
An Incremental Learning Algorithm for Non-Stationary
Environments and Class Imbalance

Gregory Ditzler, Robi Polikar

Electrical & Computer Engineering,
Rowan University

Glassboro, NJ, 08028 USA
ditzle53@students.rowan.edu, polikar@rowan.edu

Nitesh Chawla
Computer Science & Engineering,

Notre Dame University
South Bend, IN, 46556 USA

nchawla@cse.nd.edu

Abstract – Learning in a non-stationary environment and in the
presence of class imbalance has been receiving more recogni-
tion from the computational intelligence community, but little
work has been done to create an algorithm or a framework
that can handle both issues simultaneously. We have recently
introduced a new member to the Learn++ family of algorithms,
Learn++.NSE, which is designed to track non-stationary envi-
ronments. However, this algorithm does not work well when
there is class imbalance as it has not been designed to handle
this problem. On the other hand, SMOTE – a popular algo-
rithm that can handle class imbalance – is not designed to
learn in nonstationary environments because it is a method of
oversampling the data. In this work we describe and present
preliminary results for integrating SMOTE and Learn++.NSE
to create an algorithm that is robust to learning in a non-
stationary environment and under class imbalance.

Keywords-Multiple Classifier Systems, nonstationary envi-
ronments, class imbalance

I. INTRODUCTION
Learning in non-stationary environments (NSE), also

called concept drift, involves learning from streaming data
with a changing underlying distribution. Most existing algo-
rithms (most neural networks, SVMs, decision trees, Ada-
boost, etc.) are simply not equipped to handle drifting data
streams. Several existing approaches for learning concept
drift use a sliding time window for filtering incoming data,
and updating an existing classifier on the most recent data
segment, a method introduced by FLORA family of algo-
rithms [1]. In these approaches, the old data – and the clas-
sifiers trained on such data - are simply assumed irrelevant
and are discarded. Another group of approaches employ
ensemble of classifiers. For example, Kolter and Maloof’s
dynamic weighted majority (DWM) uses online naïve Bayes
classifiers trained incrementally to classify in NSE by add-
ing new dynamically weighted classifiers and removing
those whose weight drops below a threshold [2]. Gao
presents a general framework based on bagging and using
previous data to train classifiers [3], Nishida suggests ad-
justing the structure of the ensemble in ACE [4], and Street
proposed the streaming ensemble algorithm (SEA) to re-
place the classifiers in an ensemble that are contributing the
least [5]. The Learn++.NSE, briefly described later in this
paper, also uses an ensemble of classifiers, but has the

unique property of recalling old classifiers when a cyclical
environment makes previous classifiers relevant [6]. This
algorithm was shown to work well in a variety of problems
and different drift rates [7].

However, only the bagging framework presented in [3] is
designed to also handle the class imbalance problem, but it
cannot learn the environment without access to previous
data. The primary challenge in learning from imbalanced
data is to accurately predict minority class instances without
defaulting to the majority. Basic methods to work around
class imbalance include undersampling and oversampling
the majority and minority classes, respectively. However,
undersampling is unattractive because it throws data away
and oversampling leaves a classifier prone to overfitting the
minority class. SMOTE presented by Chawla in [8], takes a
novel approach to resampling: rather than modifying the
data space, SMOTE modifies the feature space by creating
synthetic examples that lie on the line segment between the
neighboring minority examples. SMOTE has been shown to
handle severe data imbalance in a variety of synthetic and
real world scenarios.

In this contribution, we evaluate the feasibility of what
appears to be an obvious solution to handle the combined
problem of learning concept drift from imbalanced data:
combining SMOTE and Learn++.NSE. The rest of the paper
is organized as follows. Section II will highlight the
Learn++.NSE algorithm modified for imbalanced datasets.
Section III will describe the datasets used and the results.
Finally, Section IV brings together conclusions from the
experiments.

II. LEARN++.SMOTE
Learn++.SMOTE, shown in Fig. 1, integrates the incre-

mental concept drift learning algorithm Learn++.NSE with
SMOTE. Since this is an incremental learning algorithm, we
assume that we do not have access to the previous data (mi-
nority class included). The primary free parameters of this
algorithm are the base classifier, the sigmoid weighting pa-
rameters, the amount of SMOTE (%) to add into the dataset
and the number of nearest neighbors of minority samples
used for creating synthetic samples. The base classifier can
be any supervised learning algorithm.

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.734

2989

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.734

3001

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.734

2997

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.734

2997

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.734

2997

The algorithm is provided data incrementally: at time ݐ,
dataset ुሺ௧ሻ , comes from a distribution ሺ௧ሻሺ࢞, ሻݕ which
may be different than ሺ௧ିଵሻሺ࢞, ሻ. Learn++.SMOTE thenݕ
updates a distribution of instance weights by evaluating the
existing ensemble hypothesis, ሺ௧ିଵሻܪ , on the most recent
dataset, ुሺ௧ሻ .The weights of those instances misclassified
are increased and renormalized to create the instance
weighting distribution ܦሺ௧ሻ. A new classifier is trained on ुሺ௧ሻ and a new synthetic data subset is created by calling
the SMOTE algorithm. The new classifier, ݄௧, and all pre-
viously generated classifiers in the ensemble are evaluated
on this new dataset to obtain their errors on the new envi-
ronment. If the error for the new classifier is greater than ½,
it is discarded and a new one is created; however, if an older
classifier’s error is greater than ½ its error is set to ½, which
results in a zero voting weight after the weight normaliza-
tion. The reason for this double standard is the idea that an
older classifier may be currently underperforming but may
become relevant again later if the environment follows a
cyclical nature.

A logistic sigmoid is then applied to errors of each clas-
sifier across all time steps. Parameter ܽ defines the slope of
the sigmoid cutoff, and ܾ refers to the number of prior errors
to be considered before the cutoff. This style of weighting
will reward classifiers that are currently performing well on
the most recent environments, even if such classifiers may
have been generated long time ago. Therefore, if a classifier
had its error previously set to ½, or the error is ½ at the cur-
rent time step, its ensemble voting weight may not be set to
zero because the previous errors of the classifier also contri-
bute to the final voting weight, with the most recent errors
given the highest weight. The final ensemble decision is
obtained using weighted majority voting of all classifiers
whose weights are normalized based on their average per-
formance, biased to more recent environments. Ensemble
pruning can be added into the algorithm to limit the size of
the final ensemble, but has been omitted for brevity in this
effort. See reference [9] for the effects of pruning with
Learn++.NSE.

Based on our previous experience, the ܽ and ܾ parameters
of the logistic sigmoid in the Learn++.NSE algorithm were
chosen as 0.5 and 15 for all test presented in this work, re-
spectively.

Figure 1. Learn++.NSE-SMOTE algorithm

The SMOTE parameters, number of nearest neighbors (k)

and percentage of oversampling (N) for the Gaussian dataset
were chosen as ݇ ൌ 9 and ܰ ൌ 1500, whereas for the elec-
tricity pricing dataset (elec2) these parameters were ݇ ൌ 9
and ܰ ൌ 1500 . The datasets are briefly described in the
next section. All results include a 95% confidence interval
around each of the measures used to assess the quality of the
algorithms tested for nonstationary learning and class im-
balance.

ሺ௧ሻܧ ൌ ൫1 ݉ሺ௧ሻ⁄ ൯ · ൳ܪሺ௧ିଵሻሺ࢞ሻ ് ൷ሺሻݕ
ୀଵ

ሺ௧ሻݓ ൌ 1݉ሺ௧ሻ · ൜ܧሺ௧ሻ ሻ࢞ሺ௧ିଵሻሺܪ ൌ 1ݕ ݁ݏ݅ݓݎ݄݁ݐ

ሺ௧ሻܦ ൌ ሺ௧ሻݓ ሺ௧ሻሺሻݓ
ୀଵൗ

ܹሺ௧ሻ ൌ log ቀ1 ⁄መሺ௧ሻߚ ቁ

Algorithm: Learn++.SMOTE

Input: Training data ुሺ௧ሻ ൌ ቄ࢞ሺ௧ሻ א ,܆ ሺ௧ሻݕ א Ωቅ, ݅ ൌ 1,2, … , ݉ሺ௧ሻ, ݇ ൌ 1,2, … , ܥ
Supervised learning algorithm, BaseClassifier
for ݐ ൌ 1,2, …
 if ݐ ൌ ሺଵሻܦ ,1 ൌ ሺଵሻሺ݅ሻݓ ൌ 1 ݉ሺ௧ሻ⁄ , ݅
 endif

1. Compute current ensemble error

2. Updated and normalize instance weights

3. Call SMOTE on minority class to create ࣭ሺ௧ሻ
4. Call BaseClassifier with ुሺ௧ሻ and ࣭ሺ௧ሻ, obtain ݄௧: ܆ ՜ ܻ
5. Evaluate all exiting classifiers on new dataset ुሺ௧ሻ ߳ሺ௧ሻ ൌ ∑ ሻܠሺ௧ሻሺ݅ሻ݄ۤሺܦ ് ሺሻୀଵۥݕ for ݇ ൌ 1, … , ݐ
If ߳ሺ௧ሻ 1 2⁄ , geneate a new ݄௧. If ߳ழ௧ሺ௧ሻ 1 2⁄ , set

 ߳ழ௧ሺ௧ሻ ൌ 1 2⁄ ሺ௧ሻߚ ൌ ߳ሺ௧ሻ/ ቀ1 െ ߳ሺ௧ሻቁ
6. Compute a weighted sum of all normalized error

for the ݄݇ݐ classifier ݄ ߱ሺ௧ሻ ൌ 1/ሺ1 ݁ିሺ௧ିିሻሻ ߱ሺ௧ሻ ൌ ߱ሺ௧ሻ ∑ ߱ሺ௧ିሻ,௧ିୀൗ መሺ௧ሻߚ ൌ ∑ ߱ሺ௧ିሻߚሺ௧ିሻ௧ିୀ
7. Calculate classifier voting weights

8. Obtain the composite hypothesis
ሻ࢞ሺ௧ሻሺܪ ൌ arg maxୡ ∑ ܹሺ௧ሻ݄ۤሺ࢞ሻ ൌ ۥܿ

TABLE I. PARAMETRIC EQUATIONS FOR GAUSSIAN DRIFT

ݐ ൌ ݐ ݐ 0 ൌ 1 3⁄ ݐ ൌ 1/3 ݐ ݐ ൌ 2 3⁄ ݐ ൌ 2/3 ݐ ݐ ൌ 1
௬ߤ ௫ߤ ௬ߪ ௫ߪ ௬ߤ ௫ߤ ௬ߪ ௫ߪ ௫ߪ ଵ,ଵ 1 1ܥ ௬ߤ ௫ߤ ௬ߪ 8 1 5 2 3 1 5 2 ݐ6 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ ܥଵ,ଶ 3 െ 5 1 1 8 5 1 ݐ6 9ሺݐ െ 1 3⁄ ሻ 8 1 1 8 8 ܥଵ,ଷ 3 െ 5 1 1 2 5 1 ݐ6 9ሺݐ െ 1 3⁄ ሻ 2 1 1 8 2 ܥଶ,ଵ 1 1 8 5 1 1 8 െ 9ሺݐ െ 1 3⁄ ሻ 5 1 1 8 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ

29903002299829982998

III. IMPLEMENTATION & RESULTS
The proposed algorithm was tested on two different da-

tabases, one synthetic and one real-world, that are known to
be nonstationary and that involve class imbalance. These
datasets are the synthetic Gaussian data whose drift is ad-
justed by the parametric equations in Table I, and the real-
world electricity pricing dataset (elec2) obtained from [10].
The synthetic Gaussian dataset consists of a class imbalance
such that the data is ≈3% minority. The class imbalance
ratio remains constant for the duration of this test. The ma-
jority class is made up of three modes and the minority is a
single mode distribution. The primary benefit of this dataset
is that it allows us to set and control the drift, and also al-
lows us to compute Bayes error for comparison. The mean
and standard deviations of the classes can be found in Table
1. Note that ܥ, is a notion of the class (ܿ) and mode (݉)
where ܿ ൌ 2 is the minority.

Figure 2. F-measure on synthetic data

The f-measure and recall are used as evaluation metrics

for the algorithms on each dataset. We note that simple ac-
curacy is not a reliable indicator in such severely imba-
lanced datasets, as blindly predicting the majority class will
always lead to (misleading) high performance due to the
class imbalance. In such imbalanced dataset, the perfor-
mance on the minority class (recall and precision) are often
more important. The f-measure metric is a balanced combi-
nation of precision and recall of the minority class. A MLP
was used as the base classifier with a 20x2 architecture and
sigmoid activation functions. Fig. 2 and 3 compare the
Bayes classifier performance, using a 1-0 loss function, to
the original Learn++.NSE and Learn++.SMOTE using the f-
measure and recall metrics on the synthetic data, respective-
ly. The shaded regions around performance curves indicate
the 95% confidence intervals across 25 independent trials.
Also note that results of SMOTE alone are not included as
SMOTE – with any base classifier –will not be able to learn
the drifting environment incrementally.

As expected, the f-measure for the Bayes classifier is
consistently best across all times, though Learn++. SMOTE
follows Bayes performance very closely with little or no
statistical significance both in f-measure and recall. The
original Learn++.NSE has a significantly poorer f-measure
and recall in most time steps compared to both the Bayes
and Learn++.SMOTE algorithms. These results demonstrate
the effectiveness of adding SMOTE to Learn++.NSE in class
imbalance cases.

Figure 3. Recall on synthetic data

Our second experiment used the elec2 dataset, which

contains inherent drift. All examples with missing features
have been removed from the dataset during preprocessing.
However, there is relatively little class imbalance in the da-
ta, so the minority class was generated by undersampling
one of the classes to bring the imbalance to ≈1:17 (making
the problem much more difficult than it originally is). Note
that the class imbalance ratio will vary from training set to
training set since this is not a controlled experiment. The
datasets are presented to the algorithm in chunks of 225
examples for training; the next 225 examples are used for
evaluation of the learning algorithm at each time step. A
MLP was used as the base classifier with 55 hidden layers
nodes using sigmoid activation functions. Fig. 4 shows the
f-measure of both Learn++.NSE and Learn++.SMOTE. The
primary observation to make with this plot is that neither
algorithm appears to have a dominantly better f-measure.

However, adding SMOTE to the original Learn++. NSE
algorithm (Fig. 5) added a statistically significant gain in
recall on the minority class, especially in later time steps.
While there is an increase in the recall when SMOTE was
added, the precision generally observed a slight drop (not
shown due to space limitations, but the drop was generally
not significant at every time step) compared to the original
NSE algorithm which is generally expected.

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

f-
m

e
a

su
re

Algorithm F-measure

L++.NSE
L++.SMOTE
Bayes

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step

re
ca

ll

Algorithm Recall

L++.NSE

L++.SMOTE

Bayes

29913003299929992999

Figure 4. F-measure on synthetic data

Figure 5. Recall-score on synthetic data

IV. CONCLUSIONS
We have presented a hybrid algorithm containing

Learn++.NSE and SMOTE for incremental learning in a
nonstationary environment where the data distribution
shows moderate to severe class imbalance. We have shown
that this combination has the advantage of boosting the re-
call of the minority class both in synthetic data of controlled
drift, as well as a real world application where the nature
and rate of drift are not known. The results indicate that the
recall of a minority class can be greatly improved in a non-
stationary environment, with statistical significance, com-
pared to the original Learn++.NSE algorithm, which itself
was shown to work very well on nonstationary environ-
ments whose data distribution did not suffer class imbalance
[6;7;9].

Future work includes the removal or partial or complete
removal of error term from the algorithm to make it a better
candidate for class imbalance in a concept drift scenario by
using different statistical measures like the f-measure, g-
mean, precision and recall as well as comparing
Learn++.SMOTE to algorithms presented in [3;11]. Some
future questions we are interested addressing include how
injecting SMOTE into Learn++.NSE algorithm affect differ-
ent base classifiers, and the effect of adding SMOTE under
different drifting conditions.

ACKNOWLEDGMENT
This material is based on work supported by the National

Science Foundation under Grant No: ECCS-0926159.

REFERENCES

 [1] G. Widmer and M. Kubat, "Learning in the presence of concept
drift and hidden contexts," Machine Learning, vol. 23, no. 1, pp.
69-101, 1996.

 [2] J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: a
new ensemble method for tracking concept drift," 3rd IEEE Int.
Conf. on Data Mining (ICDM 2003), pp. 123-130, 2003.

 [3] J. Gao, W. Fan, J. Han, and P. S. Yu, "A General Framework for
Mining Concept-Drifting Data Streams with Skewed Distribu-
tions," SIAM International Conference on Data Mining, vol. 7,
2007.

 [4] K. Nishida, K. Yamauchi, and O. Takashi, "ACE: Adaptive Clas-
sifiers-Ensemble System for Concept-Drifting Environments,"
Multiple Classifier Systemsin Lecture Notes in Computer Science,
eds. N. Oza, R. Polikar, J. Kittler, and F. Roli, Eds., vol. 3541, pp.
176-185, 2005.

 [5] W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA)
for large-scale classification," Seventh ACM SIGKDD Internation-
al Conference on Knowledge Discovery & Data Mining (KDD-01),
pp. 377-382, 2001.

 [6] M. D. Muhlbaier and R. Polikar, "Multiple Classifiers Based In-
cremental Learning Algorithm for Learning in Nonstationary Envi-
ronments," IEEE International Conference on Machine Learning
and Cybernetics (ICMLC 2007), vol. 6, pp. 3618-3623, 2007.

 [7] R. Elwell and R. Polikar, "Incremental Learning of Variable Rate
Concept Drift," 8th International Workshop on Multiple Classifier
Systems (MCS 2009)in Lecture Notes in Computer Science, eds. J.
A. Benediktsson, J. Kittler, and F. Roli, Eds., vol. 5519, pp. 142-
151, 2009.

 [8] N. V. Chawla, K. W. Bowyer, L. O. Hall, and M. A. Khasawneh,
"SMOTE: Synthetic Minority Over-sampling Technique," Journal
of Artificial Intelligence Research, vol. 16, pp. 321-357, June2002.

 [9] R. Elwell and R. Polikar, "Incremental Learning in Nonstationary
Environments with Controlled Forgetting," IEEE International
Joint Conference on Neural Networks (IJCNN 2009), pp. 771-778,
2009.

 [10] M. B. Harries, "SPLICE-2 Comparative Evaluation: Electricity
Pricing," The University of New South Wales, Sydney, Austral-
ia,1999.

 [11] S.Chen and H.He, "SERA: Selectively Recursive Approach
towards Nonstationary Imbalanced Stream Data Mining," In-
ternational Joint Conference on Neural Networks, Atlanta, GA:
pp. 522-529, 2009.

5 10 15 20 25 30 35 40 45 50 55

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

time step

f-
m

e
a

su
re

Algorithm F-measure

L++.NSE

L++.SMOTE

5 10 15 20 25 30 35 40 45 50 55

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

time step

f-
m

e
a

su
re

Algorithm F-measure

L++.NSE

L++.SMOTE

29923004300030003000

