 32 instances in the set S
was removed to be used as a test data point. The remaining 31 in-
stances formed the subset S(i). From S(i), 20 instances were ran-
domly selected to serve as training data – 10 representing the
target ERP and 10 representing the non-target ERP – forming the
training subset TSðiÞðrÞ. One classifier (of each of the six types) was
trained on this training dataset. This process was repeated 10
times, in each case randomly choosing a different set of 20 (of
the 31) instances, creating 10 training sets TSðiÞðrÞ r ¼ 1;2; . . . ;10,
and corresponding 10 classifiers with slightly different decision
boundaries gðiÞðrÞ r ¼ 1;2; . . . ;10. These 10 classifiers were evaluated
on the one test data point (xi,yi) that was previously left out. This
entire process – generating 10 training data subsets of 20 instances
and training 10 corresponding classifiers – was repeated a total of
32 times, once for each data point to be used as test data. The pseu-
do-code in Fig. 1 describes this modified leave-one-out procedure
in detail.

The available 32 instances in the set S were classified 10 times
using the mLOO, allowing a statistical characterization of the fol-
lowing three performance indices:

1. accuracy, defined as the probability of correctly classifying an
instance, and computed as the percentage of correctly classified
instances (out of the 32 available ones);
Fig. 1. Pseudo-code description of the modified leave-one-out (mLOO) procedure
used for cross-validation of each of the six classifiers.
2. sensitivity, defined as the probability of the test to correctly
identify the target class and computed as the ratio of the num-
ber of correctly classified targets to the total number of target
instances (n = 16);

3. specificity, defined as the probability of the test to correctly
identify the non-target class and computed as the ratio of the
number of correctly classified non-targets to the total number
of non-target instances (the remaining 16 instances).

The following statistical analyses were conducted on the perfor-
mance results:

1. a one-way ANOVA to determine whether the differences in clas-
sification performances of different classifiers are statistically
significant, where the classifier type was used as a factor with
six levels;

2. a one-way ANOVA to determine whether the differences in clas-
sification performances obtained with different feature sets are
statistically significant, where feature sets are used as a factor
with three levels;

3. a one-way ANOVA to determine whether different classes of
classifiers, such as ‘‘parametric linear” (FLD, MD, EC), ‘‘paramet-
ric non-linear” (Q) or ‘‘non-parametric” (MLP, SVM), have clas-
sification performances that are significantly different than
those of others;

4. a two-way ANOVA to determine the interaction between the
choice of the feature set and the linearity of the classifiers.

In all cases, if a significant difference was found at a = 0.05 level,
individual factors were compared against each other for pair-wise
statistical significance using the multiple comparison (Tukey–Kra-
mer post-hoc) test with a 95% level of significance.
3. Results

3.1. Behavioral results

The average stimulus–response accuracy achieved by the study
participants was 90.6% (standard deviation: 0.07%). A paired t-test
(t(15) = �7.84, p < 0.001) revealed that response times differed for
non-target (272 ± 39 ms) versus target (407 ± 57ms). This finding
is a reasonable consequence of the ratio of target to non-target
responses.

3.2. Feature extraction

We first computed the grand averages of the ERPs obtained
from the Cz and Pz electrodes in response to the two different
stimuli (targets and non-targets). These grand averages are shown
in Fig. 2 for channels Cz (Fig. 2A) and Pz (Fig. 2B), where the thick
solid line is the average response to the target stimuli and the thin
dashed line is the average response to the non-target stimuli.

As described above, N200 and P300 amplitudes, as well as
amplitude differences between N200 and P300, were extracted
from the individual average target and non-target ERPs to be used
as features. Table 1 reports the amplitudes of the N200 and P300
peaks and their differences for Cz and Pz channels, respectively,
obtained as grand averages over all subjects. From these six fea-
tures, we derived the previously described three feature sets on
which classification was performed.

3.3. Results for Feature Set 1

Feature Set 1 consisted of the average amplitude of the P300
peak as recorded at Pz. Fig. 3A shows the distribution of this fea-



Fig. 2. Grand averages of ERPs recorded at Cz (A) and at Pz (B). Thick lines represent
average ERPs elicited by infrequent targets; average ERPs elicited by frequent non-
targets are represented by the thin dashed line. At both channels, the amplitudes of
N200 and P300 are visibly larger for target stimuli.
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ture for the two classes, indicating a substantial overlap (of P300
amplitudes plotted on the horizontal axis) between the two classes
of target and non-target stimuli.

Two of the six classifiers evaluated in this study, the MLP and
SVM, have free parameters that need to be selected: the number
of hidden layer nodes for MLP, and the kernel and margin-error
tradeoff parameters for SVM. The number of hidden layer nodes
for the MLP was optimized based on accuracy, sensitivity and spec-
ificity; these performance indexes were calculated using a k-fold
cross-validation approach. Based on this preliminary information,
the number of hidden layer nodes was set to 2: a higher number
of nodes in fact would not improve the overall performance of
the MLP, but would increase its complexity (see Fig. 4A). Similar
Table 1
Mean and standard deviation of the six features extracted from ERPs obtained at Cz
and Pz.

Channel Physiological measure Target (lV) Non-target (lV)

Cz N200 amplitude �8.15 ± 5.77 �1.56 ± 2.97
P300 amplitude 17.02 ± 8.94 3.62 ± 3.03
DAmplitude 25.17 ± 10.25 5.17 ± 3.44

Pz N200 amplitude �6.85 ± 5.09 �0.76 ± 2.39
P300 amplitude 14.62 ± 7.28 4.24 ± 2.84
DAmplitude 21.47 ± 7.03 5.00 ± 3.36
cross-validation based optimization for SVM revealed the Gaussian
kernel width r equal to 3 and the margin-error tradeoff parameter
C equal to 1 as the optimal values.

For Feature Set 1, the mean accuracy, sensitivity and specificity
were 83.65%, 77.29% and 90.0%, respectively, averaged among all
classifiers (Fig. 5A). Significant differences in performance were
determined across classifiers in terms of accuracy (F(5,54) = 2.89,
p = 0.022), sensitivity (F(5,54) = 35.19, p < 0.001) and specificity
(F(5,54) = 44.63, p < 0.001): the MD and MLP classifiers offered
Fig. 3. Features used for classification in the three feature sets; empty circles are for
non-target samples and filled triangles are for target samples. In Feature Set 1 (A),
only the P300 peak amplitude recorded at Pz is used; the two classes have different
means (represented by dashed lines) but the distributions of the samples partially
overlap. In Feature Set 2 (B), classification is based on the P300 peak amplitude
recorded at both Pz and Cz; the regression line obtained using the amplitude at Pz
as predictor has been drawn in order to highlight the strong correlation between
the two variables. In Feature Set 3 (C), the variables that significantly differed
between targets and non-targets were transformed into principal components; only
the first three were retained, since they sufficed to explain more than 98% of the
data variability. In the 3D scatter plot obtained mapping the data onto the space
defined by the three retained principal components the two classes still present a
certain degree of overlap.



Fig. 4. Performance indexes of the MLP as a function of the number of hidden nodes
for the three different feature sets. The standard deviation of the accuracy index is
represented by the whiskers. In the first two feature sets, 2 hidden nodes have been
chosen as the optimal number; in Feature Set 3 the selected number of hidden
nodes was 5.
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higher sensitivities but lower specificities, whereas the ED and
SVM provided lower sensitivities but higher specificities.

3.4. Results for Feature Set 2

Feature Set 2 consisted of average amplitudes of the P300 peak
as recorded at both Pz and Cz locations. The scatter plot of these
two features in Fig. 3B indicates that there is overlap between
the feature spaces of these two features. Linear regression analysis
was performed, with the P300 amplitude recorded at Pz serving as
the independent variable. The estimated slope was 1.17, with a 95%
confidence interval of 1.01–1.33. The Pearson correlation coeffi-
cient between the P300 amplitude recorded at Pz and Cz locations
was 0.93, with an R2 statistic of 0.88, indicating that the variation
in the amplitude at Pz can explain 88% of the variation in the
amplitude recorded at Cz. Again, based on the model selection re-
sults, the number of hidden layer nodes for the MLP was set to 2, as
in Feature Set 1 (see Fig. 4B). The optimal values for the SVM
parameters were found as r = 1 and C = 0.01.

Similar to Feature Set 1, the performance differed significantly
across classifiers (accuracy: F(5,54) = 20.36, p < 0.001; sensitivity:
F(5,54) = 46.71, p < 0.001; specificity: F(5,54) = 23.39, p < 0.001):
the QC and SVM performed significantly better than the other clas-
sifiers. Similar to Feature Set 1, MD classifier significantly outper-
formed the other classifiers in terms of sensitivity; the EC, QC
and SVM offered instead a significant improvement in terms of
specificity (Fig. 5B).

3.5. Results for Feature Set 3

In the third feature set, the classification was performed on the
principal components that explained 98% of the variability in the
six considered features. The principal components analysis re-
vealed that the first component alone explained 72.1% of the data
variance in the data, whereas the first two components together
explained 96.2% of the data variance. We retained the first 3 prin-
cipal components (associated with the highest eigenvalues), which
cumulatively explained 98.7% of the data variance. We should note
that it is not three features that are chosen, but rather three spe-
cific linear combinations of all six features. That is, all six features
contributed – to various degrees – to the principal components.
Fig. 6 depicts the weights (as a percentage) of the different features
in forming the first three principal components. We observe that
the first component, accounting for the 72.1% of the global vari-
ance, is composed of approximately equal amounts of all six fea-
tures that carry information about the P300 and N200 peaks; in
the second component the contribution of the two features related
to the difference in amplitude between N200 and P300 partially
decreases. The third component is largely comprised of features re-
lated to the N200 amplitude, and the contribution of the P300-re-
lated features is marginal. The features mapped in the scaled
principal component space revealed partial overlap between the
target and non-target instances, as shown in Fig. 3C. Based on
the k-fold validation results (Fig. 4C), the number of hidden layer
nodes for the MLP was set to 5, whereas the SVM parameters, r
and C, were, respectively, set to 3 and 1.

Statistically significant differences in performance across classi-
fiers were found (accuracy: F(5,54) = 46.23, p < 0.001; sensitivity:
F(5,54) = 17.63, p < 0.001; specificity: F(5,54) = 21.23, p < 0.001);
in particular, the FLD offered an overall performance significantly
lower than that of the other classifiers (Fig. 5C).

3.6. Comparison between feature sets and type of classifiers

Classification performances were evaluated by directly compar-
ing the overall accuracy, sensitivity and specificity obtained using
the three different feature sets, independently of the chosen classi-
fier. A one-way ANOVA with feature set as a factor was performed:
the analysis revealed significant differences between the feature
sets in terms of accuracy and sensitivity (accuracy: F(2,177) =
5.46, p = 0.0049; sensitivity: F(2,177) = 12.99, p < 0.001). A Tukey–
Kramer test with a 95% level of significance showed that Feature



Fig. 5. Classifiers performances evaluated in terms of accuracy (percentage of correct classifications), sensitivity (percentage of correctly classified targets) and specificity
(percentage of correctly classified non-targets). The bar height represents the mean and whiskers represent the 95% confidence intervals for the mean. On the right-hand side,
tables with the mean and standard error of the performance indeces are reported for each feature set. Feature Set 2 (B) and Feature Set 3 (C) produced similar results in terms
of accuracy and both performed generally better than Feature Set 1 (A). Solid stars and empty triangles offer a graphical representation of the statistical differences between
classifiers. These differences were determined using a one-way ANOVA (followed by a Tukey–Kramer post-hoc test) separately conducted on each performance index for each
feature set. The solid stars indicate a performance that is significantly higher than that of the other groups considered in the analysis, whereas the empty triangles indicate a
performance that is significantly lower.
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Sets 2 and 3 achieved higher accuracy and sensitivity, while the
lowest values were obtained from Feature Set 1.

Furthermore, Fig. 7 reports the differences in performance con-
nected only with the linearity degree of the classifiers, indepen-
dently of the chosen feature set. The effect of the classifiers’
linearity was tested with a one-way ANOVA, showing statistically
significant differences (accuracy: F(2,177) = 20.76, p < 0.001; sensi-
tivity: F(2,177) = 4.34, p = 0.0145; and specificity: F(2,177) = 10.72,



Fig. 6. Percentages of the six different features in forming the first three principal components (PCs).

A.C. Merzagora et al. / Clinical Neurophysiology 120 (2009) 264–274 271
p < 0.001). In the case of accuracy and specificity, the ‘‘non-para-
metric” (SVM and MLP) and ‘‘parametric non-linear” (QC) groups
performed better than the ‘‘parametric linear” group (EC, MC,
and FLD); in the case of sensitivity, only the ‘‘non-parametric”
group outperformed the ‘‘parametric linear” group.

Finally, the interaction between the feature sets and the degree
of linearity of the classifiers was evaluated using a two-way ANO-
VA (Fig. 7). The effect of the interaction between the feature set and
the degree of linearity was found to be significant only for accuracy
(accuracy: F(4,171) = 4.35, p = 0.0022; sensitivity: F(4,171) = 1.61,
p = 0.173; specificity: F(4,171) = 1.60, p = 0.177). The classification
performed by the ‘‘parametric non-linear” and ‘‘non-parametric”
groups on Feature Sets 2 and 3 yielded statistically higher
accuracy.

4. Discussion

In this study, we investigated whether automated classifiers can
be used to correctly identify target categorization responses from
average event-related potentials (ERPs). To do so, we compared
the performances of six classifiers on three different sets of ERP
features with regard to their ability to accurately characterize
and discriminate such ERP responses as target and non-target
stimuli.

In general, the results obtained in this study support the use of
the parametric non-linear (QC) and non-parametric classifiers
(MLP, SVM) instead of linear classifiers (EC, MD, FLP). Furthermore,
the additional use of features describing the N200 peak for the
classification did not increase the performance obtained from the
use of only features describing the P300 peak; this result suggests
that, for this application, the N200 did not explain variance beyond
that of P300 recorded at multiple sites. Overall, the best classifica-
tion performance was provided by the parametric non-linear clas-
sifiers (accuracy: 92%; sensitivity: 83%; specificity: 99%) and by the
non-parametric classifiers (accuracy: 91%; sensitivity: 86%; speci-
ficity: 95%) on feature vectors extracted from P300 recorded at
multiple sites, specifically the Pz and Cz locations.

More in detail, the six features that were evaluated included the
peak amplitudes of the N200 and P300 at Pz and Cz, as well as the
difference in amplitude between N200 and P300 at Pz and Cz. All
features were found to differentiate between responses to target
and non-target stimuli. This result confirms our expectations be-
cause N200 and P300 are known to be prominent in the responses
to the target stimuli in target categorization tasks (Botvinick et al.,
2004; Polich and Kok, 1995). In particular, the visual discrimina-
tion task used in this study to elicit the ERPs required the partici-
pants to respond to both target and non-target stimuli. This
specific design presumably enhanced the inhibition that partici-
pants were required to exert during target trials in order to over-
rule the habituated response to the non-target stimuli. Therefore,
since the N200 component is linked to the monitoring of conflicts,
it is reasonable to expect a prominent N200 component in the re-
sponses to target stimuli.

Six different classifiers were considered (QC, FLD, MD, EC, MLP,
SVM) and their performances were evaluated on three different
sets of features: P300 amplitude recorded at Pz (Feature Set 1);
P300 amplitude recorded at Pz and Cz (Feature Set 2); and the first
three principal components of the six features (Feature Set 3). In
Feature Set 3, the original six variables (P300 and N200 amplitudes
and the difference between these two, calculated at Cz and Pz)
were reduced to three principal components, used then as classifi-
cation features. The contribution of the original 6 variables to each
of these final 3 principal components revealed that these original
variables were not independent of each other (Fig. 6). PCA was
therefore chosen as a suitable tool for the analysis and manipula-
tion of such inter-dependent data, given its extensive applications
to EEG in the literature (Brown et al., 1979; Casarotto et al., 2004;
Lange and Inbar, 1996; Liberati et al., 1992). Moreover, given the
small number of available samples, data reduction was a necessary
step, since the number of samples needed for proper training and
discrimination increases exponentially with the number of consid-
ered features, a problem known as the ‘‘curse of dimensionality”
(Friedman, 1997; Jain et al., 2000).

Several trends were observed across the first two feature sets:
the EC showed high specificity but low sensitivity, the MD and
SVM classifiers achieved high sensitivity but suffered from rela-
tively low specificity. These observations indicate that some classi-
fiers were biased towards one of the two classes: they tended to
classify either targets better than non-targets (sensitivity > speci-
ficity) or non-targets better than targets (specificity > sensitivity).
On the other hand, the MLP showed a balance between sensitivity
and specificity (i.e., a balance in its ability to recognize the two
classes). This observation is in line with the behavior of the net-
work for the chosen number of hidden nodes (Figs. 4 and 5).

Feature Set 1 offered an overall performance that, though
acceptable, was lower than that obtained using the other two fea-
ture sets. This result illustrates why it is standard practice in brain–
computer interface (BCI) applications to perform classification
using a variety of features collected at multiple recording sites
(Babiloni et al., 2001; Krusienski et al., 2008; Serby et al., 2005),
rather than a single site.

No significant differences were observed between the perfor-
mances of Feature Sets 2 and 3, though Feature Set 2 had higher
specificity and Feature Set 3 had higher sensitivity. In addition to
the information about the amplitude of the P300 component, Fea-
ture Set 3 also included knowledge about the N200 component.
The overall equivalence, in terms of classification ability, between
Feature Sets 2 and 3 suggests that the additional information does
not contribute substantially to the discrimination between re-
sponses to the two classes of stimuli. Furthermore, many oddball



Fig. 7. Comparison of performances divided by feature sets and by linearity degree of the classifiers. The bar height represents the mean and whiskers represent the 95%
confidence intervals for the mean. On the right-hand side, tables with the mean and standard error of the performance indeces are provided for each group of classifiers. Solid
stars and empty triangles offer a graphical representation of statistical differences. The solid stars indicate a performance that is significantly higher than that of the other
groups considered in the analysis, whereas the empty triangles indicate a performance that is significantly lower. The three feature sets were statistically compared within
each performance index and the existing significant differences are graphically presented at the bottom of each graph. Similarly, the three groups of classifiers were
statistically compared within each performance index and the existing significant differences are graphically presented at right of the data tables. Lastly, the interaction
between the feature set and the linearity degree of the classifiers was investigated within each performance index and the existing significant differences are graphically
presented on top of the bar graphs. Overall, the classifiers in the ‘‘parametric non-linear” and ‘‘non-parametric” groups performed generally better than the ‘‘parametric
linear” group. Feature Set 1 was not able to achieve accuracy and sensitivity comparable to those of Feature Sets 2 and 3.
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paradigms require the participants to respond only to target stim-
uli: the N200 component in the ERPs is thus minimized. Therefore,
the equivalence between Feature Sets 2 and 3 seems to indicate
that the conflict resolution processes raised by the specific task de-
sign and reflected in the N200 component did not affect the dis-
criminability of the ERPs.

Furthermore, different classification algorithms providing dif-
ferent performance characteristics on different feature sets confirm
the notion of the no-free-lunch theory (Wolpert and Macready,
1997) and justify the need to evaluate a series of classification
algorithms with a broad spectrum of learning characteristics. Sta-
tistical analyses also revealed significant differences in perfor-
mance with respect to the degree of linearity of the classifiers.
The ‘‘parametric non-linear” and ‘‘non-parametric” groups outper-
formed the ‘‘parametric linear” group, regardless of the chosen fea-
ture set. This result is in line with the observation that the two
classes partially overlap in the feature spaces (Fig. 3), thus it is a
case of linearly non-separable classes. Krusienski and colleagues
(Krusienski et al., 2006), however, obtained different results when
comparing classifiers for their ability to detect responses to target
stimuli in a BCI application. Based on their experiments, they sug-
gested that no advantage was gained from the use of non-linear
classifiers. The discrepancy between their results and the results
reported here may be due to differences in the experiment design:
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the participants in their study were given online feedback and
were tested in multiple sessions. On the contrary, our results are
based on responses collected from a population of naïve subjects
who were not provided any feedback or training, which represent
instead a key component in most BCI setups (Elbert et al., 1980;
Guger et al., 2003).

In conclusion, this study suggests that automated characteriza-
tion and classification of average ERP responses to infrequent tar-
gets is feasible with good accuracy. In particular, the use of
features characterizing the P300 amplitude at multiple recording
sites is recommended. Furthermore, the performed analyses seem
to discourage the use of parametric linear classifiers for the specific
application.

One aspect worth consideration is that the conclusions drawn
from this work are based on the analysis of average ERPs. Specifi-
cally, the averaging approach is common practice in ERP research
because it ensures some improvement in the signal to noise ratio
(SNR). In the case of lower SNR conditions, i.e., single-trial record-
ings that are susceptible to the influence of background EEG, the
features extracted from the ERPs and used for classification will
show a higher variability. This increased dispersion of the two clas-
ses in the feature space is likely to degrade the performance of the
classification algorithms overall. Parametric linear classifiers
would likely show a larger decrease in performance, given the
higher degree of overlap between the two classes. Classification
algorithms with decision boundaries other than hyperplanes, and
hence more flexible, would probably be less affected and show bet-
ter generalization of the results. Furthermore, classification based
on features from multiple recording sites would probably still be
recommended. It is reasonable to assume that the relative informa-
tion provided by multiple recording sites would provide some level
of redundancy that would prove useful in classification.
5. Future work

A direct extension of the study presented in this paper will
examine how these findings extend to a variety of clinical popula-
tions that have attentional impairments. The aim would be to cre-
ate a tool for the assessment of such impairments and the
evaluation of possible treatments.

Future work will also include the investigation of automatic
recognition of single-trial target ERPs. Such a study could pave
the way for real-time monitoring of the attentional level and its
fluctuations under different conditions. These variations in atten-
tion may be due to everyday factors such as fatigue (Boonstra
et al., 2007; Davidson et al., 2007; Pilcher et al., 2007), or they
may result from more insidious processes such as mental or neuro-
logical disorder (Castellanos et al., 2005; Liu et al., 2002; Swaab-
Barneveld et al., 2000). The vast majority of P300-based investiga-
tions of attention and the effects of time-on-task have employed
the typical ERP methodology of averaging over multiple trials to in-
crease the signal to noise ratio (Maatta et al., 2005; Slater et al.,
1994). However, recent research has suggested that monitoring
the level of attention and its fluctuations throughout a task may
provide additional insight to disease processes (Holm et al.,
2006; Roschke et al., 1996; Tomberg and Desmedt, 1999). Several
algorithms for the single-trial classification of oddball responses
have been developed in the BCI literature (Birbaumer, 2006; Don-
chin et al., 2000; Farwell and Donchin, 1988; Krusienski et al.,
2006; Piccione et al., 2006; Sellers and Donchin, 2006; Sellers
et al., 2006; Serby et al., 2005; Thulasidas et al., 2006; Wang
et al., 2005; Wolpaw et al., 2002). Most of the methods used in
BCIs, however, require several trials before their parameters can
be optimally adjusted to a given individual. In addition, subjects
usually undertake training sessions in order to maximize their effi-
ciency in communicating using a specific BCI setup. These require-
ments are therefore suboptimal if the goal is to examine the
modulation of the oddball effect as a consequence of neurological
disorders or when training and feedback would interfere with
the analysis of interest. Therefore, given the growing literature
suggesting that real-time measures of the neural correlates of
attention yield important information not found in averaged data,
improved methods with which to assess single-trial responses are
worth further investigation and this study can be considered a first
step in this direction.
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