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Abstract 

 
We outline an incremental learning algorithm de-

signed for nonstationary environments where the un-
derlying data distribution changes over time. With 
each dataset drawn from a new environment, we gen-
erate a new classifier. Classifiers are combined 
through dynamically weighted majority voting, where 
voting weights are determined based on classifiers’ 
age and accuracy on current and past environments. 
The most recent and relevant classifiers are weighted 
higher, allowing the algorithm to appropriately adapt 
to drifting concepts. This algorithm does not discard 
prior classifiers, allowing efficient learning of poten-
tially cyclical environments. The algorithm learns in-
crementally, i.e., without access to previous data. Fi-
nally, the algorithm can use any supervised classifier 
as its base model, including those not normally capa-
ble of incremental learning. We present the algorithm 
and its performance using different base learners in 
different environments with varying types of drift. 

1. Introduction 

One of the more challenging problems in pattern 
recognition is learning from a data distribution that 
experiences concept drift, otherwise known as a non-
stationary environment. In a nonstationary environ-
ment (NSE), the underlying data distribution and the 
corresponding decision boundaries change over time. 
Such problems need an algorithm that can detect the 
concept drift, and adapt to consequent changes. Fur-
ther complications arise if previously learned informa-
tion is partially relevant, and the data corresponding to 
such information are no longer available. Such a sce-
nario requires an incremental learning algorithm that 
provides a balance between stability and plasticity [1].  

Traditionally, concept drift is addressed by train-
ing a new classifier with each new dataset, and then 
using that classifier until the environment changes 
again, as in FLORA family of algorithms [2,3]. More 
recently, multiple classifier system based algorithms 
have been proposed for nonstationary learning. Such 

algorithms generate and then combine an ensemble of 
classifiers, where each classifier is trained on a differ-
ent snapshot of the data distribution. In her recent re-
view, Kuncheva places ensemble based approaches 
into one of three categories [4]: (i) a fixed ensemble 
whose combination rules (weights) are changed based 
on the changing environment (dynamic combiners), as 
in Winnow [5]; (ii) an ensemble where new data is 
used to update the parameters or members of an online 
learning algorithm, as in Oza’s online boosting [6]; 
and/or (iii) altering the structure of the ensemble by 
adding new members to an existing ensemble, such as 
Nishida’s adaptive classifier ensemble (ACE) [7], or 
replacing the least contributing ensemble members 
with a new one generated based on new data, such as 
Street’s streaming ensemble algorithm (SEA) and Kol-
ter’s dynamic weighted majority (DWM) [8,9]. 

We have recently introduced – and evaluated on 
normally distributed drifting data – an algorithm com-
bining different aspects of these approaches [10]. Spe-
cifically, a new classifier is generated on each new 
dataset, and the classifiers are then combined based on 
their age and performance on current and past envi-
ronments. The algorithm learns incrementally, i.e., 
without having access to previously available data. We 
do not make any assumption on the form of the drift: it 
can be deterministic or random, contracting or expand-
ing, gradual, abrupt, or even cyclical. To accommo-
date a diverse set of environments, the algorithm re-
tains every classifier created, so that it can refer to 
information acquired by – still relevant – former clas-
sifiers; or access previous knowledge that may later 
become relevant again. We call this algorithm 
Learn++.NSE, based on our previously introduced in-
cremental learning algorithm Learn++ [11].  

In this paper, we outline Learn++.NSE and eva-
luate its performance (using three different base clas-
sifiers) on two challenging scenarios, representing 
different types of drift (gradual, cyclical and abrupt 
changes). We show that the algorithm not only adapts 
well to concept drift, but also outperforms a single 
classifier that has access to the most recent data, re-
gardless the type of base classifier used. 
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2. Learn++
.NSE 

Learn++.NSE is provided with a series of training 
datasets, each drawn from an unknown distribution 
that is the current snapshot of a possibly drifting envi-
ronment. The algorithm is presented with each batch 
of data only once, hence incremental learning. Each 
batch of data is used to generate a new classifier, 
which are then combined through weighted majority 
voting (WMV). The voting weights are computed as a 
weighted average of each classifier’s errors at all time 
steps, where current environments are more heavily 
weighted. Hence, the algorithm tracks concept drift by 
two mechanisms:  new classifiers trained on each data-
set, and the dynamically updated voting weights. Note 
that if older classifiers begin to perform well on new 
data, they are awarded with higher voting weights. 

The algorithm has two inputs: a supervised algo-
rithm, BaseClassifier, to train individual classifiers, 
and the current training data at time t. Learn++.NSE 
maintains a distribution Dt(i) over the training data 
instances ࢞. D1(i) is set to be uniform, giving equal 
probability to each instance being drawn from the first 
dataset. When new data arrive at time t, one new clas-
sifier ht is generated and combined with all previous 
classifiers to create the composite hypothesis Ht. The 
decision of Ht is the ensemble decision. Before a new 
ht is trained, however, Learn++.NSE first evaluates the 
ensemble’s knowledge of the current environment 
through the error Et of the current Ht-1 on the new da-
taset, which is used to update the distribution weights 
(Steps 1 and 2 within the Do loop in Figure 1). The 
distribution update increases the probability of draw-
ing instances that have not been correctly learned yet.  

The algorithm then calls the BaseClassifier to 
create ht using data drawn from the current training 
dataset (Step 3). All classifiers generated thus far hk, 
k=1,...,t are evaluated on the current dataset, by 
computing εk

t, the error of the kth classifier hk at time t 
(Step 4), which gives us t error values - one for each 
classifier generated thus far. If the error of the most 
recent classifier on its own training data is greater than 
½, we discard that classifier and generate a new one, 
as it will most likely make no positive contribution to 
the ensemble. If the error of older classifiers are 
greater than ½, they are set to ½ and we do not discard 
them. This effectively sets the normalized error of that 
classifier to 1 (Equation 5), removing its voting power 
(Equation 7), but at that time step only; older 
classifiers may later obtain higher voting weights, if 
they perform well on a future environment’s data.  

To determine the voting weights, we first obtain a 
weighted average of all t error measures εk

t for each 
classifier hk. A nonlinear sigmoid function f (·) is used 
for the weighting (Equation 6), which essentially 
weights newer environments more heavily.  

Input: For each dataset ঞ௧   ݐ ൌ 1,2, …  
Training data ൛࢞

࢚ א ܺ; ݕ
௧ א ܻ ൌ ሼ1, … , ܿሽൟ, ݅ ൌ

1, ڮ , ݉௧, and supervised algorithm BaseClassifier 
Do for ݐ ൌ 1,2, … 
If t ൌ 1, Initialize ܦଵ to be uniform; Go to step 3. 
Endif 
1. Compute current ensemble error on new data 
௧ܧ ൌ ∑ ሺ1/݉௧ሻ · ሻݔ௧ିଵሺܪۤ ് ۥݕ

ୀଵ  ሺ1ሻ 

2. Update and normalize instance weights 

ݓ
௧ ൌ ଵ
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௧  

ୀଵ  ௧ is a distribution ሺ3ሻܦ  ฺ

3. Call BaseClassifier with ঞ௧, obtain ݄௧: ܺ ՜ ܻ 
4. Evaluate all existing classifiers on new data ঞ௧ 
ߝ

௧ ൌ ∑ ௧ሺ݅ሻܦ · ݄ۤሺݔሻ ് ۥݕ
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If ߝୀ௧
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ߚ

௧ ൌ ߝ
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5. Compute the sigmoid ݂ሺ·ሻ weighted sum of all       
      normalized  errors for ݇௧ classifier ݄:  
ҧ௧ߚ ൌ ∑ ݂൫ߚ

௧ି൯௧ି
ୀ , for ݇ ൌ 1, … ,  ሺ6ሻ ݐ

6. Calculate classifier voting weights 
ܹ
௧ ൌ log ሺ1/ߚҧ௧ሻ,      ݂ݎ ݇ ൌ 1, … ,  ሺ7ሻ ݐ

7. Obtain the final hypothesis 
ሻݔ௧ሺܪ ൌ arg max ∑ ܹ

௧ · ݄ۤሺݔሻ ൌ ۥܿ              ሺ8ሻ  
 

Figure 1: Learn++.NSE Algorithm  

This process gives less weight not to old classifi-
ers, but to their error on old environments. Therefore, 
a classifier generated long time ago can still receive a 
large voting weight, if its error on the recent environ-
ments is small. Finally, all classifiers are combined 
through weighted majority voting (Step 7, Equation 8). 

3. Simulations and Results 
We have evaluated this algorithm on two chal-

lenging non-stationary datasets. The first dataset is the 
two-class two-feature rotating checkerboard (see Fig-
ure 2 for six snapshots), where we vary the rotational 
parameter α as a function of time. As α increases, the 
checkerboard rotates clockwise from t=0 to t=1 in 700 
steps, making one complete rotation. The class distri-
bution repeats itself at α = π and 2π, hence we expect 
that classifiers generated during α = [0, π] interval to 
be relevant again in the α = [π, 2π] interval. Figure 2 
shows the training data (merely 50 instances from each 
class) – plotted in oversized circles for clarity – and 
overlaid on the densely sampled 2601-instance (51x51 
grid) test data clearly showing the decision boundaries. 
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Figure 2. Rotating checkerboard data snapshots. 

Random noise was also added to each feature to 
prevent presenting the algorithm with duplicate snap-
shots during the α = [π, 2π] interval.  

Our second experiment is benchmark dataset, SEA 
concepts [7], where abrupt concept drifts are present. 
The SEA concepts consist of randomly generated 
three-feature data partitioned into four concepts. The 
corresponding class label during each concept is a 
function of the first two features only: class one if the 
sum of the two features exceeds a certain threshold, 
class two otherwise: ci = 1 if fi,1+ fi,2 ≥ θt, and ci = 2 
otherwise. This essentially generates a plane through 
the three-dimensional space. The threshold ߠ controls 
the changing concepts. We define the time axis to be-
gin at t = 0 and complete at t = 1; and as in [9], θt = 8 
for t = 0 to 0.25; 9 for t = 0.25 to 0.5; 7 for t = 0.5 to 
0.75, and 9.5 for t = 0.75 to 1. We have also added a 
10% class noise to the training data as in [9].  

We repeated all experiments using three different 
classifiers types to evaluate the algorithm’s ability to 
work with different models: multilayer perceptron 
(MLP, 25 hidden layer nodes, 0.1 error goal), support 
vector machine (SVM, Gaussian kernel, σ = 0.5, C = 
10,000) and naïve Bayes (NB). Finally, we ben-
chmarked the performance of Learn++.NSE against the 
single classifier (of identical parameters) that is most 
recently added to the ensemble. Note that this is not a 
trivial comparison, as the last classifier is expected to 
outperform every classifier in the ensemble trained on 
previous environments. For an ensemble to outperform 
this single classifier, each individual member must 
contribute knowledge applicable to the current envi-
ronment, despite not having seen any (current) data.  

3.1 Results on Checkerboard Data 
Figure 3 shows the ensemble performance com-

pared to that of current single classifier at each time 
step, for all three types of base classifiers. We make 
several observations from this figure. First, the ensem-
ble performance is always as good as or better than the 
most recent single classifier, indicating that the algo-
rithm can indeed track the concept drift. Second, the  

 
Figure 3. Rotating checkerboard performances. 

ensemble performance increases sharply after t = 0.5, 
as class distributions then repeat and Learn++.NSE 
takes advantage of its previously trained classifiers. 
Previously generated classifiers are now reweighted 
and available to contribute to the algorithm’s perfor-
mance, a true benefit of the algorithm’s policy on re-
taining all classifiers for cyclic environments. Also 
note the sharp performance increases at t = {0.25, 0.5, 
0.75,1}: at these instances, the checkerboard is rotated 
at a right angle, resulting in decision boundaries being 
substantially simpler compared to those rotated at oth-
er angles.  

3.2 Results on SEA Concepts 
The SEA concepts dataset introduced by Street et 

al. [9] is a commonly used benchmark for nonstatio-
nary environments. The data consists of 50,000 in-
stances (12,500 for each concept), introduced to the 
algorithm in blocks of 250 instances.  

Figure 4 presents the results obtained by three 
types of base classifiers. Throughout the simulation, 
Learn++.NSE continually outperformed the single clas-
sifier. We observe that the single classifier, always 
trained on the most recent data, retains a constant per-
formance, whereas Learn++.NSE gradually improves 
its performance. The time instances t = 0.25, 0.5, 0.75, 

 
Figure 4. SEA concepts performances 
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where the abrupt concept drift occurs is clearly visible. 
The algorithm detects the concept drift (a temporary 
dip in performance) at these locations, and it quickly 
recovers by adapting to the new environment, and ex-
ceeds the performance of the single classifier. As more 
experts trained on the new concept are added to the 
ensemble, the algorithm is able to weigh them appro-
priately, and quickly achieve its optimal performance 
level.  We also note that the algorithm works equally 
well with all types of classifiers, whether normally 
capable of online or incremental learning (such as 
naïve Bayes) or not (such as SVM or MLP).  

4. Discussions and Conclusion 
We have described Learn++.NSE, an ensemble of 

classifiers based incremental learning algorithm, capa-
ble of learning from concept drift in non-stationary 
environments. As new datasets are presented, Learn++. 
NSE adds new classifiers to the existing ensemble and 
adjusts voting weights to combine these classifiers 
through weighted majority voting. The novelty of the 
algorithm primarily rests on its ability to dynamically 
adjust voting weights based on the performance of all 
classifiers on current and past environments. The algo-
rithm does not store or require access to the previous 
data, and each classifier is trained only on the current-
ly available data. If the knowledge acquired by older 
classifiers become irrelevant, Learn++.NSE temporarily 
reduce / annul their voting weights as appropriate - 
rather than discarding them. Note that since we cannot 
predict the future behavior of a nonstationary envi-
ronment ahead of time, a given classifier’s complete 
obsoleteness cannot be justified – hence Learn++.NSE 
avoids discarding classifiers, providing a delicate sta-
bility-plasticity balance. 

On two challenging nonstationary environments 
(one cyclical and gradual change, the other with very 
abrupt concept changes), we have shown that the algo-
rithm is able to track both types of drift very well, re-
gardless of the type of base classifier used. Specifical-
ly, on the rotating checkerboard problem, we showed 
that the algorithm can track gradually drifting con-
cepts, where each added classifier further improves the 
algorithm accuracy – despite the environment conti-
nuously changing at each time step. The benefit of 
retaining all classifiers was also demonstrated on this 
dataset: after one complete rotation of the class distri-
butions, the algorithm significantly improved its per-
formance, with wide margins above that of a single 
classifier trained on the current dataset. The ability of 
the algorithm to recover from instantaneously abrupt 
changes was then demonstrated on the SEA concepts 

data: with the addition of just a few classifiers, the 
algorithm quickly learned the new concepts.  

While this algorithm is not intended for all con-
cept drift problems, we expect Learn++.NSE to per-
form well on a variety of concept drift scenarios, and 
particularly well i) when each individual classifier is 
presented with limited amount of data that cannot give 
an adequate representation of the current environment, 
ii) where previously trained classifiers still carry at 
least some amount of relevant information, or iii) 
where the environment changes in a cyclical manner.  

Although Learn++.NSE is still in development, 
preliminary results are very promising and warrant 
further analysis of this approach. Future work includes 
testing the algorithm with higher dimensional real 
world datasets, and/or problems where the rate of 
change itself changes in time. 
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