
Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

0-7803-9048-2/05/$20.00 ©2005 IEEE

Dynamically Weighted Majority Voting for
Incremental Learning and

Comparison of Three Boosting Based Approaches

Abstract - We have previously introduced Learn++, an ensem-
ble based incremental learning algorithm for acquiring new
knowledge from data that later become available, even when
such data introduce new classes. In this paper, we describe a
modification to this algorithm, where the voting weights of the
classifiers are updated dynamically based on the location of the
test input in the feature space. The new algorithm provides im-
proved performance, stronger immunity to catastrophic forget-
ting and finer balance to the stability-plasticity dilemma than its
predecessor, particularly when new classes are introduced. The
modified algorithm and its performance, as compared to
Adaboost.M1 and the original Learn++, on real and benchmark
datasets are presented.

I. INTRODUCTION

A. Incremental Learning
Supervised classifiers are effective and powerful learning

tools for pattern recognition and machine learning applica-
tions. As most machine learning and pattern recognition pro-
fessionals are painfully aware of, however, the generalization
performance of any learning algorithm relies heavily on ade-
quate and representative training data. Since data collection
is an expensive, time consuming and a tedious process for
most practical applications, such data are often acquired in
small batches over time. Waiting for the entire dataset to be
available for training may prove ineffective, uneconomical
and inflexible. In such cases, it would be more desirable to
train a classifier on available data and incrementally update
the classifier as new data become available, without com-
promising the performance on previously learned data.

Learning new data incrementally without forgetting pre-
viously acquired knowledge raises the issue of stability-
plasticity dilemma [1]: acquiring new knowledge requires
plasticity, whereas retaining previously acquired knowledge
requires stability. The challenge is then to achieve a mean-
ingful balance between these two conflicting properties.

Many of the commonly used supervised classifiers such
as multilayer perceptron (MLP), radial basis function, prob-
abilistic neural networks, etc. are “very stable” classifiers,
unable to learn new information. The practical approach gen-

erally taken with these classifiers for incremental learning is
to discard the previously trained classifier, combine and use
the entire training data accumulated thus far to create a new
classifier from scratch. This approach effectively causes the
previously learned information to be entirely lost, a phe-
nomenon known as catastrophic forgetting [2,3].

For the purpose of this work, we define an incremental
learning algorithm as one that has: (1) the capability of learn-
ing novel information content from consecutive datasets
without requiring access to previously used data; (2) the ca-
pability of retaining previously learned knowledge; and (3)
the ability to learn new classes introduced by new datasets.

Learn++, based on weighted majority voting of an en-
semble of classifiers, satisfies the above listed criteria for in-
cremental learning, yet resistant to aforementioned draw-
backs [4, 5, 6]. In essence, the idea is to generate an ensem-
ble of classifiers with the initial data, and generate additional
classifiers as new datasets are acquired. We have recently no-
ticed that the way in which the voting weights are assigned to
classifiers based on their performance during training is
suboptimal, because these weights are set during training and
remain constant thereafter. A dynamic approach that assigns
voting weights to classifiers based on the estimated perform-
ance of each classifier on that instance may be more optimal.

B. Ensemble of Classifiers and Weighted Majority Voting
Ensemble approaches have drawn much interest since

Hansen and Salamon’s seminal work [7]. In essence, a group
of classifiers are trained using different distributions of train-
ing samples, and outputs of these classifiers are then com-
bined in some manner to obtain the final classification rule.

Learn++ uses the synergistic power of such an ensemble
for incremental learning of novel content provided by con-
secutive datasets. The algorithm was inspired from Freund
and Schapire’s adaptive boosting (Adaboost.M1) algorithm
[8], which also was originally proposed for improving the
performance of weak classifiers. It is based on the weighted
majority voting [9] of hypotheses that are generated by se-
quentially training a set of weak classifiers on different dis-

Aliasgar Gangardiwala
Electrical and Computer Engineering

Rowan University
Glassboro, NJ 08028 USA

gangar34@students.rowan.edu

Robi Polikar
Electrical and Computer Engineering

Rowan University
Glassboro, NJ 08028 USA

polikar@rowan.edu

1131

mailto:gangar34@students.rowan.edu
mailto:polikar@rowan.edu

tributions of the training data. Using weak classifiers allow
different classifiers to make different errors, a combination
of which through weighted majority voting then effectively
averages out the individual errors resulting in a stronger clas-
sifier with a much improved generalization performance.

The original version of Learn++ followed the AdaBoost
approach in determining voting weights, which were as-
signed during training depending on the classifiers’ perform-
ance on their own training data. While this approach makes
perfect sense when the entire data come from the same data-
base, it does have a handicap when used in an incremental
learning setting: since each classifier is trained to recognize
(slightly) different portions of the feature space, classifiers
performing well on a region represented by their training
data may not do so well when classifying instances coming
from different regions of the space. Therefore, assigning vot-
ing weights primarily on the training performance of each
classifier is suboptimal. Estimating the potential performance
of a classifier on a test instance using a statistical distance
metric, and assigning voting weights based on these esti-
mates may be more optimal. In this paper, we present a
modified version of Learn++ along with its simulation results
as compared to the original Learn++ to show the improve-
ment on generalization performance and stability in incre-
mentally learning new information content. Also new in this
study, we evaluate AdaBoost for incremental learning and
compare it both versions of Learn++. We show that, while
not originally intended for such applications, AdaBoost is
capable of incremental learning, albeit with a lower perform-
ance, efficiency and stability then either versions of Learn++.

Overviews of other ensemble and classifier combination
techniques can be found in [10~15] and references within.

II. LEARN++ WITH DYNAMICALLY UPDATED
VOTING WEIGHTS

Learn++, similar to AdaBoost, generates an ensemble of
weak classifiers by choosing a subset of the training data
from the database using an iteratively updated weight distri-
bution rule, not to be confused with the voting weights.
Learn++, however, combines all classifiers at each iteration
to obtain a composite hypothesis before updating the distri-
bution. The distribution update rule of Learn++ is then based
on the performance of this composite hypothesis, which
represents the performance of the entire ensemble that has
been generated thus far. The distribution weights of those in-
stances that are correctly identified by the ensemble are re-
duced. This distribution update rule is designed specifically
to accommodate incremental learning of additional datasets,
especially those that introduce previously unseen classes.
The pseudocode of the algorithm is given in Fig.1.

For each database Dk, k= 1,…,K that becomes available,
the inputs to Learn++ are: (1) labeled training data Sk={[(xi,
yi)], i=1,…,mk}, where xi is the training instance and yi is the
correct label; (2) a weak learning algorithm BaseClassifier;
and (3) an integer Tk, the total number of weak classifiers to
be generated. The BaseClassifier can be any supervised algo-

rithm that can obtain a minimum of 50% classification per-
formance on training data, ensuring the classifier is relatively
weak, yet reasonably strong to have a meaningful perform-
ance. Using a weak classifier has the additional advantage of
rapid learning, since the time-consuming fine-tuning step,
which could potentially cause overfitting, is avoided.

Unless there is compelling reason to choose otherwise,
the distribution weights are initialized to be uniform, so that
all instances have the same probability of being selected into
the first training subset. If k>1 (that is, new database has
been introduced), a distribution initialization sequence re-
initializes the data distribution (the If block in Fig. 1) based
on the performance of the current ensemble on the new data.

At each iteration t, the distribution Dt is obtained by nor-
malizing the weights wt of the instances based on their indi-
vidual classification by the current ensemble (step 1).

1
()

km

t
i

w i
=

= ∑t tD w (1)

The training dataset Sk is divided into a training (TRt) and
a testing subset (TEt) according to Dt (step 2). Learn++ than
calls BaseClassifier (step 3) and trains it with TRt to generate
a weak hypothesis ht. The error of this hypothesis is calcu-
lated on the current training data Sk by adding the distribution
weights of the misclassified instances (step 4)

[]|)(|)()(
)(: 1

it
yhi

m

i
ttt yhiDiD

t

k

≠== ∑ ∑
≠ =

i
x

xε (2)

where [|•|] is 1 if the predicate is true, and 0 otherwise. If
ε>1/2, current ht is deemed too weak, and is replaced with a
new ht generated from a fresh set of TRt and TEt. If ε<1/2, the
current hypothesis is added to the previous hypotheses and
all hypotheses generated during the previous t iterations are
then combined using the weighted majority voting to con-
struct the composite hypothesis Ht (step 5).

In original Learn++, the voting weights were calculated
based on the error εt, so that hypotheses with lower error
were given higher weights, resulting in classes predicted by
these hypotheses to be weighted more heavily. Since the hy-
pothesis weights are assigned prior to testing based on their
individual training performance, this weight assignment is
suboptimal. This is because, hypotheses are trained with dif-
ferent (and possibly overlapping) portions of the feature
space, and it may not be reasonable to expect a classifier to
perform well on test instances that may come from different
portions of the feature space. This is not likely to be a major
issue when only a single database is used (as in AdaBoost);
however, it is a valid concern in an incremental learning set-
ting. A more optimal rule would be to dynamically estimate
which hypotheses are more likely to correctly classify any
given instance and give them higher voting weights accord-
ingly. Therefore, we modify the expression for composite
hypotheses, representing ensemble decision, as

1132

Input: For each dataset drawn from Dk k=1,2,…,K
• Sequence of mk examples (){ }kiik miyS ,,1|, "== x

• Weak learning algorithm BaseClassifier.
• Integer Tk, specifying the number of iterations.
Do for each k=1,2,…,K:

Initialize kk miimiDiw ,,2,1 , ,1)()(11 "=∀==
If k>1, Go to Step 5, evaluate current ensemble on new data set
 Dk, update weight distribution;

 End If
Do for t = 1,2,...,Tk:

1. Set

1
()

m
t t

i
w i

=
= ∑wtD so that Dt is a distribution.

2. Draw training TRt and testing TEt subsets from Dt.
3. Call BaseClassifier to be trained with TRt.
4. Obtain a hypothesis ht and calculate its error

 ∑
≠

=
it yhi

tt iD
)(:

)(
ix

ε on Sk.

 If εt > ½, discard ht and go to step 2.
5. Call dynamically weighted majority voting (DWMV) to obtain
 the composite hypothesis

∑=
=∈ yht

t
Yy

t
t

DWH
)(:

)(maxarg
x

x

6. Compute the error of the composite hypothesis

[]∑ ≠=∑=
=≠

k

iit

m

i
iitt

yHi
tt yHiDiDE

1)(:
|)(|)()(x

x

 If Et > ½, discard Ht and go to step 2.
7. Set Bt = Et/(1-Et), and update the weights:

|])([|1

1

)(

,1
)(,

)()(

it yH
tt

itt
tt

Biw

otherwise
yHifB

iwiw

≠−

+

×=

⎩
⎨
⎧ =

×=

ix

ix

 End
Call DWMV and output the final hypothesis:

∑ ∑=
= =∈

K

k yht
t

Yy
final

t

DWH
1)(:

)(maxarg)(
x

xx

Fig. 1. Pseudocode for the modified Learn++ algorithm

∑=
=∈ yht

t
Yy

t
t

DWH
)(:

)(maxarg
x

x (3)

where DWt(x) is the dynamic weight assigned to hypothesis
ht for the instance x. As described below, dynamic weights
are determined by using Mahalanobis-distance based esti-
mated likelihood of ht to correctly classify the instance x.
The composite error Et made by Ht, that is, the performance
of the entire ensemble constructed thus far, is then deter-
mined by summing up the distribution weights of all in-
stances misclassified by the ensemble (step6).

[].|)(|)()(
1)(:
∑ ≠=∑=
=≠

k

iit

m

i
iitt

yHi
tt yHiDiDE x

x
 (4)

Finally, the composite normalized error is determined as

100),1(2
1 <<<<−= ttttt BandEEEB (5)

and distribution weights are updated according to the ensem-
ble performance (step 7).

.)(

,1
)(,

)()(

|])([|1

1

it yH
tt

itt
tt

Biw

otherwise
yHifB

iwiw

≠−

+

×=

⎩
⎨
⎧ =

×=

ix

ix
 (6)

This expression reduces the weights of those instances
correctly classified by the composite hypothesis Ht, by a fac-
tor of Bt, while the weights of the misclassified instances are
kept unchanged. At t+1st iteration, after normalization of the
weights in step 1, the probability of choosing previously cor-
rectly classified instances for TRt+1 is reduced, while that of
misclassified instances is effectively increased.

This would be a logical place to pause and point out to
some of the main difference between AdaBoost and
Learn++. The distribution update rule in AdaBoost is based
on the performance of the previous hypothesis [8], which fo-
cuses the algorithm on difficult instances with respect to dif-
ferent sampling of a given single database, whereas that of
Learn++ is based on the performance of the entire ensemble
[4], which focuses this algorithm on instances that carry
novel information with respect to consecutive databases.

This becomes particularly critical when new database in-
troduces instances from a previously unseen class. Since
none of the previous classifiers in the ensemble has seen the
instances from the new class, Ht initially misclassifies them,
forcing the algorithm to focus on these instances that carry
novel information. The procedure would not work nearly as
efficiently, however, if the weight update rule were based on
the performance of ht only (as AdaBoost does) instead of Ht.
This is because the training performance of the first ht on in-
stances from the new class is independent of that of the pre-
viously generated classifiers. Therefore, ht is likely to cor-
rectly classify new class instances that it has just seen, but
only at the time they are first introduced. This would cause
the algorithm to focus on other difficult to learn instances,
such as outliers, rather then the instances with novel informa-
tion content.

Once Tk hypotheses are generated for each database Dk,
the final hypothesis Hfinal can be obtained by combining all
hypotheses by dynamically weighted majority voting, choos-
ing the class that receives the highest total vote among all
hypotheses:

∑ ∑=
= =∈

K

k yht
t

Yy
final

t

DWH
1)(:

)(maxarg)(
x

xx . (7)

The intuition in using dynamically updated voting
weights is as follows: if we knew which hypotheses would
perform best ahead of time, we would give those hypotheses
higher weights. We cannot have this information a priori,

1133

however, we can estimate which classifiers are more likely to
correctly identify a given instance based on the location of
that instance in the feature space with respect to the instances
used to train individual classifiers. If an instance is spatially
close – in a distance metric sense – to the training data used
to train a classifier, then it is reasonable to expect that that
classifier will perform well on the given instance.

We use the class-specific Mahalanobis distance metric to
compute the distance between the training data and the un-
known instance for each classifier. Classifiers whose training
dataset are closer to the unknown instance are weighted
higher. We note that previously seen data need not be stored
in order to compute the desired distances, but only the means
and covariance matrices of the training sets. We formalize
the computation of these weights as follows:

Let us define TRtc as the subset of TRt, the training dataset
used during the tth iteration, to include only those instances
that belongs to class c, that is,

∪
C

c
tctittc TRTRcyTRTR

1
}&|{

=
=∋=∈= ii xx (8)

where C is the total number of classes. Class-specific Maha-
lanobis distance is then computed as,

CcM T
tc ,..,1),()()(1 =−−= −

tctctc mxCmxx (9)

where mtc is the mean and Ctc is the covariance metric of
TRtc. For any instance x, the Mahalanobis distance based dy-
namic weight of the tth

 hypothesis is then computed as

TtCc
M

DW
tc

t ,...,1;,..,1,
))(min(

1)(===
x

x (10)

where T is the total number of hypotheses generated.
The Mahalanobis distance implicitly assumes that the un-

derlying data distribution is Gaussian, which in general is not
the case. Yet it is more informative then other distance met-
rics as it takes the data covariance into consideration, and
provides promising results demonstrating its effectiveness.

 III. SIMULATION RESULTS
In this paper, we present simulation results of Learn++

with dynamic voting weight update along with Learn++ and
Adaboost.M1 on one real world and two benchmark datasets.
All results are given as 95% confidence interval obtained
through 10-fold cross validation. To simulate incremental
learning, the training is done in sessions, where only the
most recently available database is shown to the algorithm
during the current training session (TS).

A. Volatile Organic Compounds (VOC) Database

This database was generated from responses of six quartz
crystal microbalances (QCMs) to various concentrations of
five volatile organic compounds, Ethanol (ET), Octane (OC),
Toluene (TL), Xylene (XL) and Trichloroethylene (TCE).
The database was partitioned into four sets, S1~S3 for train-

ing, where each set introduces one new class, and TEST for
validation. The data distribution is shown in Table 1. The
base classifier used for all three algorithms was a single layer
MLP with just enough hidden layer nodes and a rather toler-
ant error goal to make it a reasonably weak classifier for this
database. Tables 2, 3, and 4 illustrate the percent training and
generalization performances of Learn++ with dynamically
updated voting weights (DUVW), original Learn++ and
Adaboost.M1, respectively, on VOC data, after each training
session, TS1~TS3.

TABLE 1. DATA DISTRIBUTION FOR VOC DATABASE
Dataset ET OC TL TCE XL
S1 20 20 40 0 0
S2 10 10 10 25 0
S3 10 10 10 15 40
TEST 24 24 52 24 40

TABLE 2. DUVW- LEARN++ PERFORMANCE ON VOC DATA
Dataset TS1 TS2 TS3

S1 99.37~100.0 90.65~95.82 81.03~87.47
S2 … 83.65~90.90 85.86~90.14
S3 … … 90.95~94.78

TEST 59.71~60.81 68.39~70.90 86.91~88.60
TABLE 3. ORIGINAL LEARN++ PERFORMANCE ON VOC DATA

Dataset TS1 TS2 TS3
S1 99.19~100.0 76.67~85.57 78.07~81.93
S2 --- 78.43~94.56 77.51~93.49
S3 --- --- 88.65~95.68

TEST 61.70~62.62 67.82~71.50 84.68~88.46
TABLE 4. ADABOOST.M1 PERFORMANCE ON VOC DATA

Dataset TS1 TS2 TS3
S1 100.0 90.82~93.22 75.62~77.88
S2 --- 90.24~93.03 80.79~84.30
S3 --- --- 94.13~94.87

TEST 61.21~61.95 71.67~72.38 81.65~82.58

While all algorithms achieved incremental learning,
Learn++ with dynamically updated voting weights per-
formed best, just slightly better than the original version of
Learn++, and significantly better than Adaboost.M1. It is
also worth noting that the confidence interval of the modified
Learn++ was also narrower than that of its predecessor, indi-
cating less variability and increased stability in the perform-
ance of the modified algorithm.

Tables 2~4 also show some decline in training perform-
ances over three training sessions (on datasets S1~S3). This is
expected due to stability-plasticity dilemma. We note, how-
ever that the loss of previously acquired knowledge – as
measured by training data performance – is much less in the
modified Learn++ then it is in others.

B. Wisconsin Breast Cancer (BC) Database
This database, originally created at The University of

Wisconsin, Madison [16], was obtained from the UCI reposi-

1134

tory [17]. The database consists of nine features and a total of
683 instances from two classes of breast tumors: benign and
malignant. The data distribution is shown in Table 5. The
base classifier was again a MLP type neural network with
similar characteristics as described earlier. Tables 6~8 pre-
sent the 10-fold cross validation percent training and general-
ized performances.

TABLE 5. DATA DISTRIBUTION FOR BC DATA
Dataset Benign Malignant

S1 100 85
S2 104 70

TEST 240 84
TABLE 6. DUVW LEARN++ PERFORMANCE ON BC DATA

Dataset TS1 TS2
S1 93.97~97.92 93.76~96.18
S2 --- 94.35~95.76

TEST 94.82~96.91 98~98.41
TABLE 7. ORIGINAL LEARN++ PERFORMANCE ON BC DATA

Dataset TS1 TS2
S1 94.71~98.01 94.58~96.44
S2 --- 94.83~96.08

TEST 96.34~97.12 97.57~98.17
TABLE 8. ADABOOST.M1 PERFORMANCE ON BC DATA

Dataset TS1 TS3
S1 94.72~98.11 93.99~97.57
S2 --- 94.25~95.63

TEST 94.95~97.76 97.66~98.51

The training and generalization performances in Tables
6~8 indicate that all three algorithms do equally well in
learning additional information if no new classes are intro-
duced. In this application, all algorithms have acquired most
of their knowledge from S1 during the first training session,
however, they were still able to extract incremental amount
of new knowledge from the second dataset, S2. The perform-
ance difference between the modified Learn++, original
Learn++ and AdaBoost.M1 become less significant under
such scenarios, where no new classes are introduced, or no
substantial novel content is provided with the new database.
This is expected, as the main difference between the original
Learn++ and AdaBoost.M1 is the distribution update rule
that is geared towards learning new classes. Similarly, the
modification with the dynamic voting weights becomes more
meaningful when different datasets cover substantially dif-
ferent portions of the feature space, which happens more
drastically when either a new class is introduced, or the new
instances carry substantial amount of novel information con-
tent.

C. Vehicle Silhouettes Database
 Vehicle database was also obtained from the UCI reposi-
tory [17]. This database consists of 18 features in 946 in-
stances from four vehicle classes. This database is known to

be challenging database, as typical performances on various
algorithms on this database has reportedly been around
65~75% on non-incremental learning [17].
 The vehicle database was divided into three training data-
set S1 ~ S3 and one test dataset, TEST. The data distribution is
shown in Table 9, which was specifically biased towards
new classes. Tables 10~12 summarize 10-fold cross valida-
tion percent training and generalization performances of
Learn++ with dynamic voting weight update, Learn++ and
Adaboost.M1, respectively after each training session, TS1 ~
TS3. The base classifier used was again a single layer MLP
type neural network, with similar characteristics as described
above.

TABLE 9. DATA DISTRIBUTION FOR THE VEHICLE DATABASE
Dataset Opel Saab Bus Van

S1 0 70 70 0
S2 120 50 50 0
S3 35 30 30 140

TEST 57 67 68 59
TABLE 10. DUVW LEARN++ PERFORMANCE ON VEHICLE

Dataset TS1 TS2 TS3
S1 88.66~90.34 79.43~86.70 68.18~79.68
S2 --- 72.28~77.17 66.88~73.66
S3 --- --- 82.70~87.43

TEST 47.00~49.09 52.81~55.55 71.79~75.46
TABLE 11. ORIGINAL LEARN++ PERFORMANCE ON VEHICLE

Dataset TS1 TS2 TS3
S1 89.60~92.60 68.81~88.76 60.94~76.78
S2 --- 50.15~70.76 49.24~64.03
S3 --- --- 78.02~86.92

TEST 47.81~49.72 51.57~52.94 68.40~73.20
TABLE 12. ADABOOST.M1 PERFORMANCE ON VEHICLE

Dataset TS1 TS2 TS3
S1 67.20~90.80 55.86~91.57 59.07~83.21
S2 --- 37.59~62.69 40.67~52.88
S3 --- --- 40.63~80.90

TEST 35.37~47.82 44.25~47.47 52.54~63.48

The generalization (TEST) performances in Tables 10~12
indicate that the modified Learn++ has outperformed other
two algorithms both in performance and in the confidence in-
terval of the performance. Based on 10-fold cross validation,
the generalization performance of the modified Learn++ was
in 72~75% range, compared to 68~73% for original Learn++
and 52~63% for AdaBoost.M1. Furthermore, the modified
Learn++ places itself much more favorably along the plastic-
ity – stability spectrum, as it was able to retain significantly
more of its previously acquired knowledge then the other al-
gorithms.

1135

IV. DISCUSSION AND CONCLUSIONS
In this paper, we presented a modified approach to

weighted majority voting rule, where the classifiers are
weighted dynamically for each instance, depending upon the
estimated likelihood of the hypotheses to correctly classify
the unknown instance. The intuitive idea behind this ap-
proach is that the classifier whose training dataset is closest
to the given instance, has more information about that par-
ticular instance and therefore is more likely to classify that
instance correctly.

Simulation results indicate that all three algorithms are
capable of incremental learning; however, the results were
most favorable and promising for the modified Learn++ us-
ing dynamically updated voting weights. We note that the
generalization performances obtained by the modified
Learn++ during incremental learning were very similar, if
not better, then the generalization performances obtained by
several other algorithms on these datasets when used in a
non-incremental learning setting as reported in [16]. Learn-
ing in a non-incremental setting allows the entire data to be
made available to the algorithm at once, which is a much
simpler problem.

The modified Learn++ algorithm exhibited not only a
better generalization performance, but also a significantly
narrower confidence interval. The improved confidence in-
terval is in fact worth attention. This is because a narrower
confidence interval indicates improved stability and robust-
ness, qualities of considerable concern in incremental learn-
ing. In particular, improved generalization performance cou-
pled with a narrower confidence interval is a satisfying out-
come, since this combination places the modified Learn++
very favorably on the stability-plasticity spectrum.

We also run all algorithms multiple times under several
other scenarios, such as changing the order in which the
training data are presented, and changing the base classifier
training parameters (such as number of hidden layer nodes,
error goal, etc.). We have found out that all algorithms are
robust to the order in which the datasets are presented, as
well as to reasonable modifications in the training parame-
ters. Also, none of the algorithms suffer from catastrophic
forgetting, since previously generated classifiers are retained.
Loss of some information is inevitable due to the stability-
plasticity dilemma while new information is being learned.
However, this loss of previously acquired knowledge was
very marginal with the modified Learn++, but most promi-
nent with AdaBoost, when the data introduced significant
amount of novel information content, such as a new class.

We conclude by restating that in applications where the
additional information content is minimal, the performance
differences between the algorithms become less significant.
The promising results of the modified Learn++ with dynami-
cally updated voting weights are most meaningful and bene-
ficial when the algorithm is used under the scenarios for
which it is specifically designed, that is, when the additional
data provide significant novel information content.

ACKNOWLEDGEMENT
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. ECS-0239090,
“CAREER: An Ensemble of Classifiers Approach for Incre-
mental Learning.”

REFERENCES

[1] S. Grossberg, “Nonlinear neural networks: principles, mecha-

nisms and architectures,” Neural Networks, vol.1, no. 1, pp.
17-61, 1988.

[2] M. McCloskey and N. Cohen, “Catastrophic interference in
connectionist networks: the sequential learning problem,” in
The Psychology of Learning and Motivation, G.H. Bower, ed.,
vol. 24, pp. 109-164, Academic Press, San Diego, 1989.

[3] R. French, “Catastrophic forgetting in connectionist networks,”
Trends in Cognitive Sciences, vol. 3, no.4, pp. 128-135, 1999.

[4] R. Polikar, L. Udpa L, S. Udpa, and V. Honavar, “Learn++:
An incremental learning algorithm for supervised neural net-
works,” IEEE Trans. on System, Man and Cybernetics (C),
vol. 31, no. 4, pp. 497-508, 2001.

[5] R. Polikar, J. Byorick, S. Krause, A. Marino, and M. Moreton,
“Learn++: A classifier independent incremental learning algo-
rithm for superv. neural netw.,” Proc. of Int. Joint Conf. on
Neural Networks., vol. 2, pp. 1742-1747, Honolulu, HI, 2002.

[6] R. Polikar, L. Udpa L, S. Udpa, and V. Honavar, “An incre-
mental learning algorithm with confidence estimation for
automated identification of NDE signals,” IEEE Trans.Ul-
traso., Ferro., Freq. Cont., vol. 51, no. 8, pp. 990-1001, 2004.

[7] L. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Trans. on PAMI, vol. 12, no. 10, pp. 993-1001, 1990.

[8] Y. Freund and R. Schapire, “A decision theoretic generaliza-
tion of online learning and an appli. to boosting,” Comp. and
System Sciences, vol. 57, no. 1, pp. 119-139, 1997.

[9] N. Littlestone and M. Warmuth, “Weighted majority algo-
rithm,” Infor. and Comput., vol. 108, pp. 212-261, 1994.

[10] M.I. Jordan and R.A. Jacobs, “Hierarchical mixtures of experts
and the EM algorithm,” Neural Computation, vol. 6, no. 2, pp.
181-214, 1994.

[11] J. Kittler, M. Hatef, R.P. Duin, J. Matas, “On combining clas-
sifiers,” IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, vol. 20, no.3, pp. 226-239, 1998.

[12] L. Breiman, “Combining predictors,” Combining Artificial
Neural Nets, A.Sharkey, ed., pp. 31-50, NY: Springer 1999.

[13] T. Dietterich, “Ensemble methods in machine learning,” Proc.
1st Int. Wkshop on Mult. Class. Sys., LNCS , J. Kitler, F. Roli,
ed., vol. 1857, pp.1-15, NY, Springer. 2000.

[14] J. Ghosh, “Multiclassifier systems: back to the future,” 3rd Int.
Work. on Mult. Classifier Sys., LNCS (J. Kitler & F. Roli, eds),
vol. 2364, p. 1-15, NY: Springer, 2002.

[15] T. Windeatt and F. Roli (eds), In Proc. 4th Int. Workshop on
MCS, LNCS, vol. 2709, NY, Springer, 2003.

[16] W. H. Wolberg and O.L. Mangasarian, “Multisurface method
of pattern separation for medical diagnosis applied to breast
cytology,” Proc. of the National Academy of Sciences, vol. 87,
pp 9193-9196, 1990.

[17] C.L. Blake and C.J. Merz, Univ. of California, Irvine, Reposi-
tory of Machine Learning Databases at Irvine, CA.

1136

	Main Menu
	Frontmatter
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Search Results
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

