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Abstract – Learning in a non-stationary environment and in the 
presence of class imbalance has been receiving more recogni-
tion from the computational intelligence community, but little 
work has been done to create an algorithm or a framework 
that can handle both issues simultaneously. We have recently 
introduced a new member to the Learn++ family of algorithms, 
Learn++.NSE, which is designed to track non-stationary envi-
ronments. However, this algorithm does not work well when 
there is class imbalance as it has not been designed to handle 
this problem. On the other hand, SMOTE – a popular algo-
rithm that can handle class imbalance – is not designed to 
learn in nonstationary environments because it is a method of 
oversampling the data. In this work we describe and present 
preliminary results for integrating SMOTE and Learn++.NSE 
to create an algorithm that is robust to learning in a non-
stationary environment and under class imbalance. 
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I.  INTRODUCTION 
Learning in non-stationary environments (NSE), also 

called concept drift, involves learning from streaming data 
with a changing underlying distribution. Most existing algo-
rithms (most neural networks, SVMs, decision trees, Ada-
boost, etc.) are simply not equipped to handle drifting data 
streams. Several existing approaches for learning concept 
drift use a sliding time window for filtering incoming data, 
and updating an existing classifier on the most recent data 
segment, a method introduced by FLORA family of algo-
rithms [1]. In these approaches, the old data – and the clas-
sifiers trained on such data - are simply assumed irrelevant 
and are discarded. Another group of approaches employ 
ensemble of classifiers. For example, Kolter and Maloof’s 
dynamic weighted majority (DWM) uses online naïve Bayes 
classifiers trained incrementally to classify in NSE by add-
ing new dynamically weighted classifiers and removing 
those whose weight drops below a threshold [2]. Gao 
presents a general framework based on bagging and using 
previous data to train classifiers [3], Nishida suggests ad-
justing the structure of the ensemble in ACE [4], and Street 
proposed the streaming ensemble algorithm (SEA) to re-
place the classifiers in an ensemble that are contributing the 
least [5]. The Learn++.NSE, briefly described later in this 
paper, also uses an ensemble of classifiers, but has the 

unique property of recalling old classifiers when a cyclical 
environment makes previous classifiers relevant [6]. This 
algorithm was shown to work well in a variety of problems 
and different drift rates [7].  

However, only the bagging framework presented in [3] is 
designed to also handle the class imbalance problem, but it 
cannot learn the environment without access to previous 
data. The primary challenge in learning from imbalanced 
data is to accurately predict minority class instances without 
defaulting to the majority. Basic methods to work around 
class imbalance include undersampling and oversampling 
the majority and minority classes, respectively. However, 
undersampling is unattractive because it throws data away 
and oversampling leaves a classifier prone to overfitting the 
minority class. SMOTE presented by Chawla in [8], takes a 
novel approach to resampling: rather than modifying the 
data space, SMOTE modifies the feature space by creating 
synthetic examples that lie on the line segment between the 
neighboring minority examples. SMOTE has been shown to 
handle severe data imbalance in a variety of synthetic and 
real world scenarios. 

In this contribution, we evaluate the feasibility of what 
appears to be an obvious solution to handle the combined 
problem of learning concept drift from imbalanced data: 
combining SMOTE and Learn++.NSE. The rest of the paper 
is organized as follows. Section II will highlight the 
Learn++.NSE algorithm modified for imbalanced datasets. 
Section III will describe the datasets used and the results. 
Finally, Section IV brings together conclusions from the 
experiments. 

II. LEARN++.SMOTE 
Learn++.SMOTE, shown in Fig. 1, integrates the incre-

mental concept drift learning algorithm Learn++.NSE with 
SMOTE. Since this is an incremental learning algorithm, we 
assume that we do not have access to the previous data (mi-
nority class included). The primary free parameters of this 
algorithm are the base classifier, the sigmoid weighting pa-
rameters, the amount of SMOTE (%) to add into the dataset 
and the number of nearest neighbors of minority samples 
used for creating synthetic samples. The base classifier can 
be any supervised learning algorithm. 
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The algorithm is provided data incrementally: at time ݐ, 
dataset ुሺ௧ሻ , comes from a distribution ሺ௧ሻሺ࢞, ሻݕ  which 
may be different than ሺ௧ିଵሻሺ࢞,  ሻ. Learn++.SMOTE thenݕ
updates a distribution of instance weights by evaluating the 
existing ensemble hypothesis, ሺ௧ିଵሻܪ , on the most recent 
dataset, ुሺ௧ሻ .The weights of those instances misclassified 
are increased and renormalized to create the instance 
weighting distribution ܦሺ௧ሻ. A new classifier is trained on ुሺ௧ሻ and a new synthetic data subset is created by calling 
the SMOTE algorithm. The new classifier, ݄௧, and all pre-
viously generated classifiers in the ensemble are evaluated 
on this new dataset to obtain their errors on the new envi-
ronment. If the error for the new classifier is greater than ½, 
it is discarded and a new one is created; however, if an older 
classifier’s error is greater than ½ its error is set to ½, which 
results in a zero voting weight after the weight normaliza-
tion. The reason for this double standard is the idea that an 
older classifier may be currently underperforming but may 
become relevant again later if the environment follows a 
cyclical nature.  

A logistic sigmoid is then applied to errors of each clas-
sifier across all time steps. Parameter ܽ defines the slope of 
the sigmoid cutoff, and ܾ refers to the number of prior errors 
to be considered before the cutoff. This style of weighting 
will reward classifiers that are currently performing well on 
the most recent environments, even if such classifiers may 
have been generated long time ago. Therefore, if a classifier 
had its error previously set to ½, or the error is ½ at the cur-
rent time step, its ensemble voting weight may not be set to 
zero because the previous errors of the classifier also contri-
bute to the final voting weight, with the most recent errors 
given the highest weight. The final ensemble decision is 
obtained using weighted majority voting of all classifiers 
whose weights are normalized based on their average per-
formance, biased to more recent environments. Ensemble 
pruning can be added into the algorithm to limit the size of 
the final ensemble, but has been omitted for brevity in this 
effort. See reference [9] for the effects of pruning with 
Learn++.NSE.  

Based on our previous experience, the ܽ and ܾ parameters 
of the logistic sigmoid in the Learn++.NSE algorithm were 
chosen as 0.5 and 15 for all test presented in this work, re-
spectively. 

 

 
Figure 1. Learn++.NSE-SMOTE algorithm 

 
The SMOTE parameters, number of nearest neighbors (k) 

and percentage of oversampling (N) for the Gaussian dataset 
were chosen as ݇ ൌ 9 and ܰ ൌ 1500, whereas for the elec-
tricity pricing dataset (elec2) these parameters were ݇ ൌ 9 
and ܰ ൌ 1500 . The datasets are briefly described in the 
next section. All results include a 95% confidence interval 
around each of the measures used to assess the quality of the 
algorithms tested for nonstationary learning and class im-
balance. 

 

ሺ௧ሻܧ ൌ  ൫1 ݉ሺ௧ሻ⁄ ൯ · ൳ܪሺ௧ିଵሻሺ࢞ሻ ് ൷ሺሻݕ
ୀଵ  

ሺ௧ሻݓ ൌ 1݉ሺ௧ሻ · ൜ܧሺ௧ሻ ሻ࢞ሺ௧ିଵሻሺܪ ൌ 1ݕ ݁ݏ݅ݓݎ݄݁ݐ  

ሺ௧ሻܦ ൌ ሺ௧ሻݓ  ሺ௧ሻሺሻݓ
ୀଵൗ  

ܹሺ௧ሻ ൌ log ቀ1 ⁄መሺ௧ሻߚ ቁ 

Algorithm: Learn++.SMOTE 
 

Input: Training data ुሺ௧ሻ ൌ ቄ࢞ሺ௧ሻ א ,܆ ሺ௧ሻݕ א Ωቅ,  ݅ ൌ 1,2, … , ݉ሺ௧ሻ,  ݇ ൌ 1,2, … ,  ܥ
Supervised learning algorithm, BaseClassifier 
for ݐ ൌ 1,2, …  
        if ݐ ൌ ሺଵሻܦ   ,1 ൌ ሺଵሻሺ݅ሻݓ ൌ 1 ݉ሺ௧ሻ⁄ ,  ݅
        endif 

1. Compute current ensemble error 

2. Updated and normalize instance weights 

 

3. Call SMOTE on minority class to create ࣭ሺ௧ሻ 
4. Call BaseClassifier with ुሺ௧ሻ and ࣭ሺ௧ሻ, obtain ݄௧: ܆ ՜ ܻ 
5. Evaluate all exiting classifiers on new dataset ुሺ௧ሻ ߳ሺ௧ሻ ൌ ∑ ሻܠሺ௧ሻሺ݅ሻ݄ۤሺܦ ് ሺሻୀଵۥݕ      for ݇ ൌ 1, … ,  ݐ
If ߳ሺ௧ሻ  1 2⁄ , geneate a new ݄௧. If ߳ழ௧ሺ௧ሻ  1 2⁄ , set 

        ߳ழ௧ሺ௧ሻ ൌ 1 2⁄ ሺ௧ሻߚ    ൌ ߳ሺ௧ሻ/ ቀ1 െ ߳ሺ௧ሻቁ    
6. Compute a weighted sum of all normalized error 

for the ݄݇ݐ classifier ݄ ߱ሺ௧ሻ ൌ 1/ሺ1  ݁ିሺ௧ିିሻሻ         ߱ሺ௧ሻ ൌ ߱ሺ௧ሻ ∑ ߱ሺ௧ିሻ,௧ିୀൗ መሺ௧ሻߚ  ൌ ∑ ߱ሺ௧ିሻߚሺ௧ିሻ௧ିୀ  
7. Calculate classifier voting weights 

8. Obtain the composite hypothesis 
ሻ࢞ሺ௧ሻሺܪ           ൌ arg maxୡ ∑ ܹሺ௧ሻ݄ۤሺ࢞ሻ ൌ ۥܿ  

TABLE I. PARAMETRIC EQUATIONS FOR GAUSSIAN DRIFT 

ݐ  ൌ ݐ ݐ 0 ൌ 1 3⁄ ݐ  ൌ 1/3 ݐ ݐ ൌ 2 3⁄ ݐ  ൌ 2/3 ݐ ݐ ൌ 1 
௬ߤ ௫ߤ ௬ߪ ௫ߪ ௬ߤ ௫ߤ ௬ߪ ௫ߪ  ௫ߪ ଵ,ଵ 1 1ܥ ௬ߤ ௫ߤ ௬ߪ  8 1 5 2 3 1 5 2 ݐ6 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ ܥଵ,ଶ 3 െ 5 1 1 8 5 1 ݐ6  9ሺݐ െ 1 3⁄ ሻ 8 1 1 8 8 ܥଵ,ଷ 3 െ 5 1 1 2 5 1 ݐ6  9ሺݐ െ 1 3⁄ ሻ 2 1 1 8 2 ܥଶ,ଵ 1 1 8 5 1 1 8 െ 9ሺݐ െ 1 3⁄ ሻ 5 1 1 8 െ 9ሺݐ െ 1 3⁄ ሻ 8 െ 9ሺݐ െ 1 3⁄ ሻ 
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III. IMPLEMENTATION & RESULTS  
The proposed algorithm was tested on two different da-

tabases, one synthetic and one real-world, that are known to 
be nonstationary and that involve class imbalance. These 
datasets are the synthetic Gaussian data whose drift is ad-
justed by the parametric equations in Table I, and the real-
world electricity pricing dataset (elec2) obtained from [10]. 
The synthetic Gaussian dataset consists of a class imbalance 
such that the data is ≈3% minority. The class imbalance 
ratio remains constant for the duration of this test. The ma-
jority class is made up of three modes and the minority is a 
single mode distribution. The primary benefit of this dataset 
is that it allows us to set and control the drift, and also al-
lows us to compute Bayes error for comparison. The mean 
and standard deviations of the classes can be found in Table 
1. Note that ܥ, is a notion of the class (ܿ) and mode (݉) 
where ܿ ൌ 2 is the minority.   

 
Figure 2. F-measure on synthetic data 

 
The f-measure and recall are used as evaluation metrics 

for the algorithms on each dataset. We note that simple ac-
curacy is not a reliable indicator in such severely imba-
lanced datasets, as blindly predicting the majority class will 
always lead to (misleading) high performance due to the 
class imbalance. In such imbalanced dataset, the perfor-
mance on the minority class (recall and precision) are often 
more important. The f-measure metric is a balanced combi-
nation of precision and recall of the minority class. A MLP 
was used as the base classifier with a 20x2 architecture and 
sigmoid activation functions. Fig. 2 and 3 compare the 
Bayes classifier performance, using a 1-0 loss function, to 
the original Learn++.NSE and Learn++.SMOTE using the f-
measure and recall metrics on the synthetic data, respective-
ly. The shaded regions around performance curves indicate 
the 95% confidence intervals across 25 independent trials. 
Also note that results of SMOTE alone are not included as 
SMOTE – with any base classifier –will not be able to learn 
the drifting environment incrementally. 

As expected, the f-measure for the Bayes classifier is 
consistently best across all times, though Learn++. SMOTE 
follows Bayes performance very closely with little or no 
statistical significance both in f-measure and recall. The 
original Learn++.NSE has a significantly poorer f-measure 
and recall in most time steps compared to both the Bayes 
and Learn++.SMOTE algorithms. These results demonstrate 
the effectiveness of adding SMOTE to Learn++.NSE in class 
imbalance cases. 

 
Figure 3. Recall on synthetic data 

 
Our second experiment used the elec2 dataset, which 

contains inherent drift. All examples with missing features 
have been removed from the dataset during preprocessing. 
However, there is relatively little class imbalance in the da-
ta, so the minority class was generated by undersampling 
one of the classes to bring the imbalance to ≈1:17 (making 
the problem much more difficult than it originally is). Note 
that the class imbalance ratio will vary from training set to 
training set since this is not a controlled experiment. The 
datasets are presented to the algorithm in chunks of 225 
examples for training; the next 225 examples are used for 
evaluation of the learning algorithm at each time step. A 
MLP was used as the base classifier with 55 hidden layers 
nodes using sigmoid activation functions. Fig. 4 shows the 
f-measure of both Learn++.NSE and Learn++.SMOTE. The 
primary observation to make with this plot is that neither 
algorithm appears to have a dominantly better f-measure. 

However, adding SMOTE to the original Learn++. NSE 
algorithm (Fig. 5) added a statistically significant gain in 
recall on the minority class, especially in later time steps. 
While there is an increase in the recall when SMOTE was 
added, the precision generally observed a slight drop (not 
shown due to space limitations, but the drop was generally 
not significant at every time step) compared to the original 
NSE algorithm which is generally expected. 
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Figure 4. F-measure on synthetic data 

 

 
Figure 5. Recall-score on synthetic data 

 

IV. CONCLUSIONS 
We have presented a hybrid algorithm containing 

Learn++.NSE and SMOTE for incremental learning in a 
nonstationary environment where the data distribution 
shows moderate to severe class imbalance. We have shown 
that this combination has the advantage of boosting the re-
call of the minority class both in synthetic data of controlled 
drift, as well as a real world application where the nature 
and rate of drift are not known. The results indicate that the 
recall of a minority class can be greatly improved in a non-
stationary environment, with statistical significance, com-
pared to the original Learn++.NSE algorithm, which itself 
was shown to work very well on nonstationary environ-
ments whose data distribution did not suffer class imbalance 
[6;7;9]. 

Future work includes the removal or partial or complete 
removal of error term from the algorithm to make it a better 
candidate for class imbalance in a concept drift scenario by 
using different statistical measures like the f-measure, g-
mean, precision and recall as well as comparing 
Learn++.SMOTE to algorithms presented in [3;11]. Some 
future questions we are interested addressing include how 
injecting SMOTE into Learn++.NSE algorithm affect differ-
ent base classifiers, and the effect of adding SMOTE under 
different drifting conditions. 
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