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Abstract– Alarmingly increasing prevalence of Alzheimer’s 
disease (AD) due to the aging population in developing coun-
tries, combined with lack of standardized and conclusive diag-
nostic procedures, make early diagnosis of Alzheimer’s disease 
a major public health concern. While no current medical 
treatment exists to stop or reverse this disease, recent dementia 
specific pharmacological advances can slow its progression, 
making early diagnosis all the more important. Several nonin-
vasive biomarkers have been proposed, including P300 based 
EEG analysis, MRI volumetric analysis, PET based metabolic 
activity analysis, as alternatives to neuropsychological evalua-
tion, the current gold standard of diagnosis. Each of these ap-
proaches, have shown some promising outcomes, however, a 
comprehensive data fusion analysis has not yet been conducted 
to investigate whether these different modalities carry comple-
mentary information, and if so, whether they can be combined 
to provide a more accurate analysis. In this effort, we provide a 
first look at such an analysis in combining EEG, MRI and PET 
data using an ensemble of classifiers based decision fusion ap-
proach, to determine whether a strategic combination of these 
different modalities can improve the diagnostic accuracy over 
any of the individual data sources when used with an auto-
mated classifier. Results show an improvement of up to 10%-
20% using this approach compared to the classification per-
formance obtained when using each individual data source. 

I. INTRODUCTION 
lhzeimer’s disease is a neurodegenerative disorder, 
causing neuronal death that leads to cognitive function 

decline. Two misfolded proteins, β-amyloid that causes pla-
gues and hyperphosphorylated–τ that causes neurofibrillary 
tangles are often blamed, yet, the genesis of these proteins, 
and in fact the true cause of the disease, are still unknown.  

Perhaps due to overall life expectancy increase, the num-
ber of AD cases has been growing over the last decades. Vast 
majority of AD patients are over the age of 65, with 19% 
between 75 and 84, and 42% ~50% above the age of 85 [1]. 
With over 5.2 million people suffering from AD in the U.S. 
alone, along with its enormous financial (over $140 billion / 
year) and emotional cost of the disease on the patient, fami-
ly, and society, Alzheimer’s disease is now justly considered 
a major health concern. Yet, there is still no procedure for 
conclusively and definitively diagnosing AD, and misdiag-
nosis is quite common. The only definitive diagnosis re-
mains the post-mortem analysis of the brain tissue under the 
microscope for the presence of plagues and tangles.  
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The most common method of pre-mortem diagnosis, then, 
is neuropsychological clinical evaluation, performed over 
the course of a year or longer, which includes behavioral 
tests (such as memory tests) as well as interviews of the pa-
tient and their caretakers. The goal of such an evaluation is 
to monitor the cognitive decline over time and eliminate 
other possible disorders. Therefore, clinical evaluations re-
quire the expertise of a qualified neuropsychologist, can be 
quite subjective (some hospitals use a committee of neurolo-
gists to reduce the subjectivity), and due to longitudinal na-
ture of the process, can be quite expensive. However, such 
an evaluation can achieve over 90% accuracy, when con-
ducted by expert neurologists at large hospitals or dementia 
clinics, however, geographical and financial restrictions gen-
erally limit most patients to smaller hospitals and clinics, 
where the diagnostic accuracies are estimated to be around 
75%, even with the benefit of longitudinal evaluations [2]. 

Because of the cost, subjectivity, and the general difficulty 
of clinical evaluations, several biomarkers have been re-
searched and proposed over the years for detecting AD, with 
cerebrospinal fluid (CSF) concentrations of tau and β-
amyloid proteins being the most promising. However, mea-
suring these concentrations requires highly invasive, expen-
sive, potentially painful lumber puncture (spinal tap), which 
also requires specialty clinics, research or university hospit-
als – severely restricting the utility of these biomarkers. In 
an attempt to find non-invasive biomarkers, researchers have 
investigated the feasibility of standard neuroimaging tools, 
such as the MRI and PET imaging [3], as well as neurophy-
siological measurements using EEG.  

The MRI primarily provides a volumetric measurement, 
where the loss of brain tissue in predefined regions is meas-
ured over a longitudinal time frame. Since AD causes neu-
ronal death, which in return causes loss of brain volume, 
MRI can easily identify such a change. PET imaging follows 
a different, but equally effective approach, by measuring the 
glucose metabolism of the brain. Hypometabolism, a drop in 
metabolic activity in the brain possibly can be easily meas-
ured by the PET scan. Finally, the event related potentials 
(ERPs) obtained from the electroencephalogram (EEG) pro-
vides another potential biomarker. Several studies using the 
well-known oddball paradigm have demonstrated that the 
decreased amplitudes and increased latencies of the so-called 
P300 component of ERPs – a positive peak that occurs around 
300 ms after a stimulus is observed by the subject – is linked 
to the cognitive decline [4-6]. Various signal processing ap-
proaches on the raw EEG or the P300 has been conducted, 
verifying the presence of a statistical  correlation, with li-
mited success in patient specific diagnosis [7-9]. In fact, in 
our previous work, we have also shown that discrete wavelet 
coefficients of the ERPs, can be used as biomarkers in pa-
tient specific AD diagnosis, particularly when the ERPs in 
response to different types of stimuli are combined [10;11]. 
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Previously, we have shown that an ensemble of classifiers 
based decision fusion approach, combining ERP data ac-
quired from different electrodes is a feasible approach for 
automated early diagnosis. In this contribution, we investi-
gate the obvious question of whether these three different 
modalities, MRI, PET and EEG, carry complementary in-
formation, and whether a strategic combination of these 
modalities can improve the diagnostic accuracy over any of 
the individual data sources when used with an automated 
classifier. While MRI, PET and CSF combination has been 
very recently explored [12], to the best of our knowledge, 
this is the first effort of its kind in investigating an MRI, PET 
and EEG data fusion for early diagnosis of AD. Initial re-
sults, reported in this paper, appear to be quite promising. 

II. EXPERIMENTAL SETUP 
A. Patient Cohort 
The study cohort used in this analysis was chosen from a 

larger cohort of over 300 subjects who had undergone differ-
ent biomarker tests. Not all subjects had all imaging tests 
done, hence a subset of 73 subjects, 37 with AD (15 male, 22 
female, with mean age μAGE(AD)=74.5) and 36 cognitively 
control (10 male and 26 female, μAGE(CN)=71.2) were chosen 
based on the constrain that all selected subjects had at least 
one MRI scan, one PET scan and one EEG recording within 
relatively close period of each other.  

The inclusion criteria for AD group was satisfying the 
NINCDS-ADRDA criteria [13] for probable AD, which in-
cludes a battery of memory tests, interviews with the subject 
and their caregivers, clinical dementia rating (CDR) score of 
0.5 or higher for AD cohort (μCDR(AD)=1.12) and 0 for the 
normal cohort. All subjects were over 60 years old. Exclu-
sion criteria for both groups were evidence of any other cen-
tral nervous system damage or use of sedatives, anxiolytic or 
antidepressants within 48 hours of ERP acquisition. 

B. The Oddball Paradigm and ERP Acquisition 
The ERPs were collected using an auditory oddball para-

digm protocol. Electrodes were placed according to 10-20 
standard (Fig 1), whose impedances were kept below 20Ω. 
Each subject was tested for 30 minutes with approximately 
three minutes of rest for every five minutes of testing.  
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    Fig.1. Electrode placement 

1,000 random stimuli were presented, 65% consisting of 
standard tones of 1 kHz, 20% as target tones of 2 kHz, and 
15% as novel sounds. A random inter-stimulus interval of 1.0 
to 1.3 seconds was inserted. Standard and target stimuli were 
presented in 100ms busts with a 5ms on/offset envelope. The 
novel stimuli were environmental sounds about 200ms long, 
each unique and never repeated. The subjects were instructed 

to press a button each time they heard the target tone only. 
The data was sampled at 256 samples /second.  

The preprocessing of the EEG signals included notch fil-
tering at 59-61 Hz, followed by removal of major artifacts 
using a 20th order derivative based thresholding. EEG re-
cordings were epoched with respect stimulus type, averaged 
and time-locked with 200ms pre-stimulus and 800ms post-
stimulus intervals. The pre-stimulus baseline was removed 
from the entire ERP, resulting in one second length of 256 
samples per stimulus type, per electrode channel, per patient.  

We have previously reported that discrete wavelet trans-
form (DWT) coefficients corresponding to certain frequency 
bands are particularly informative [10;11;14]. Using the 
DWT with Daubechies 4 wavelet, signals were broken down 
into the following frequency bands for analysis:  

d1:64~128 Hz (N=132) 
d2: 32 ~ 64 Hz (N=69) 
d3: 16 ~ 32 Hz (N=38) 
d4: 8 ~ 16 Hz (N=22) 

d5: 4 ~ 8 Hz (N=14) 
d6: 2 ~ 4 Hz (N=10) 
d7: 1 ~ 2 Hz (N=8) 
a7: 0 ~ 1 Hz (N=8). 

In this study, the decomposition levels 6,7 and the approx-
imation level 7 were of primary focus. These bands were 
chosen as ERP signals generally reside within 0 – 4 Hz. 30 
feature sets were generated, 15 from responses to novel 
tones and 15 from responses to target tones using 5 different 
electrode locations in the parietal region: P3, P4, P7, P8, and 
PZ, with three frequency bands each. These locations were 
chosen due parietal region being the first affected region in 
AD, an outcome that was also verified in previous analyses.  

C. MRI Acquisition & Processing 
Different stages of AD can be characterized by the amount 

of atrophy in the brain. The change of volume in particular 
regions of the brain, as well as the overall brain volume, can 
be detected by volumetric MRI imaging techniques. MRI 
enhances the differences in tissue matter based on the ratio 
of bound to unbound water molecules. Since different types 
of brain tissue have different such ratios, a quantification of 
regional volumes can be obtained. In this effort, the so-called 
T1 weighted MRI was used, which refers to the duration of 
the net magnetization vector to return to its initial state after 
being rotated by an RF pulse. Tissues that have a large ratio 
of bound to unbound water have short T1 durations. Brain 
tissue has a high amount of bound water compared to the 
surrounding CSF and therefore appears accentuated in a T1 
image. Original raw MRI data consists of images of the 
brain taken in consecutive slices perpendicular to the coronal 
and parallel to the transverse planes. An elastic warping al-
gorithm was used that standardizes images to a reference 
topology, while preserving the morphological characteristics 
of the individual brain [15]. The raw image is segmented 
into white and gray matter, cerebrospinal fluid, and ven-
tricles. Automated region of interest (ROI) analysis then 
determines the brain regions visible in the image, allowing 
the areas corresponding to the skull to be removed and the 
volumes of specific areas to be computed. Fourteen such 
areas were identified on each side of the brain, giving 28 
features extracted per image. The volumes corresponding to 
these 28 areas were normalized with respect to total intra-
cranial volume before being used to train a classifier. 
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D. PET Acquisition & Processing 
Unlike MRI, Positron Emission Tomography (PET) is a 

nuclear imaging technique, based on the detection of gamma 
rays emitted by a radioactive tracer introduced into the body 
using a biologically active molecule. The most common mo-
lecule used for this purpose is fluorodeoxyglucose (FDG), 
and hence this imaging technique is also called FDG-PET. 
The images used in this study were FDG-PET images, where 
scanning began 30 minutes after the FDG injection and 
lasted also about 30 minutes. The imaging used the ADNI 
(Alzheimer's Disease Neuroimaging Initiative) protocol [16]. 
Stereotactic surface projection analysis was applied to these 
images, an approach that was shown to be very useful for 
AD diagnosis [17;18]. This analysis, made by an automated 
software library called Neurostat SSP (freely available for 
download at [19])  provide relative glucose metabolic rates 
in 43 predetermined regions of interest, which were used as 
the features to train the classifiers. 

III. DATA ANALYSIS 
A.  Ensemble Based Classification Systems 

An ensemble of classifiers based decision fusion approach 
was implemented for automated classification.  An ensem-
ble-based system is obtained by combining a set of diverse 
classifiers, where diversity is typically achieved by using 
different training parameters for each classifier. If proper 
diversity is achieved, different errors are made by the indi-
vidual classifiers, strategic combination of which can reduce 
the total error. The diversity can be obtained in several ways, 
including using different subsets of the training data ob-
tained by resampling, different parameters of a classifier 
model, different classifiers all together, or different subsets 
of the features of the given dataset. The latter one is com-
monly referred to as random subspace analysis.  

In a sense, an ensemble based system implements a deci-
sion – fusion approach, where the decisions made by com-
ponent classifiers are combined to arrive at a final decision. 
The goal is to improve the generalization performance over a 
single classifier based system. However, the structure of this 
approach also lends itself naturally to data fusion applica-
tions, where information from different sources can be com-
bined. The goal in data fusion applications is to improve the 
accuracy of the final decision compared to a decision made 
based on a single source of data. Using the ensemble ap-
proach for a data fusion application is quite straightforward: 
a separate classifier can be trained on each dataset that come 
from a separate source, and the classifiers can then be com-
bined using an appropriate combination rule [20]. 

In this analysis we combine the two uses of the ensemble 
systems, that is, we use an ensemble of classifiers both for 
improving the accuracy over a single classifier, as well as for 
achieving data fusion. In essence, we first train an ensemble 
of classifiers for each of the EEG, MRI and PET based data 
to obtain three “experts.” We then combine these ensembles 
of classifiers to achieve decision fusion based data fusion of 
EEG, MRI and PET data. Our goal is to investigate whether 
these different modalities provide complementary informa-
tion for the diagnosis of Alzheimer’s disease. Figure 2 illu-
strates this general approach. 

Once the individual classifiers are generated, they can be 
combined by any one of several combination rules. Among 
these, perhaps the most commonly used ones are the sum 
rule and the majority voting rule.  Let us define the decision 
of the ith classifier as ݀, א  ሼ0,1ሽ i=1,…,L and j=1,…,c, 
where L is the number of classifiers and c  is the number of 
classes. If ith classifier chooses class j, then di,j = 1, and zero, 
otherwise. In majority voting, the ensemble decision is cho-
sen as the class that receives the highest number of votes, 
that is, we first compute the total support SJ for class J  as 

( ) ( ) ( ) { }, ,1
, 0,1L

J i J i ji
S d d

=
= ∈∑x x x   (1) 

and choose the class with this highest support as the winning 
class. Alternatively, if classifiers can provide continuous 
outputs for each class, representing the support provided for 
that class, then the sum rule can also be used to combine the 
classifiers, where the total support for class J is obtained as 
the sum of all classifiers’ class J outputs. The final decision 
is then the class that receives highest sum support 

( ) ( ) ( ) [ ], ,1
, 0,1L

J i J i Ji
S d d

=
 = ∈∑x x x   (2) 
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Fig. 2. Ensemble based decision fusion (In this application, L=3).  

B. Classification Protocols 
We used multilayer perceptron (MLP) as the component 

classifier, although any supervised learning algorithm can be 
used. All MLPs were trained with gradient descend based 
backpropagation with an error goal of 0.01 and a momentum 
term of 0.95. As mentioned above, the individual features 
were i) the (8~10) DWT coefficients of the ERPs for specific 
0-1, 1-2 and 2-4 Hz frequency bands for five parietal elec-
trode locations; ii) the volumetric readings of 28 regions of 
interest for MRI; and iii) glucose metabolisms from 43 re-
gions of interest for the PET. A total of 30 feature sets gener-
ated for the EEG data allowed us to interpret each feature set 
as a different source of data and use an internal EEG specific 
data fusion to determine whether there is complementary 
information among the EEG channels. Each MLP for the 
EEG data had 10 hidden layer nodes, and 30 such MLPs 
were generated, one for each feature set. Using different 
feature sets provided a natural diversity for the EEG based 
classifiers. The MRI and PET data did not have individually 
separate datasets. However, in order to give equal total vot-
ing weight to EEG, MRI and PET classifiers, we decided to 
train 30 MRI classifiers and 30 PET classifiers. In order to 
achieve the diversity for MRI and PET classifiers, we used 
the random subspace method, training each MRI and PET 
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classifier with 2/3 of the total available features (18 of 28 for 
MRI, and 28 of 43 for PET). Sum and simple majority vot-
ing were used as combination rules. All experiments were 
repeated using a five-fold cross validation, whose results are 
provided below. 

We should mention that in this preliminary study for com-
bining EEG, MRI and PET data, our goal was not so much 
to obtain the best classification performance, but rather to 
determine whether these modalities provide complementary 
information, and whether the ensemble based approach can 
extract such information. Therefore, individual classifiers’ 
free parameters (e.g. number of hidden layer nodes) were not 
optimized, but used with common sense default values. 
 

IV. RESULTS 
The average diagnostic performances of the EEG, MRI 

and PET classifiers were 56.7%, 67.22% and 70.3%, respec-
tively, in identifying the test dataset subjects as AD vs. con-
trol. We have then used the sum and simple majority voting 
(SMV) rules to obtain EEG+MRI, EEG+PET, MRI+PET 
and EEG+MRI+PET data fusion diagnostic accuracies. Two 
sets of each experiment were done, once using all 30 clas-
sifiers for each data source, and once using the top 15 clas-
sifiers for each data source.  The top 15 EEG classifiers 
would then correspond to those channel and frequency bands 
that performed better than the others, and the MRI and PET 
classifiers would represent those feature subsets whose com-
bination provided better performance. The results are tabu-
lated in Table 1. 

TABLE 1. DATA FUSION PERFORMANCES (% ACCURACY) 

SUM SMV SUM SMV
EEG+MRI 76.05 73.19 80.08 78.66
EEG+PET 74.37 77.23 81.26 81.26
MRI+PET 76.05 77.48 80.08 78.91

EEG+MRI+PET 80.08 76.05 85.55 82.94

All Classifiers Top 15 in each category

 
We note from Table 1 that each combination provided bet-

ter diagnostic performance than the corresponding individual 
data sources, and the combination of all three sources per-
formed better than the other combinations. This outcome 
indicates that each of these modalities do carry complemen-
tary information and the simple combination of classifiers 
trained on these different modalities can improve the diag-
nostic performance. Finally, the sum rule appears to provide 
better classification performance then majority voting rule. 

V. CONCLUSIONS 
We described a simple data fusion approach for combin-

ing data from different sources with a specific application on 
diagnosis of Alzheimer’s disease from EEG, MRI and PET 
data. The approach generates an ensemble of classifiers for 
data obtained from each modality. For EEG, where different 
channels and frequency bands provided a natural individual 
data subsources, a single classifier was trained with each 
such source. For MRI and PET, random subspace analysis 
was used to generate the ensembles. In all cases, the combi-
nations showed better performances than the classifiers 
trained on individual data sources. Considering that each 

modality actually measures a very different (electrophysio-
logical vs. anatomical vs. metabolic) quantity, this outcome 
is in fact reassuring, whereas the ability of the approach to 
extract such complementary information is very promising. 
While the goal of this study was not to obtain the best possi-
ble classification (and hence the individual classifiers were 
not optimized), the results are nevertheless shows significant 
potential.  
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