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Abstract. Although neuroimaging has greatly expanded our knowledge about 
the brain-behavior relation, combining multiple neuroimaging modalities with 
complementing strengths can overcome some limitations encountered when us-
ing a single modality. Valuable candidates for a multimodal approach are func-
tional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG). 
fNIRS is an imaging technology that localizes hemodynamic changes within the 
cortex. However, hemodynamic activation is an intrinsically slow process. On 
the other hand, EEG has excellent time resolution by directly measuring the 
manifestation of the brain electrical activity at the scalp. Based on their com-
plementary strengths, the integration of fNIRS and EEG may provide higher 
spatiotemporal resolution than either method alone. In this effort, we integrate 
fNIRS and EEG to evaluate the behavioral performance of six healthy adults in 
a working memory task. To this end, features extracted from fNIRS and EEG 
were used separately, as well as in combination, and their performances were 
compared against each other. 

Keywords: multimodal neuroimaging, functional near-infrared spectroscopy, 
EEG, pattern classification, working memory, n-back, P300. 

1   Introduction 

The last 20 years have seen a rapid advance in neuroimaging technologies that are 
now widely used for non-invasive investigation of human brain functions. Application 
of these technologies to the fields of basic and clinical neuroscience has greatly ex-
panded our knowledge about brain activity associated with perceptual, cognitive, 
emotional and behavioral processes, in health [1],[2] and disease [3],[4]. In particular, 
neuroimaging techniques have contributed to the investigation of the specialization 
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and integration of different cerebral areas in the normal brain and to the study of brain 
dysfunction in varying disorders [5],[6]. Nonetheless, the current understanding of the 
relation between brain activity and behavior is still limited. One of the restricting 
factors is the inherent complexity of the system to be investigated. In fact, most task 
designs in neuroimaging aim at probing or manipulating one cognitive domain at a 
time, but human behavior results from the interaction of multiple components (e.g., 
attention, orienting response, planning or short-term memory). Additionally, the mac-
roscopic brain activity is a multifaceted process and the combined use of multiple 
neuroimaging technologies could capture different aspects of this process.  

On one hand, techniques such as electroencephalography (EEG) and magnetoen-
cephalography (MEG) record the integrated and synchronized electromagnetic activ-
ity of populations of pyramidal neurons in the cerebral cortex [7],[8]. Both EEG and 
MEG have excellent temporal resolution (at the millisecond level), but they also share 
the weakness of a poor three-dimensional spatial localization: the activated cortical 
sources need to be estimated based on the distribution of the electromagnetic fields on 
the scalp (“inverse problem”), which is a mathematically ill-posed problem. 

On the other hand, more recent neuroimaging technologies focus on hemodynamic 
changes, an indirect measure of brain function. These changes consist in variations in 
regional blood flow, in blood oxygenation or in local metabolism and are generally 
assumed to reflect changes in the neural activity [9]. The neuroimaging modalities in 
this group are functional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), positron emission tomography (PET) and single pho-
ton emission computed tomography (SPECT). In contrast to EEG and MEG, the 
hemodynamic-based technologies offer the advantage of providing information about 
the spatial location of the recorded activity (with a resolution down to few millime-
ters). However, hemodynamic changes are intrinsically slow processes, happening in 
the range of seconds [10], thus limiting the temporal resolution of the recordings. 

Therefore, given the complexity of the investigated processes and the wide range 
of characteristics for the different imaging technologies, the use of multimodal ap-
proaches is gaining the interest of the scientific community [11],[12],[13],[14]. The 
underlying principle is that all neuroimaging techniques provide in vivo measures of 
brain function but each has its own set of assets and drawbacks. Hence, the combina-
tion of multiple imaging modalities with complementing strengths can partially over-
come the limitations encountered by each individual modality. 

Two valuable candidates for a multimodal approach are fNIRS and EEG. fNIRS is 
a brain imaging technology that relies on optical techniques to detect changes in the 
hemodynamic activity within the cortex in response to sensory, motor, or cognitive 
activation [15],[16]. fNIRS relies on the placement of near-infrared light sources and 
detectors on the scalp. Oxygenated (HbO2) and deoxygenated (HHb) hemoglobin are 
the dominant light absorbing elements within the brain at the near infrared wave-
lengths and have different absorption patterns of light. Thus, fNIRS can record 
changes in HbO2 and HHb concentrations, which occur during brain activation [17]. 
Similar to other hemodynamic-based neuroimaging modalities, fNIRS is able to  
provide information about the specific localization of the recorded hemodynamic 
activity. Compared to fMRI or PET, however, fNIRS is affordable and easily imple-
mentable in a portable system, allowing for a wider range of applications. By associ-
ating fNIRS with EEG, we can additionally take advantage of the good temporal 
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resolution provided by the latter. After all, EEG can capture information about rapid 
cortico-cortical or thalamocortical oscillations that play a crucial role in the elabora-
tion and integration of information in cognitive networks. Therefore, based on the 
complementary strengths offered by EEG and fNIRS, their integration has the poten-
tial to provide higher spatio-temporal resolution than either method alone. 

2   Example of Multimodal Approach 

2.1   Background 

We provide here an example of multimodal imaging approach using fNIRS and EEG. 
The aim is evaluate the performance level of subjects during a task with high working 
memory load. This was pursued by using measures from fNIRS or EEG individually 
or in a combination, the results of which were then compared. The rationale for using 
these modalities among others is two-fold. First, there are indications that the oxy-
genation changes recorded by fNIRS in working memory tasks are related to the task 
load and at the same time are affected by the performance level of the subject [18]. 
Second, EEG has been extensively applied in working memory research. In particular, 
many studies focused on the P300 component, a peak occurring about 300 ms after a 
target stimulus presentation and reflecting the demand on attentional resources [19]. 
Based on its neuropsychological interpretation, the P300 amplitude is expected to 
increase with increasing task complexity [20], but studies have shown a decline when 
the stimulus is objectively harder to discriminate or when the subject is less confident 
in its discrimination [21]. Hence, the combined use of fNIRS and EEG can provide 
insight into the different mechanisms underlying the observed low performance on a 
working memory task. 

2.2   Experimental Protocol 

Six subjects (3 males and 3 females) were selected from a larger pool of healthy par-
ticipants. All subjects were right-handed, with vision correctible to 20/20. Participants 
denied any history of neurological disorders, psychiatric illness, substance abuse or 
being on any current medication. The experimental protocol was approved by the 
Institutional Review Board at Drexel University and all participants gave their  
informed consent. The mean age of the participants was 24.3 years (standard devia-
tion=5.5 years). 

EEG activity was recorded from 12 Ag/AgCl electrodes placed at frontal, central, 
parietal and occipital locations according to the International 10-20 System (F7, F3, 
Fz, F4, F8, C3, Cz, C4, P3, Pz, and Oz). All electrodes were referenced to linked 
mastoid leads. Vertical and horizontal electrooculograms (VEOG and HEOG) were 
monitored via electrodes placed above and below the left eye, and at the left and right 
outer canthi, respectively. EEG signals were collected using NuAmp amplifier (Neu-
roscan Inc., El Paso, TX); all impedances were systematically kept below 10 kΩ and 
the amplification was set to 50 mV/mm. EEG signals were filtered between 0.15 and 
100 Hz and sampled at 500 samples/second. 

The hemodynamic activity of the prefrontal cortex was recorded using a continu-
ous-wave fNIRS device first described by Chance et al. [22] and further developed at 
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Drexel University (Philadelphia, PA). The system consisted of three modules: a flexi-
ble headpiece, a control box for hardware management and a computer that runs the 
data acquisition. The headpiece holds four light sources and 10 photodetectors, with a 
source-detector separation of 2.5 cm, providing a penetration depth of approximately 
1.25 cm. The four light sources were activated in turns: each source shone light with 
input intensity I0 and the four photodetectors surrounding the currently active source 
measured the intensity I of the emerging light. The arrangement of sources and detec-
tors on the headpiece and the configuration for data acquisition yields a total of 16 
active optodes, which were designed to image cortical areas that correspond to the 
dorsal and inferior frontal cortices [16]. Each source emitted light at two different 
wavelengths in the near-infrared spectrum, namely at 730 and 850 nm, and measures 
of emerging light intensity were obtained for each optode with a sampling frequency 
of 2 samples/second. 

Participants were seated in a dimly-lit, sound attenuated room and were asked to 
perform a visual n-back task, a task widely used to investigate working memory proc-
esses [23]. Stimuli were single consonants presented in a pseudo-random sequence on 
a computer screen. Stimulus duration was 500 ms, with a 2500-ms interstimulus in-
terval. Four conditions were used to incrementally vary the working memory load 
from zero to three items. In the 0-back condition, subjects responded to a single pre-
specified target letter (e.g. ‘‘X’’) with their dominant hand (pressing a button to iden-
tify the target). In the 1-back condition, the target was defined as any letter identical 
to the one immediately preceding it (i.e., one trial back). In the 2-back and 3-back 
conditions, the targets were defined as any letter that was identical to the one pre-
sented two or three trials back, respectively. The target probability was about 33% for 
each condition. This strategy incrementally increased working memory load from the 
0-back to the 3-back condition. Seven blocks, each containing the four conditions (0-, 
1-, 2- and 3-back), were presented to the subjects. The sequence of the four conditions 
in the seven blocks was randomized. Each presentation of the n-back conditions was 
followed by a 15 s rest period.  

2.3   Data Processing 

Information about the behavioral performance in the task was recorded for all sub-
jects. The percentage of correct responses was calculated separately for the four work-
ing memory loads and for the overall test. Out of the total pool of subjects, 3 were 
randomly selected from the group with an overall performance higher than the median 
(“high performing” group) and 3 were randomly selected from the group with an 
overall performance below the median (“low performing” group). Table 1 summa-
rizes the behavioral performance for the overall group of subjects.  

fNIRS Recordings. fNIRS data were divided into blocks locked to the repeated pres-
entations of the four working memory conditions. Each block lasted 70 s and a 5 s rest 
baseline was included. The raw data about light absorption acquired by the fNIRS 
device were low-pass filtered and were converted to changes in concentration of 
HbO2 and HHb using the modified Beer-Lambert law [24]. The baseline condition 
used in the modified Beer-Lambert law was the rest period immediately preceding 
each block. For each of the seven presentations of the 3-back condition, the mean 
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change in HbO2 concentration was extracted. In particular, the channels of most in-
terest were those monitoring the rostral portion of the superior and middle frontal gyri 
in the left hemisphere, since they have been previously demonstrated to be signifi-
cantly activated by the n-back task [18]. Therefore, for each subject, average HbO2 
values for each of the seven presentations of the 3-back condition were extracted from 
channels 4, 5 and 6 and used as features in the subsequent classification. Only the  
3-back condition was investigated, based on earlier evidence that the oxygenation 
values recorded during the 3-back condition are affected by the performance level [18]. 

EEG Recordings. Independent component analysis was used to minimize ocular 
artifacts in the EEG recordings [25]. Stimulus-locked event-related potentials (ERPs) 
were extracted from channels Cz and Pz for target stimuli presented in the 3-back 
condition. A 150 ms pre-stimulus baseline window and a 700 ms post-stimulus re-
sponse window were used. All epochs were baseline corrected by subtracting the 
mean of the baseline window form the full epoch. Epochs containing significant 
movement or muscle artifacts were discarded. The P300 peak was automatically iden-
tified at each of the two channels as the largest positive deflection in the 250-600 ms 
post-stimulus response. For each subject, the average amplitude values of the P300 
peak at Cz and Pz were obtained for each of the seven presentations of the 3-back 
condition and used as features in the classification.  

Table 1. Statistics of the behavioral performance (%) in the n-back task for the total pool of 
subjects 1 

 Mean    (95% Confidence Interval) Median 
0-back condition 90.07 %    (81.29 – 98.84 %)  
1-back condition 92.06 %    (85.63 – 98.47 %)  
2-back condition 85.33 %    (79.23 – 91.42 %)  
3-back condition 78.07 %    (73.76 – 82.37 %)  
Overall 86.38 %    (80.48 – 92.28 %) 89.70 % 

 
Classification. The classification between “high performing” and “low performing” 
subjects was performed using five different features: two features were obtained from 
the EEG recordings (the amplitude of the P300 peak at channels Cz and Pz) and three 
were obtained from the fNRIS recordings (mean change in HbO2 concentration at 
channels 4, 5 and 6).  

For each subject multiple instances of these features were extracted, one for each 
presentation of the 3-back condition. Each instance (xi) was associated with a label yi 
that stated the group of the subject from which the instance was collected (yi =“low 
performing” or yi= “high performing”). The total number of instances xi was 38 (7 
blocks presented to 5 subjects + 3 blocks presented to 1 subject) and constituted the 
overall set S of available instances: S = [xi, yi]. 

Four different approaches were evaluated to determine their ability to identify 
“high performing” or a “low performing” individuals: 

                                                           
1 For one subject, in the “low performing” group, only three of the seven blocks could be  

presented. 
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1. EEG-based classification: only the features extracted from EEG recordings  
were used; the feature vector consisted of two elements: the P300 amplitude at 
Cz and Pz. 

2. fNIRS-based classification: only the features extracted from fNIRS recordings 
were used; the feature vector consisted of three elements: the mean change in 
HbO2 concentration at channels 4, 5 and 6. 

3. Feature-level fusion: features extracted from both EEG and fNIRS recordings 
were used and combined in a single feature vector of five elements. 

4. Decision-level fusion: the classification was performed separately using the  
EEG and fNIRS features, whose results were then combined to reach the final 
decision. 

Two types of classifiers were investigated to be used in the above mentioned ap-
proaches: the Mahalanobis discriminant (MD) and the quadratic classifier (QC). The 
MD is equivalent to the optimum Bayes classifier if the data are normally distributed 
with identical (although arbitrary) covariance matrices for all classes [26]. In QC, 
instances are labeled using a Bayesan error minimization approach, under the more 
general hypothesis that the covariance matrices for all classes can assume any arbi-
trary value [26]. 

For training and testing, a modified k-fold (k=5) cross-validation was implemented. 
In such an approach, the set S is partitioned into k blocks, each one representing the 
two groups (“low performing” and “high performing”) in an approximately balanced 
way. Each of the k blocks was in turn held out for testing (S(k)), while the other k-1 
blocks (S(k-1)) were used for training using a bagging procedure [27]. In bagging, an 
ensemble of classifiers is created: in this study the ensemble was comprised of 10 
classifiers all sharing the same architecture but trained on different randomly gener-
ated subsets ( ( 1)

( )
k
r

−TS   r=1,2,…,10) of S(k-1). A label 
( )ˆ ry  is assigned to each instance 

in the testing set S(k) by each of the 10 classifiers, which are then combined using a 
majority voting decision rule. In our implementation, this entire process – of generat-
ing 10 training subsets and training 10 corresponding classifiers – was repeated 5 
times, each time holding out a different subset S(k) for testing. For each of these 5 
repetitions, the accuracy, defined as the probability of correctly classifying an in-
stance, was calculated. 

2.4   Results 

Table 2 summarizes the behavioral performance in the four n-back conditions for the 
3 subjects in the “high performing” group and for the 3 subjects in the “low perform-
ing” group. The difference in behavioral performance between the two groups is  
evident in the overall percentage of correctly identified stimuli and in each of the 
three n-back conditions. 

The distribution, in the features space, of the instances collected from the two 
groups of individuals is presented in Fig. 1A and Fig. 1B. These figures show the 
features extracted respectively from the EEG recordings (P300 amplitude at Pz and 
Cz) and from the fNIRS recordings (change in HbO2 concentration at channels 4, 5 
and 6); in both spaces the two classes are substantially overlapping. A separate analy-
sis confirmed also a dissociation in the HbO2 values during the 3-back condition 
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between the two groups: whereas for the “high performing” group the HbO2 values 
were increasing with the working memory load (1-back condition: 0.0086 mM;  2-
back condition: 0.0096 mM;  3-back condition: 0.0216 mM), for the “low perform-
ing” group this relation was lost and the 3-back condition saw a decrease in the HbO2 
values (1-back condition: -0.0213 mM;  2-back condition: 0.0263 mM;  3-back condi-
tion: -0.0245 mM). 

Table 3 presents the accuracy obtained by the different classification strategies us-
ing each of the two classifiers (QD and MD) as base classifiers. In general, the results 
showed an enhancement in classification performance when features from both EEG 
and fNIRS are used compared to the results obtained when using them separately. In 
fact, the mean accuracy for the feature-level fusion and decision-level fusion strate-
gies were overall higher than the mean accuracy for the EEG-based and fNIRS-based 
classifications. 

Table 2. Mean behavioral performance (%) statistics in the n-back task for the “low perform-
ing” and “high performing” group. Behavioral performance was calculated as the percentage of 
presented stimuli that the subject correctly identified as targets or non-targets. 

 Low performing High performing 
0-back condition 74.95 % 94.87 % 
1-back condition 80.83 % 95.22 % 
2-back condition 77.87 % 88.38 % 
3-back condition 70.56 % 82.03 % 
Overall 76.05 % 90.12 % 

Table 3. Mean and standard deviation of the accuracy (%) reached by the quadratic classifier 
(QC) and Mahalanobis discriminant (MD) used in the four possible classification approaches. 
Accuracy was evaluated across the 5 repetitions of the k-fold cross-validation procedure. 

 QC MD 
EEG-based classification 60.31±18.27 % 62.53±16.44 % 
fNIRS-based classification 62.53±21.78 % 51.74±  7.41 % 
Feature-level fusion 65.39±16.51 % 58.09±18.56 % 
Decision-level fusion 71.11±10.67 % 71.11±10.67 % 

 
Additionally, the two fusion approaches (and in particular the decision-level  

fusion, in agreement with [28]) provided an increase, albeit small, in the generalizing 
ability of the classifiers, as measured by a decrement in the accuracy standard  
deviation.  

2.5   Discussions 

Overall, the classification of instances collected from “high performing” and “low 
performing” subjects benefited from the used of combined fNIRS and EEG features. 
We acknowledge that the results of our statistical analyses cannot be considered con-
clusive at this time due to the limited data of 3 subjects (from each class) that were 
available to us. A larger pool of subjects, and therefore a higher number of instances 
available for training and testing, would allow a better estimation of the accuracy  
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A     B 

  

 

Fig. 1. A. Scatterplot of instances of EEG-based features, the P300 amplitude at Pz and the 
P300 amplitude at Cz.   B. Scatterplot of instances of fNIRS-based features, the mean changes 
in HbO2 concentration at channels 4, 5 and 6 (ΔHbO2 chn4, ΔHbO2 chn5 and ΔHbO2 chn6, 
respectively ). In both part A and part B, instances are categorized as belonging to high per-
forming (filled triangles) or low performing (empty circles) individuals. From each individual, 
multiple instances were collected, one for each presentation of the 3-back condition. 

index. Nonetheless, the combination of fNIRS and EEG improved classification accu-
racy, even if two relatively simple classifiers where used: a linear parametric classifier 
(MC) and a nonlinear parametric classifier (QC). It is reasonable to expect that higher 
accuracies can be obtained using more sophisticated nonlinear classifiers (such as 
neural networks or support vector machines), that are not bounded by assumptions 
about the features distributions. Similarly, the relative performance of other fusion 
algorithms could be investigated, ranging from the simple majority voting (presented 
in this paper) to multinomial methods, to the fusion of discriminant scores.  

3   Concluding Remarks 

We have investigated the feasibility and performance of fNIRS and EEG data fusion 
for the evaluation of the behavioral performance of six healthy adults in a working 
memory task. Although fNIRS and EEG have been co-registered in previous studies 
[29], [30], this is the first attempt at their integration by using them together in a pat-
tern recognition application. For this study, the fNIRS-EEG fusion took advantage of 
both the spatial information about the hemodynamic activity (by including only the 
channels monitoring the rostral portion of the superior and middle frontal gyri in the 
left hemisphere) and the fast temporal dynamic of the cognitive processes of interest 
(by including information about the P300 amplitude). A similar approach can also 
help explain the mechanisms underlying low task performance in case of neurological 
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disorders such as traumatic brain injury or multiple sclerosis, hence providing some 
physiological evidence important for the choice of a proper neurorehabilitation and 
pharmacological intervention. fNIRS-EEG fusion may further be applied to the study 
of other cognitive domains, in particular taking advantage of the flexibility in task 
designs allowed by fNIRS and EEG.  
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