
W. Duch et al. (Eds.): ICANN 2005, LNCS 3697, pp. 607 – 612, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reducing the Effect of Out-Voting Problem in Ensemble
Based Incremental Support Vector Machines

Zeki Erdem1,4, Robi Polikar2, Fikret Gurgen3, and Nejat Yumusak4

1 TUBITAK Marmara Research Center, Information Technologies Institute,
41470 Gebze - Kocaeli, Turkey

zeki.erdem@bte.mam.gov.tr
2 Rowan University, Electrical and Computer Engineering Department,

210 Mullica Hill Rd., Glassboro, NJ 08028, USA
polikar@rowan.edu

3 Bogazici University, Computer Engineering Department,
Bebek, 80815 Istanbul, Turkey
gurgen@boun.edu.tr

4 Sakarya University, Computer Engineering Department,
Esentepe, 54187 Sakarya, Turkey
nyumusak@sakarya.edu.tr

Abstract. Although Support Vector Machines (SVMs) have been successfully
applied to solve a large number of classification and regression problems, they
suffer from the catastrophic forgetting phenomenon. In our previous work, in-
tegrating the SVM classifiers into an ensemble framework using Learn++
(SVMLearn++) [1], we have shown that the SVM classifiers can in fact be
equipped with the incremental learning capability. However, Learn++ suffers
from an inherent out-voting problem: when asked to learn new classes, an un-
necessarily large number of classifiers are generated to learn the new classes. In
this paper, we propose a new ensemble based incremental learning approach us-
ing SVMs that is based on the incremental Learn++.MT algorithm. Experiments
on the real-world and benchmark datasets show that the proposed approach can
reduce the number of SVM classifiers generated, thus reduces the effect of out-
voting problem. It also provides performance improvements over previous ap-
proach.

1 Introduction

As with any type of classifier, the performance and accuracy of SVM classifiers rely
on the availability of a representative set of training dataset. In many practical appli-
cations, however, acquisition of such a representative dataset is expensive and time
consuming. Consequently, it is not uncommon for the entire data to be obtained in
installments, over a period of time. Such scenarios require a classifier to be trained
and incrementally updated as new data become available, where the classifier needs to
learn the novel information provided by the new data without forgetting the knowl-
edge previously acquired from the data seen earlier. We note that a commonly used
procedure for learning from additional data, training with the combined old and new
data, is not only a suboptimal approach (as it causes catastrophic forgetting), but it

608 Z. Erdem et al.

may not even be feasible, if the previously used data are lost, corrupted, prohibitively
large, or otherwise unavailable. Incremental learning is the solution to such scenarios,
which can be defined as the process of extracting new information without losing
prior knowledge from an additional dataset that later becomes available. Various
definitions, interpretations, and new guidelines of incremental learning can be found
in [2] and references within.

Since SVMs are stable classifiers that use the global learning technique, they are
prone to catastrophic forgetting phenomenon (also called unlearning) [3] which can
be defined as the inability of the system to learn new patterns without forgetting pre-
viously learned ones. To overcome some drawbacks, various methods have been
proposed for incremental SVM learning in the literature [4, 5]. In this work, we con-
sider the incremental SVM approach based on incremental learning paradigm refer-
enced within [2] and propose an ensemble based incremental SVM construction to
solve the catastrophic forgetting problem and out-voting problem by reducing the
number of SVM classifiers generated in ensemble.

2 Ensemble of SVM Classifiers

Learn++ uses weighted majority voting, where each classifier receives a voting
weight based on its training performance [2]. This works well in practice even for
incremental learning problems. However, if the incremental learning problem in-
volves introduction of new classes, then the voting scheme proves to be unfair to-
wards the newly introduced class: since none of the previously generated classifiers
can pick the new class, a relatively large number of new classifiers need to be gener-
ated that recognize the new class, so that their total weight can out-vote the first batch
of classifiers on instances coming from this new class. This in turn populates the en-
semble with an unnecessarily large number of classifiers. The Learn++.MT algorithm,
explained below, is specifically proposed to address this issue of classifier prolifera-
tion [6]. For any given test instance, it compares the class predictions of each classi-
fier and cross-references them with the classes on which they were trained. Essen-
tially, if a subsequent ensemble overwhelmingly chooses a class it has seen before,
then the voting weights of those classifiers that have not seen that class are propor-
tionally reduced.

For each dataset (Dk), the inputs to the algorithm are (i) a sequence of m training
data instances xi along with their correct labels yi, (ii) a classification algorithm, and
(iii) an integer Tk specifying the maximum number of classifiers to be generated using
that database. If the algorithm is seeing its first database (k=1), a data distribution
(Dt), from which training instances will be drawn, is initialized to be uniform, making
the probability of any instance being selected equal. If k>1 then a distribution ini-
tialization sequence initializes the data distribution. The algorithm adds Tk classifiers
to the ensemble starting at t=eTk+1, where eTk denotes the current number of classifi-
ers in the ensemble. For each iteration t, the instance weights, wt, from the previous
iteration are first normalized to create a data distribution Dt. A classifier, ht, is gener-
ated from a subset of Dk that is drawn from Dt. The error, εt, of ht is then calculated; if
εt > ½, the algorithm deems the current classifier, ht, to be weak, discards it, and re-
turns and redraws a training dataset, otherwise, calculates the normalized classifica-

 Reducing the Effect of Out-Voting Problem in Ensemble 609

tion error, βt = εt /(1- εt), since for 0 < εt < ½, 0 < βt <1. The class labels of the training
instances used to generate this classifier are then stored. The dynamic weight voting
(DWV) algorithm is called to obtain the composite classifier, Ht, of the ensemble. Ht

represents the ensemble decision of the first t hypotheses generated thus far. The error
of the composite classifier, Et is then computed and normalized. The instance weights
wt are finally updated according to the performance of Ht such that the weights of
instances correctly classified by Ht are reduced and those that are misclassified are
effectively increased. This ensures that the ensemble focus on those regions of the
feature space that are not yet learned, performing the incremental learning [6].

Given a set of training samples xi, i=1,…,m, where xi∈Rn is input patterns, yi,
(i=1,..,m), is the class labels, the SVM classifier function is formulated in terms of
kernels functions, such as radial basis function and polynomial:

 ⎟
⎠

⎞
⎜
⎝

⎛ −= ∑
=

m

i
iii bxxKysignxh

1

),()(α . (1)

where b is the bias and αi are the coefficients that are maximized by Lagrangian [7,8].
The final composite SVM classifier is obtained using the DWV algorithm for
Learn++.MT algorithm, as follows [6]:

 ∑
=

=
cxht

t
c

ifinal

it

WxH
)(:

maxarg)((2)

Where c = 1,2,…C is classes, and Wt =log(1/βt) is the SVMs classifier weights.

3 Simulation Results

Proposed incremental learning approach of SVM ensemble using Learn++.MT has been
tested on several datasets. We use the SVMLearn++.MT notation for proposed approach
for consistency. Due to space limitations, we present results on one benchmark dataset
and one real-world application as explained following sections. We used the LIBSVM
library [9] as SVM solver. The Gaussian kernel functions were used in our experiments.
We utilized the cross-validation technique with 5-folds to jointly select the SVM pa-
rameters, which are the regularization constant C and the RBF width σ.

3.1 Optical Character Recognition Dataset

The Optical Character Recognition dataset is a benchmark dataset from UCI machine
learning repository. The OCR dataset features 10 classes (digits 0 ~ 9) with 64 attrib-
utes. The dataset was divided into four sets, to create three training subset (DS1~3)
and a test subset (Test), whose distribution can be seen in Table 1. We evaluated the
incremental learning capability and also the performance of SVMLearn++ and
SVMLearn++.MT on a fixed number of classifiers to allow for a fair comparison.
Each algorithm was used to generate seven classifiers with the addition of each data-
set, giving a total of 21 classifiers in three training sessions. The data distribution was
deliberately made rather challenging, specifically designed to test the ability of pro-
posed approach to learn multiple new classes at once with each additional dataset
while retaining the knowledge of previously learned classes. In this incremental learn-
ing problem, instances from only six of the ten classes are employed in each subse-
quent dataset resulting in a rather difficult problem.

610 Z. Erdem et al.

Table 1. OCR data distribution

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
DS1 250 250 250 0 0 250 250 250 0 0
DS2 150 0 150 250 0 150 0 150 250 0
DS3 0 150 0 150 400 0 150 0 150 400
Test 110 114 111 114 113 111 111 113 110 112

Results from this test are shown in Tables 2 and 3. Each row shows class-by-class
generalization performance of the ensemble on the test data after being trained with
dataset DSk, k=1,2,3. The last two columns are the average overall generalization
performance (Gen.) over 20 simulation trials (on the entire test data which includes
instances from all ten classes), and the standard deviation (Std.) of the generalization
performances.

Table 2. SVMLearn++ with RBF kernel (σ = 0.1, C =1) results on OCR dataset

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std.
DS1 99% 100% 100% - - 98% 100% 99% - - 60% 0.04%
DS2 99% 73% 100% 44% - 98% 68% 99% 47% - 63% 1.54%
DS3 99% 100% 100% 93% 14% 97% 100% 99% 90% 13% 80% 4.17%

Table 3. SVMLearn++.MT with RBF kernel (σ = 0.1, C =1) results on OCR dataset

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std.
DS1 99% 100% 100% - - 98% 100% 99% - - 59% 0.05%
DS2 99% 34% 99% 97% - 93% 20% 99% 60% - 59% 0.43%
DS3 99% 98% 95% 97% 89% 53% 100% 52% 95% 90% 85% 0.56%

SVMLearn++ was able to learn, the new classes 4 and 9, only poorly after they
were introduced in DS2 but able to learn them rather well, when further trained with
these classes in DS3. Similarly, it performs rather poorly on classes 5 and 10 after
they are first introduced in DS3, though it is reasonable to expect that it would do
well on these classes with additional training. We note however, SVMLearn++.MT
was able to learn new class quite well in first attempt. Finally, recall that the generali-
zation performance of the algorithm is computed on the entire test data which in-
cluded instances from all classes. This is the reason that the generalization perform-
ance is only around 59% after the first training session, since the algorithm has seen
only six of the ten classes in the test data. Both SVMLearn++ and SVMLearn++.MT
exhibit the ability of incremental learning and an overall increase of generalization
performance as new datasets are observed. However, SVMLearn++.MT is able to
learn better than SVMLearn++ as shown in Table 2 and 3.

3.2 Volatile Organic Compounds Dataset

The Volatile Organic Compounds (VOC) dataset is a real world dataset that consist of
5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes coming from

 Reducing the Effect of Out-Voting Problem in Ensemble 611

six (quartz crystal microbalance type) chemical gas sensors. The dataset was split into
three training and a test dataset. The distribution of the data is given in Table 4, where
a new class was introduced with each dataset.

Table 4. VOC data distribution

Class C1 C2 C3 C4 C5
DS1 20 0 20 0 40
DS2 10 25 10 0 10
DS3 10 15 10 40 10
Test 24 24 24 40 52

In this experiment, both algorithms were incrementally trained with three subse-
quent training datasets. Each algorithm was employed to create as many classifiers as
necessary to obtain their maximum performance. As shown in Tables 5 and 6, based
on an average of 30 trials, SVMLearn++ generated a total of 33 classifiers to achieve
its best performance; however SVMLearn++.MT not only produced a 5% better gen-
eralization performance with only 10 classifiers, but it also provided a significantly
more stable improvement as seen from the reduced standard deviation.

Table 5. SVMLearn++ with RBF kernel (σ = 3, C =100) results on VOC dataset

 C1 C2 C3 C4 C5 Gen. Std.
DS1(5) 91% - 95% - 99% 58% 1.62%
DS2(10) 97% 91% 81% - 95% 70% 1.84%
DS3(18) 93% 99% 94% 68% 76% 83% 8.19%

Table 6. SVMLearn++.MT with RBF kernel (σ = 3, C =100) results on VOC dataset

 C1 C2 C3 C4 C5 Gen. Std.
DS1(6) 93% - 89% - 99% 58% 1.67%
DS2(2) 96% 93% 88% - 95% 70% 1.45%
DS3(2) 95% 94% 100% 99% 73% 88% 1.37%

4 Conclusions

In this paper, we presented a new ensemble based incremental SVM learning algo-
rithm, SVMLearn++.MT, using Learn++.MT. SVMLearn++.MT with RBF kernel
functions has been tested on one real world dataset and one benchmark dataset. The
results show that while SVM classifier can be equipped with the incremental learning
capability, dealing with catastrophic forgetting problem, SVMLearn++.MT reduces
the effect of out-voting problem, and also provides performance improvements over
SVMLearn++.

It is also worth noting that, SVMLearn++.MT is more robust than SVMLearn++.
One of the reasons why SVMLearn++ is having difficulty in learning a new class

612 Z. Erdem et al.

when first presented is due to difficulty in choosing the strength of the base classifi-
ers. If we choose too weak classifiers, the algorithm is unable to learn. If we choose
too strong classifiers, the training data are learned very well, resulting in very low β
values which then causes very high voting weights, and hence even a more difficult
out-voting problem. Since the SVM classifiers are strong classifiers, we have shown
that SVMLearn++.MT, by significantly reducing the effect of the out-voting problem,
improves the robustness of the algorithm, as the new algorithm is substantially more
resistant to more drastic variations in the SVM classifier architecture and parameters
(regularization constant C and kernel parameters).

Acknowledgements

This work is supported in part by the National Science Foundation under Grant No.
ECS-0239090, “CAREER: An Ensemble of Classifiers Approach for Incremental
Learning”. Z.E. would like to thank Mr. Michael Muhlbaier and Mr. Apostolos To-
palis graduate students at Rowan University, NJ, for their invaluable suggestions and
assistance.

References

1. Z. Erdem, R. Polikar, F. Gurgen, N. Yumusak, “Ensemble of SVMs Classifier for Incre-
mental Learning”, Proc. of 6th Int. Workshop on Multiple Classifier Systems (MCS 2005),
Springer-Verlag LNCS, Vol:3541, pp:246-256, Seaside, CA, USA, 13-15 June 2005.

2. R. Polikar, L. Udpa, S. Udpa, V. Honavar. “Learn++: An incremental learning algorithm
for supervised neural networks.” IEEE Transactions on Systems, Man, and Cybernetics.
Part C: Applications and Reviews 31.4 (2001):497-508.

3. N. Kasabov, “Evolving Connectionist Systems: Methods and Applications in Bioinformat-
ics, Brain Study and Intelligent Machines”, Springer Verlag, 2002.

4. L. Ralaivola, F. d'Alché-Buc, “Incremental Support Vector Machine Learning: a Local Ap-
proach”, In Proceedings of ICANN'01, Vienna, Austria, (2001)

5. C. P. Diehl and G. Cauwenberghs, “SVM Incremental Learning, Adaptation and Optimiza-
tion”, Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN 2003), Portland OR, (2003).

6. M. Muhlbaier, A. Topalis, R. Polikar, Learn++.MT: A New Approach to Incremental
Learning, 5th Int. Workshop on Multiple Classifier Systems (MCS 2004), Springer LINS
vol. 3077 , pp. 52-61, Cagliari, Italy, June 2004.

7. V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
8. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods, Cambridge University Press, 2000.
9. C.-C. Chang, C.-J. Lin, “LIBSVM: A library for support vector machines”,

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	Ensemble of SVM Classifiers
	Simulation Results
	Optical Character Recognition Dataset
	Volatile Organic Compounds Dataset

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

