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Abstract. Although Support Vector Machines (SVMs) have been successfully 
applied to solve a large number of classification and regression problems, they 
suffer from the catastrophic forgetting phenomenon. In our previous work, in-
tegrating the SVM classifiers into an ensemble framework using Learn++ 
(SVMLearn++) [1], we have shown that the SVM classifiers can in fact be 
equipped with the incremental learning capability. However, Learn++ suffers 
from an inherent out-voting problem: when asked to learn new classes, an un-
necessarily large number of classifiers are generated to learn the new classes. In 
this paper, we propose a new ensemble based incremental learning approach us-
ing SVMs that is based on the incremental Learn++.MT algorithm. Experiments 
on the real-world and benchmark datasets show that the proposed approach can 
reduce the number of SVM classifiers generated, thus reduces the effect of out-
voting problem. It also provides performance improvements over previous ap-
proach. 

1   Introduction 

As with any type of classifier, the performance and accuracy of SVM classifiers rely 
on the availability of a representative set of training dataset. In many practical appli-
cations, however, acquisition of such a representative dataset is expensive and time 
consuming. Consequently, it is not uncommon for the entire data to be obtained in 
installments, over a period of time. Such scenarios require a classifier to be trained 
and incrementally updated as new data become available, where the classifier needs to 
learn the novel information provided by the new data without forgetting the knowl-
edge previously acquired from the data seen earlier. We note that a commonly used 
procedure for learning from additional data, training with the combined old and new 
data, is not only a suboptimal approach (as it causes catastrophic forgetting), but it 
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may not even be feasible, if the previously used data are lost, corrupted, prohibitively 
large, or otherwise unavailable. Incremental learning is the solution to such scenarios, 
which can be defined as the process of extracting new information without losing 
prior knowledge from an additional dataset that later becomes available. Various 
definitions, interpretations, and new guidelines of incremental learning can be found 
in [2] and references within. 

Since SVMs are stable classifiers that use the global learning technique, they are 
prone to catastrophic forgetting phenomenon (also called unlearning) [3] which can 
be defined as the inability of the system to learn new patterns without forgetting pre-
viously learned ones. To overcome some drawbacks, various methods have been 
proposed for incremental SVM learning in the literature [4, 5]. In this work, we con-
sider the incremental SVM approach based on incremental learning paradigm refer-
enced within [2] and propose an ensemble based incremental SVM construction to 
solve the catastrophic forgetting problem and out-voting problem by reducing the 
number of SVM classifiers generated in ensemble. 

2   Ensemble of SVM Classifiers 

Learn++ uses weighted majority voting, where each classifier receives a voting 
weight based on its training performance [2]. This works well in practice even for 
incremental learning problems. However, if the incremental learning problem in-
volves introduction of new classes, then the voting scheme proves to be unfair to-
wards the newly introduced class: since none of the previously generated classifiers 
can pick the new class, a relatively large number of new classifiers need to be gener-
ated that recognize the new class, so that their total weight can out-vote the first batch 
of classifiers on instances coming from this new class. This in turn populates the en-
semble with an unnecessarily large number of classifiers. The Learn++.MT algorithm, 
explained below, is specifically proposed to address this issue of classifier prolifera-
tion [6]. For any given test instance, it compares the class predictions of each classi-
fier and cross-references them with the classes on which they were trained. Essen-
tially, if a subsequent ensemble overwhelmingly chooses a class it has seen before, 
then the voting weights of those classifiers that have not seen that class are propor-
tionally reduced. 

For each dataset (Dk), the inputs to the algorithm are (i) a sequence of m training 
data instances xi along with their correct labels yi, (ii) a classification algorithm, and 
(iii) an integer Tk specifying the maximum number of classifiers to be generated using 
that database. If the algorithm is seeing its first database (k=1), a data distribution 
(Dt), from which training instances will be drawn, is initialized to be uniform, making 
the probability of any instance being selected equal.  If k>1 then a distribution ini-
tialization sequence initializes the data distribution.  The algorithm adds Tk classifiers 
to the ensemble starting at t=eTk+1, where eTk denotes the current number of classifi-
ers in the ensemble. For each iteration t, the instance weights, wt, from the previous 
iteration are first normalized to create a data distribution Dt.  A classifier, ht, is gener-
ated from a subset of Dk that is drawn from Dt. The error, εt, of ht is then calculated; if 
εt > ½, the algorithm deems the current classifier, ht, to be weak, discards it, and re-
turns and redraws a training dataset, otherwise, calculates the normalized classifica-
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tion error, βt = εt /(1- εt), since for 0 < εt < ½, 0 < βt <1. The class labels of the training 
instances used to generate this classifier are then stored.  The dynamic weight voting 
(DWV) algorithm is called to obtain the composite classifier, Ht, of the ensemble. Ht 

represents the ensemble decision of the first t hypotheses generated thus far. The error 
of the composite classifier, Et is then computed and normalized. The instance weights 
wt are finally updated according to the performance of Ht such that the weights of 
instances correctly classified by Ht are reduced and those that are misclassified are 
effectively increased. This ensures that the ensemble focus on those regions of the 
feature space that are not yet learned, performing the incremental learning [6]. 

Given a set of training samples xi, i=1,…,m, where xi∈Rn is input patterns, yi, 
(i=1,..,m), is the class labels, the SVM classifier function is formulated in terms of 
kernels functions, such as radial basis function and polynomial:  
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where b is the bias and αi  are the coefficients that are maximized by Lagrangian [7,8]. 
The final composite SVM classifier is obtained using the DWV algorithm for 
Learn++.MT algorithm, as follows [6]: 
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Where c = 1,2,…C is classes, and Wt =log(1/βt) is the SVMs classifier weights.   

3   Simulation Results 

Proposed incremental learning approach of SVM ensemble using Learn++.MT has been 
tested on several datasets. We use the SVMLearn++.MT notation for proposed approach 
for consistency. Due to space limitations, we present results on one benchmark dataset 
and one real-world application as explained following sections. We used the LIBSVM 
library [9] as SVM solver. The Gaussian kernel functions were used in our experiments. 
We utilized the cross-validation technique with 5-folds to jointly select the SVM pa-
rameters, which are the regularization constant C and the RBF width σ. 

3.1   Optical Character Recognition Dataset 

The Optical Character Recognition dataset is a benchmark dataset from UCI machine 
learning repository. The OCR dataset features 10 classes (digits 0 ~ 9) with 64 attrib-
utes. The dataset was divided into four sets, to create three training subset (DS1~3) 
and a test subset (Test), whose distribution can be seen in Table 1. We evaluated the 
incremental learning capability and also the performance of SVMLearn++ and 
SVMLearn++.MT on a fixed number of classifiers to allow for a fair comparison.  
Each algorithm was used to generate seven classifiers with the addition of each data-
set, giving a total of 21 classifiers in three training sessions. The data distribution was 
deliberately made rather challenging, specifically designed to test the ability of pro-
posed approach to learn multiple new classes at once with each additional dataset 
while retaining the knowledge of previously learned classes. In this incremental learn-
ing problem, instances from only six of the ten classes are employed in each subse-
quent dataset resulting in a rather difficult problem.   
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Table 1. OCR data distribution 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
DS1 250 250 250 0 0 250 250 250 0 0 
DS2 150 0 150 250 0 150 0 150 250 0 
DS3 0 150 0 150 400 0 150 0 150 400 
Test 110 114 111 114 113 111 111 113 110 112 

Results from this test are shown in Tables 2 and 3. Each row shows class-by-class 
generalization performance of the ensemble on the test data after being trained with 
dataset DSk, k=1,2,3. The last two columns are the average overall generalization 
performance (Gen.) over 20 simulation trials (on the entire test data which includes 
instances from all ten classes), and the standard deviation (Std.) of the generalization 
performances.  

Table 2. SVMLearn++ with RBF kernel (σ = 0.1, C =1) results on OCR dataset 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 100% - - 98% 100% 99% - - 60% 0.04% 
DS2 99% 73% 100% 44% - 98% 68% 99% 47% - 63% 1.54% 
DS3 99% 100% 100% 93% 14% 97% 100% 99% 90% 13% 80% 4.17% 

Table 3. SVMLearn++.MT with RBF kernel (σ = 0.1, C =1) results on OCR dataset 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 100% - - 98% 100% 99% - - 59% 0.05% 
DS2 99% 34% 99% 97% - 93% 20% 99% 60% - 59% 0.43% 
DS3 99% 98% 95% 97% 89% 53% 100% 52% 95% 90% 85% 0.56% 

SVMLearn++ was able to learn, the new classes 4 and 9, only poorly after they 
were introduced in DS2 but able to learn them rather well, when further trained with 
these classes in DS3. Similarly, it performs rather poorly on classes 5 and 10 after 
they are first introduced in DS3, though it is reasonable to expect that it would do 
well on these classes with additional training. We note however, SVMLearn++.MT 
was able to learn new class quite well in first attempt. Finally, recall that the generali-
zation performance of the algorithm is computed on the entire test data which in-
cluded instances from all classes. This is the reason that the generalization perform-
ance is only around 59% after the first training session, since the algorithm has seen 
only six of the ten classes in the test data. Both SVMLearn++ and SVMLearn++.MT 
exhibit the ability of incremental learning and an overall increase of generalization 
performance as new datasets are observed. However, SVMLearn++.MT is able to 
learn better than SVMLearn++ as shown in Table 2 and 3. 

3.2   Volatile Organic Compounds Dataset  

The Volatile Organic Compounds (VOC) dataset is a real world dataset that consist of 
5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes coming from 
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six (quartz crystal microbalance type) chemical gas sensors. The dataset was split into 
three training and a test dataset. The distribution of the data is given in Table 4, where 
a new class was introduced with each dataset. 

Table 4. VOC data distribution 

Class C1 C2 C3 C4 C5 
DS1 20 0 20 0 40 
DS2 10 25 10 0 10 
DS3 10 15 10 40 10 
Test 24 24 24 40 52 

In this experiment, both algorithms were incrementally trained with three subse-
quent training datasets. Each algorithm was employed to create as many classifiers as 
necessary to obtain their maximum performance. As shown in Tables 5 and 6, based 
on an average of 30 trials, SVMLearn++ generated a total of 33 classifiers to achieve 
its best performance; however SVMLearn++.MT not only produced a 5% better gen-
eralization performance with only 10 classifiers, but it also provided a significantly 
more stable improvement as seen from the reduced standard deviation. 

Table 5. SVMLearn++  with RBF kernel (σ = 3, C =100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std. 
DS1(5) 91% - 95% - 99% 58% 1.62% 
DS2(10) 97% 91% 81% - 95% 70% 1.84% 
DS3(18) 93% 99% 94% 68% 76% 83% 8.19% 

Table 6. SVMLearn++.MT  with RBF kernel (σ = 3, C =100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std. 
DS1(6) 93% - 89% - 99% 58% 1.67% 
DS2(2) 96% 93% 88% - 95% 70% 1.45% 
DS3(2) 95% 94% 100% 99% 73% 88% 1.37% 

4   Conclusions 

In this paper, we presented a new ensemble based incremental SVM learning algo-
rithm, SVMLearn++.MT, using Learn++.MT. SVMLearn++.MT with RBF kernel 
functions has been tested on one real world dataset and one benchmark dataset. The 
results show that while SVM classifier can be equipped with the incremental learning 
capability, dealing with catastrophic forgetting problem, SVMLearn++.MT reduces 
the effect of out-voting problem, and also provides performance improvements over 
SVMLearn++. 

It is also worth noting that, SVMLearn++.MT is more robust than SVMLearn++. 
One of the reasons why SVMLearn++ is having difficulty in learning a new class 
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when first presented is due to difficulty in choosing the strength of the base classifi-
ers. If we choose too weak classifiers, the algorithm is unable to learn. If we choose 
too strong classifiers, the training data are learned very well, resulting in very low β 
values which then causes very high voting weights, and hence even a more difficult 
out-voting problem. Since the SVM classifiers are strong classifiers, we have shown 
that SVMLearn++.MT, by significantly reducing the effect of the out-voting problem, 
improves the robustness of the algorithm, as the new algorithm is substantially more 
resistant to more drastic variations in the SVM classifier architecture and parameters 
(regularization constant C and kernel parameters).  
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