
Incremental Learning in Non-stationary Environments with
Concept Drift using a Multiple Classifier Based Approach

Matthew Karnick, Michael D. Muhlbaier and Robi Polikar*

Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028 USA
karnick@ieee.org, muhlbaier@ieee.org, *Corresponding author: polikar@rowan.edu

Abstract

We outline an incremental learning algorithm de-

signed for nonstationary environments where the un-
derlying data distribution changes over time. With
each dataset drawn from a new environment, we gen-
erate a new classifier. Classifiers are combined
through dynamically weighted majority voting, where
voting weights are determined based on classifiers’
age and accuracy on current and past environments.
The most recent and relevant classifiers are weighted
higher, allowing the algorithm to appropriately adapt
to drifting concepts. This algorithm does not discard
prior classifiers, allowing efficient learning of poten-
tially cyclical environments. The algorithm learns in-
crementally, i.e., without access to previous data. Fi-
nally, the algorithm can use any supervised classifier
as its base model, including those not normally capa-
ble of incremental learning. We present the algorithm
and its performance using different base learners in
different environments with varying types of drift.

1. Introduction

One of the more challenging problems in pattern
recognition is learning from a data distribution that
experiences concept drift, otherwise known as a non-
stationary environment. In a nonstationary environ-
ment (NSE), the underlying data distribution and the
corresponding decision boundaries change over time.
Such problems need an algorithm that can detect the
concept drift, and adapt to consequent changes. Fur-
ther complications arise if previously learned informa-
tion is partially relevant, and the data corresponding to
such information are no longer available. Such a sce-
nario requires an incremental learning algorithm that
provides a balance between stability and plasticity [1].

Traditionally, concept drift is addressed by train-
ing a new classifier with each new dataset, and then
using that classifier until the environment changes
again, as in FLORA family of algorithms [2,3]. More
recently, multiple classifier system based algorithms
have been proposed for nonstationary learning. Such

algorithms generate and then combine an ensemble of
classifiers, where each classifier is trained on a differ-
ent snapshot of the data distribution. In her recent re-
view, Kuncheva places ensemble based approaches
into one of three categories [4]: (i) a fixed ensemble
whose combination rules (weights) are changed based
on the changing environment (dynamic combiners), as
in Winnow [5]; (ii) an ensemble where new data is
used to update the parameters or members of an online
learning algorithm, as in Oza’s online boosting [6];
and/or (iii) altering the structure of the ensemble by
adding new members to an existing ensemble, such as
Nishida’s adaptive classifier ensemble (ACE) [7], or
replacing the least contributing ensemble members
with a new one generated based on new data, such as
Street’s streaming ensemble algorithm (SEA) and Kol-
ter’s dynamic weighted majority (DWM) [8,9].

We have recently introduced – and evaluated on
normally distributed drifting data – an algorithm com-
bining different aspects of these approaches [10]. Spe-
cifically, a new classifier is generated on each new
dataset, and the classifiers are then combined based on
their age and performance on current and past envi-
ronments. The algorithm learns incrementally, i.e.,
without having access to previously available data. We
do not make any assumption on the form of the drift: it
can be deterministic or random, contracting or expand-
ing, gradual, abrupt, or even cyclical. To accommo-
date a diverse set of environments, the algorithm re-
tains every classifier created, so that it can refer to
information acquired by – still relevant – former clas-
sifiers; or access previous knowledge that may later
become relevant again. We call this algorithm
Learn++.NSE, based on our previously introduced in-
cremental learning algorithm Learn++ [11].

In this paper, we outline Learn++.NSE and eva-
luate its performance (using three different base clas-
sifiers) on two challenging scenarios, representing
different types of drift (gradual, cyclical and abrupt
changes). We show that the algorithm not only adapts
well to concept drift, but also outperforms a single
classifier that has access to the most recent data, re-
gardless the type of base classifier used.

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on July 17, 2009 at 16:15 from IEEE Xplore. Restrictions apply.

2. Learn++
.NSE

Learn++.NSE is provided with a series of training
datasets, each drawn from an unknown distribution
that is the current snapshot of a possibly drifting envi-
ronment. The algorithm is presented with each batch
of data only once, hence incremental learning. Each
batch of data is used to generate a new classifier,
which are then combined through weighted majority
voting (WMV). The voting weights are computed as a
weighted average of each classifier’s errors at all time
steps, where current environments are more heavily
weighted. Hence, the algorithm tracks concept drift by
two mechanisms: new classifiers trained on each data-
set, and the dynamically updated voting weights. Note
that if older classifiers begin to perform well on new
data, they are awarded with higher voting weights.

The algorithm has two inputs: a supervised algo-
rithm, BaseClassifier, to train individual classifiers,
and the current training data at time t. Learn++.NSE
maintains a distribution Dt(i) over the training data
instances ࢞. D1(i) is set to be uniform, giving equal
probability to each instance being drawn from the first
dataset. When new data arrive at time t, one new clas-
sifier ht is generated and combined with all previous
classifiers to create the composite hypothesis Ht. The
decision of Ht is the ensemble decision. Before a new
ht is trained, however, Learn++.NSE first evaluates the
ensemble’s knowledge of the current environment
through the error Et of the current Ht-1 on the new da-
taset, which is used to update the distribution weights
(Steps 1 and 2 within the Do loop in Figure 1). The
distribution update increases the probability of draw-
ing instances that have not been correctly learned yet.

The algorithm then calls the BaseClassifier to
create ht using data drawn from the current training
dataset (Step 3). All classifiers generated thus far hk,
k=1,...,t are evaluated on the current dataset, by
computing εk

t, the error of the kth classifier hk at time t
(Step 4), which gives us t error values - one for each
classifier generated thus far. If the error of the most
recent classifier on its own training data is greater than
½, we discard that classifier and generate a new one,
as it will most likely make no positive contribution to
the ensemble. If the error of older classifiers are
greater than ½, they are set to ½ and we do not discard
them. This effectively sets the normalized error of that
classifier to 1 (Equation 5), removing its voting power
(Equation 7), but at that time step only; older
classifiers may later obtain higher voting weights, if
they perform well on a future environment’s data.

To determine the voting weights, we first obtain a
weighted average of all t error measures εk

t for each
classifier hk. A nonlinear sigmoid function f (·) is used
for the weighting (Equation 6), which essentially
weights newer environments more heavily.

Input: For each dataset ঞ௧ ݐ ൌ 1,2, …
Training data ൛࢞

࢚ א ܺ; ݕ
௧ א ܻ ൌ ሼ1, … , ܿሽൟ, ݅ ൌ

1, ڮ , ݉௧, and supervised algorithm BaseClassifier
Do for ݐ ൌ 1,2, …
If t ൌ 1, Initialize ܦଵ to be uniform; Go to step 3.
Endif
1. Compute current ensemble error on new data
௧ܧ ൌ ∑ ሺ1/݉௧ሻ · ሻݔ௧ିଵሺܪۤ ് ۥݕ

ୀଵ ሺ1ሻ

2. Update and normalize instance weights

ݓ
௧ ൌ ଵ

 · ൜ܧ௧, ሻݔ௧ିଵሺܪ ൌ ݕ
1, ሺ2ሻ ݁ݏ݅ݓݎ݄݁ݐ

Set ܦ௧ ൌ /௧ݓ ∑ ݓ
௧

ୀଵ ௧ is a distribution ሺ3ሻܦ ฺ

3. Call BaseClassifier with ঞ௧, obtain ݄௧: ܺ ՜ ܻ
4. Evaluate all existing classifiers on new data ঞ௧
ߝ

௧ ൌ ∑ ௧ሺ݅ሻܦ · ݄ۤሺݔሻ ് ۥݕ
ୀଵ for ݇ ൌ 1, … , ሺ4ሻ ݐ

If ߝୀ௧
௧ 1/2, generate a new ݄௧.

If ߝழ௧
௧ 1/2, set ߝ

௧ ൌ 1/2,
ߚ

௧ ൌ ߝ
௧ /ሺ1 െ ߝ

௧ ሻ, for ݇ ൌ 1, … , ሺ5ሻ ݐ

5. Compute the sigmoid ݂ሺ·ሻ weighted sum of all
 normalized errors for ݇௧ classifier ݄:
ҧ௧ߚ ൌ ∑ ݂൫ߚ

௧ି൯௧ି
ୀ , for ݇ ൌ 1, … , ሺ6ሻ ݐ

6. Calculate classifier voting weights
ܹ
௧ ൌ log ሺ1/ߚҧ௧ሻ, ݂ݎ ݇ ൌ 1, … , ሺ7ሻ ݐ

7. Obtain the final hypothesis
ሻݔ௧ሺܪ ൌ arg max ∑ ܹ

௧ · ݄ۤሺݔሻ ൌ ۥܿ ሺ8ሻ

Figure 1: Learn++.NSE Algorithm

This process gives less weight not to old classifi-
ers, but to their error on old environments. Therefore,
a classifier generated long time ago can still receive a
large voting weight, if its error on the recent environ-
ments is small. Finally, all classifiers are combined
through weighted majority voting (Step 7, Equation 8).

3. Simulations and Results
We have evaluated this algorithm on two chal-

lenging non-stationary datasets. The first dataset is the
two-class two-feature rotating checkerboard (see Fig-
ure 2 for six snapshots), where we vary the rotational
parameter α as a function of time. As α increases, the
checkerboard rotates clockwise from t=0 to t=1 in 700
steps, making one complete rotation. The class distri-
bution repeats itself at α = π and 2π, hence we expect
that classifiers generated during α = [0, π] interval to
be relevant again in the α = [π, 2π] interval. Figure 2
shows the training data (merely 50 instances from each
class) – plotted in oversized circles for clarity – and
overlaid on the densely sampled 2601-instance (51x51
grid) test data clearly showing the decision boundaries.

Authorized licensed use limited to: Drexel University. Downloaded on July 17, 2009 at 16:15 from IEEE Xplore. Restrictions apply.

Figure 2. Rotating checkerboard data snapshots.

Random noise was also added to each feature to
prevent presenting the algorithm with duplicate snap-
shots during the α = [π, 2π] interval.

Our second experiment is benchmark dataset, SEA
concepts [7], where abrupt concept drifts are present.
The SEA concepts consist of randomly generated
three-feature data partitioned into four concepts. The
corresponding class label during each concept is a
function of the first two features only: class one if the
sum of the two features exceeds a certain threshold,
class two otherwise: ci = 1 if fi,1+ fi,2 ≥ θt, and ci = 2
otherwise. This essentially generates a plane through
the three-dimensional space. The threshold ߠ controls
the changing concepts. We define the time axis to be-
gin at t = 0 and complete at t = 1; and as in [9], θt = 8
for t = 0 to 0.25; 9 for t = 0.25 to 0.5; 7 for t = 0.5 to
0.75, and 9.5 for t = 0.75 to 1. We have also added a
10% class noise to the training data as in [9].

We repeated all experiments using three different
classifiers types to evaluate the algorithm’s ability to
work with different models: multilayer perceptron
(MLP, 25 hidden layer nodes, 0.1 error goal), support
vector machine (SVM, Gaussian kernel, σ = 0.5, C =
10,000) and naïve Bayes (NB). Finally, we ben-
chmarked the performance of Learn++.NSE against the
single classifier (of identical parameters) that is most
recently added to the ensemble. Note that this is not a
trivial comparison, as the last classifier is expected to
outperform every classifier in the ensemble trained on
previous environments. For an ensemble to outperform
this single classifier, each individual member must
contribute knowledge applicable to the current envi-
ronment, despite not having seen any (current) data.

3.1 Results on Checkerboard Data
Figure 3 shows the ensemble performance com-

pared to that of current single classifier at each time
step, for all three types of base classifiers. We make
several observations from this figure. First, the ensem-
ble performance is always as good as or better than the
most recent single classifier, indicating that the algo-
rithm can indeed track the concept drift. Second, the

Figure 3. Rotating checkerboard performances.

ensemble performance increases sharply after t = 0.5,
as class distributions then repeat and Learn++.NSE
takes advantage of its previously trained classifiers.
Previously generated classifiers are now reweighted
and available to contribute to the algorithm’s perfor-
mance, a true benefit of the algorithm’s policy on re-
taining all classifiers for cyclic environments. Also
note the sharp performance increases at t = {0.25, 0.5,
0.75,1}: at these instances, the checkerboard is rotated
at a right angle, resulting in decision boundaries being
substantially simpler compared to those rotated at oth-
er angles.

3.2 Results on SEA Concepts
The SEA concepts dataset introduced by Street et

al. [9] is a commonly used benchmark for nonstatio-
nary environments. The data consists of 50,000 in-
stances (12,500 for each concept), introduced to the
algorithm in blocks of 250 instances.

Figure 4 presents the results obtained by three
types of base classifiers. Throughout the simulation,
Learn++.NSE continually outperformed the single clas-
sifier. We observe that the single classifier, always
trained on the most recent data, retains a constant per-
formance, whereas Learn++.NSE gradually improves
its performance. The time instances t = 0.25, 0.5, 0.75,

Figure 4. SEA concepts performances

t=0, α = 0 t=1/4, α = π/2 t=1/3, α = 2π/3

t=1/2, α = π t=2/3, α = 4π/3 t=1, α = 2π

80

90

100
Classification Performance (%)

85
90
95

100

0 0.2 0.4 0.6 0.8 1

60

80

Time(t), α = 2πt Learn++.NSE Single classifier

MLP

SVM

NB

80

90

100
Classification Performance (%)

80

90

100

0 0.2 0.4 0.6 0.8 180

90

100

Time (t)

Learn++.NSE Single classifier

MLP

SVM

NB

Authorized licensed use limited to: Drexel University. Downloaded on July 17, 2009 at 16:15 from IEEE Xplore. Restrictions apply.

where the abrupt concept drift occurs is clearly visible.
The algorithm detects the concept drift (a temporary
dip in performance) at these locations, and it quickly
recovers by adapting to the new environment, and ex-
ceeds the performance of the single classifier. As more
experts trained on the new concept are added to the
ensemble, the algorithm is able to weigh them appro-
priately, and quickly achieve its optimal performance
level. We also note that the algorithm works equally
well with all types of classifiers, whether normally
capable of online or incremental learning (such as
naïve Bayes) or not (such as SVM or MLP).

4. Discussions and Conclusion
We have described Learn++.NSE, an ensemble of

classifiers based incremental learning algorithm, capa-
ble of learning from concept drift in non-stationary
environments. As new datasets are presented, Learn++.
NSE adds new classifiers to the existing ensemble and
adjusts voting weights to combine these classifiers
through weighted majority voting. The novelty of the
algorithm primarily rests on its ability to dynamically
adjust voting weights based on the performance of all
classifiers on current and past environments. The algo-
rithm does not store or require access to the previous
data, and each classifier is trained only on the current-
ly available data. If the knowledge acquired by older
classifiers become irrelevant, Learn++.NSE temporarily
reduce / annul their voting weights as appropriate -
rather than discarding them. Note that since we cannot
predict the future behavior of a nonstationary envi-
ronment ahead of time, a given classifier’s complete
obsoleteness cannot be justified – hence Learn++.NSE
avoids discarding classifiers, providing a delicate sta-
bility-plasticity balance.

On two challenging nonstationary environments
(one cyclical and gradual change, the other with very
abrupt concept changes), we have shown that the algo-
rithm is able to track both types of drift very well, re-
gardless of the type of base classifier used. Specifical-
ly, on the rotating checkerboard problem, we showed
that the algorithm can track gradually drifting con-
cepts, where each added classifier further improves the
algorithm accuracy – despite the environment conti-
nuously changing at each time step. The benefit of
retaining all classifiers was also demonstrated on this
dataset: after one complete rotation of the class distri-
butions, the algorithm significantly improved its per-
formance, with wide margins above that of a single
classifier trained on the current dataset. The ability of
the algorithm to recover from instantaneously abrupt
changes was then demonstrated on the SEA concepts

data: with the addition of just a few classifiers, the
algorithm quickly learned the new concepts.

While this algorithm is not intended for all con-
cept drift problems, we expect Learn++.NSE to per-
form well on a variety of concept drift scenarios, and
particularly well i) when each individual classifier is
presented with limited amount of data that cannot give
an adequate representation of the current environment,
ii) where previously trained classifiers still carry at
least some amount of relevant information, or iii)
where the environment changes in a cyclical manner.

Although Learn++.NSE is still in development,
preliminary results are very promising and warrant
further analysis of this approach. Future work includes
testing the algorithm with higher dimensional real
world datasets, and/or problems where the rate of
change itself changes in time.

Acknowledgements
This material is based upon work funded by the

National Science Foundation grant No: ECS-0239090.

References
[1] S. Grossberg, "Nonlinear neural networks: Principles,

mechanisms, and architectures," Neural Networks, vol.
1, no. 1, pp. 17-61, 1988.

[2] G. Widmer and M. Kubat, "Learning in the presence
of concept drift and hidden contexts," Machine Learn-
ing, vol. 23, no. 1, pp. 69-101, 1996.

[3] R. Klinkenberg, "Learning Drifting Concepts: Exam-
ple Selection vs. Example Weighting," Intelligent Da-
ta Analysis, vol. 8, no. 3, pp. 281-300, 2004.

[4] L. I. Kuncheva, "Classifier Ensembles for Changing
Environments," Multiple Classifier Systems (MCS
2004), LNCS vol. 3077, 2004, pp. 1-15.

[5] A. Blum, "Empirical Support for Winnow and
Weighted-Majority Algorithms" Machine Learning,
vol. 26, no. 1, pp. 5-23, Jan.1997.

[6] N. Oza, "Online Ensemble Learning." Ph.D. Disserta-
tion, University of California, Berkeley, 2001.

[7] K. Nishida, K. Yamauchi, O. Takashi, "ACE: Adap-
tive Classifiers-Ensemble System for Concept-Drifting
Environments," LNCS vol. 3541, 2005, pp. 176-185.

[8] J. Z. Kolter, M. Maloof, "Dynamic weighted majority:
a new ensemble method for tracking concept drift,"
IEEE Int. Conf. Data Mining, 2003, pp. 123-130.

[9] W. N. Street and Y. Kim, "A streaming ensemble
algorithm (SEA) for large-scale classification," Know-
ledge Discovery & Data Mining, 2001, pp. 377-382.

[10] M. Muhlbaier, R. Polikar, "Multiple Classifiers Based
Incremental Learning Algorithm for Learning in Non-
stationary Environments," Int. Conf. Machine Learn-
ing and Cybernetics, vol. 6, 2007, pp. 3618-3623.

[11] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar,
"Learn++: An incremental learning algorithm for su-
pervised neural networks," IEEE Trans. Sys. Man, Cy-
bernetics (C), vol. 31, no. 4, pp. 497-508, 2001.

Authorized licensed use limited to: Drexel University. Downloaded on July 17, 2009 at 16:15 from IEEE Xplore. Restrictions apply.

