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Abstract - We have previously introduced Learn++, an ensem-
ble based incremental learning algorithm for acquiring new 
knowledge from data that later become available, even when 
such data introduce new classes. In this paper, we describe a 
modification to this algorithm, where the voting weights of the 
classifiers are updated dynamically based on the location of the 
test input in the feature space. The new algorithm provides im-
proved performance, stronger immunity to catastrophic forget-
ting and finer balance to the stability-plasticity dilemma than its 
predecessor, particularly when new classes are introduced. The 
modified algorithm and its performance, as compared to 
Adaboost.M1 and the original Learn++, on real and benchmark 
datasets are presented. 

I. INTRODUCTION 

A. Incremental Learning 
Supervised classifiers are effective and powerful learning 

tools for pattern recognition and machine learning applica-
tions. As most machine learning and pattern recognition pro-
fessionals are painfully aware of, however, the generalization 
performance of any learning algorithm relies heavily on ade-
quate and representative training data. Since data collection 
is an expensive, time consuming and a tedious process for 
most practical applications, such data are often acquired in 
small batches over time. Waiting for the entire dataset to be 
available for training may prove ineffective, uneconomical 
and inflexible. In such cases, it would be more desirable to 
train a classifier on available data and incrementally update 
the classifier as new data become available, without com-
promising the performance on previously learned data. 

Learning new data incrementally without forgetting pre-
viously acquired knowledge raises the issue of stability-
plasticity dilemma [1]: acquiring new knowledge requires 
plasticity, whereas retaining previously acquired knowledge 
requires stability. The challenge is then to achieve a mean-
ingful balance between these two conflicting properties. 

Many of the commonly used supervised classifiers such 
as multilayer perceptron (MLP), radial basis function, prob-
abilistic neural networks, etc. are “very stable” classifiers, 
unable to learn new information. The practical approach gen-

erally taken with these classifiers for incremental learning is 
to discard the previously trained classifier, combine and use 
the entire training data accumulated thus far to create a new 
classifier from scratch. This approach effectively causes the 
previously learned information to be entirely lost, a phe-
nomenon known as catastrophic forgetting [2,3].  

For the purpose of this work, we define an incremental 
learning algorithm as one that has: (1) the capability of learn-
ing novel information content from consecutive datasets 
without requiring access to previously used data; (2) the ca-
pability of retaining previously learned knowledge; and (3) 
the ability to learn new classes introduced by new datasets. 

Learn++, based on weighted majority voting of an en-
semble of classifiers, satisfies the above listed criteria for in-
cremental learning, yet resistant to aforementioned draw-
backs [4, 5, 6]. In essence, the idea is to generate an ensem-
ble of classifiers with the initial data, and generate additional 
classifiers as new datasets are acquired. We have recently no-
ticed that the way in which the voting weights are assigned to 
classifiers based on their performance during training is 
suboptimal, because these weights are set during training and 
remain constant thereafter. A dynamic approach that assigns 
voting weights to classifiers based on the estimated perform-
ance of each classifier on that instance may be more optimal.  

B. Ensemble of Classifiers and Weighted Majority Voting 
Ensemble approaches have drawn much interest since 

Hansen and Salamon’s seminal work [7]. In essence, a group 
of classifiers are trained using different distributions of train-
ing samples, and outputs of these classifiers are then com-
bined in some manner to obtain the final classification rule.  

Learn++ uses the synergistic power of such an ensemble 
for incremental learning of novel content provided by con-
secutive datasets. The algorithm was inspired from Freund 
and Schapire’s adaptive boosting (Adaboost.M1) algorithm 
[8], which also was originally proposed for improving the 
performance of weak classifiers. It is based on the weighted 
majority voting [9] of hypotheses that are generated by se-
quentially training a set of weak classifiers on different dis-
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tributions of the training data. Using weak classifiers allow 
different classifiers to make different errors, a combination 
of which through weighted majority voting then effectively 
averages out the individual errors resulting in a stronger clas-
sifier with a much improved generalization performance.  

The original version of Learn++ followed the AdaBoost 
approach in determining voting weights, which were as-
signed during training depending on the classifiers’ perform-
ance on their own training data. While this approach makes 
perfect sense when the entire data come from the same data-
base, it does have a handicap when used in an incremental 
learning setting: since each classifier is trained to recognize 
(slightly) different portions of the feature space, classifiers 
performing well on a region represented by their training 
data may not do so well when classifying instances coming 
from different regions of the space. Therefore, assigning vot-
ing weights primarily on the training performance of each 
classifier is suboptimal. Estimating the potential performance 
of a classifier on a test instance using a statistical distance 
metric, and assigning voting weights based on these esti-
mates may be more optimal. In this paper, we present a 
modified version of Learn++ along with its simulation results 
as compared to the original Learn++ to show the improve-
ment on generalization performance and stability in incre-
mentally learning new information content. Also new in this 
study, we evaluate AdaBoost for incremental learning and 
compare it both versions of Learn++. We show that, while 
not originally intended for such applications, AdaBoost is 
capable of incremental learning, albeit with a lower perform-
ance, efficiency and stability then either versions of Learn++.  

Overviews of other ensemble and classifier combination 
techniques can be found in [10~15] and references within. 

II. LEARN++ WITH DYNAMICALLY UPDATED  
VOTING WEIGHTS 

Learn++, similar to AdaBoost, generates an ensemble of 
weak classifiers by choosing a subset of the training data 
from the database using an iteratively updated weight distri-
bution rule, not to be confused with the voting weights. 
Learn++, however, combines all classifiers at each iteration 
to obtain a composite hypothesis before updating the distri-
bution. The distribution update rule of Learn++ is then based 
on the performance of this composite hypothesis, which 
represents the performance of the entire ensemble that has 
been generated thus far. The distribution weights of those in-
stances that are correctly identified by the ensemble are re-
duced. This distribution update rule is designed specifically 
to accommodate incremental learning of additional datasets, 
especially those that introduce previously unseen classes. 
The pseudocode of the algorithm is given in Fig.1. 

For each database Dk, k= 1,…,K that becomes available, 
the inputs to Learn++ are: (1) labeled training data Sk={[(xi, 
yi)], i=1,…,mk}, where xi is the training instance and yi is the 
correct label; (2) a weak learning algorithm BaseClassifier; 
and (3) an integer Tk, the total number of weak classifiers to 
be generated. The BaseClassifier can be any supervised algo-

rithm that can obtain a minimum of 50% classification per-
formance on training data, ensuring the classifier is relatively 
weak, yet reasonably strong to have a meaningful perform-
ance. Using a weak classifier has the additional advantage of 
rapid learning, since the time-consuming fine-tuning step, 
which could potentially cause overfitting, is avoided.  

Unless there is compelling reason to choose otherwise, 
the distribution weights are initialized to be uniform, so that 
all instances have the same probability of being selected into 
the first training subset. If k>1 (that is, new database has 
been introduced), a distribution initialization sequence re-
initializes the data distribution (the If block in Fig. 1) based 
on the performance of the current ensemble on the new data. 

At each iteration t, the distribution Dt is obtained by nor-
malizing the weights wt of the instances based on their indi-
vidual classification by the current ensemble (step 1). 
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The training dataset Sk is divided into a training (TRt) and 
a testing subset (TEt) according to Dt (step 2). Learn++ than 
calls BaseClassifier (step 3) and trains it with TRt to generate 
a weak hypothesis ht. The error of this hypothesis is calcu-
lated on the current training data Sk by adding the distribution 
weights of the misclassified instances (step 4) 
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where [|•|] is 1 if the predicate is true, and 0 otherwise. If 
ε>1/2, current ht is deemed too weak, and is replaced with a 
new ht generated from a fresh set of TRt and TEt. If ε<1/2, the 
current hypothesis is added to the previous hypotheses and 
all hypotheses generated during the previous t iterations are 
then combined using the weighted majority voting to con-
struct the composite hypothesis Ht (step 5).  

In original Learn++, the voting weights were calculated 
based on the error εt, so that hypotheses with lower error 
were given higher weights, resulting in classes predicted by 
these hypotheses to be weighted more heavily. Since the hy-
pothesis weights are assigned prior to testing based on their 
individual training performance, this weight assignment is 
suboptimal. This is because, hypotheses are trained with dif-
ferent (and possibly overlapping) portions of the feature 
space, and it may not be reasonable to expect a classifier to 
perform well on test instances that may come from different 
portions of the feature space. This is not likely to be a major 
issue when only a single database is used (as in AdaBoost); 
however, it is a valid concern in an incremental learning set-
ting. A more optimal rule would be to dynamically estimate 
which hypotheses are more likely to correctly classify any 
given instance and give them higher voting weights accord-
ingly. Therefore, we modify the expression for composite 
hypotheses, representing ensemble decision, as 
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Input: For each dataset drawn from Dk k=1,2,…,K   
• Sequence of mk examples ( ){ }kiik miyS ,,1|, "== x  

• Weak learning algorithm BaseClassifier. 
• Integer Tk, specifying the number of iterations. 
Do for each k=1,2,…,K: 

Initialize kk miimiDiw ,,2,1  ,  ,1)()( 11 "=∀==   
If k>1, Go to Step 5, evaluate current ensemble on new data set      
   Dk, update weight distribution;   

      End If 
Do for t = 1,2,...,Tk: 

1. Set 
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= ∑wtD so that Dt is a distribution. 

2. Draw training TRt and testing TEt subsets from Dt.  
3. Call BaseClassifier to be trained with TRt. 
4. Obtain a hypothesis ht and calculate its error  
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     If εt  > ½,  discard ht and go to step 2.  
5. Call dynamically weighted majority voting (DWMV) to obtain 
     the composite hypothesis  
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            If Et > ½, discard Ht and go to step 2. 
7. Set Bt = Et/(1-Et), and update the weights: 
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    End 
Call DWMV and output the final hypothesis: 
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Fig. 1. Pseudocode for the modified Learn++ algorithm 

∑=
=∈ yht

t
Yy

t
t

DWH
)(:

)(maxarg
x

x   (3)

where DWt(x) is the dynamic weight assigned to hypothesis 
ht for the instance x. As described below, dynamic weights 
are determined by using Mahalanobis-distance based esti-
mated likelihood of ht to correctly classify the instance x. 
The composite error Et made by Ht, that is, the performance 
of the entire ensemble constructed thus far, is then deter-
mined by summing up the distribution weights of all in-
stances misclassified by the ensemble (step6). 
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Finally, the composite normalized error is determined as 
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and distribution weights are updated according to the ensem-
ble performance (step 7). 
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This expression reduces the weights of those instances 
correctly classified by the composite hypothesis Ht, by a fac-
tor of Bt, while the weights of the misclassified instances are 
kept unchanged.  At t+1st iteration, after normalization of the 
weights in step 1, the probability of choosing previously cor-
rectly classified instances for TRt+1 is reduced, while that of 
misclassified instances is effectively increased.  

This would be a logical place to pause and point out to 
some of the main difference between AdaBoost and 
Learn++. The distribution update rule in AdaBoost is based 
on the performance of the previous hypothesis [8], which fo-
cuses the algorithm on difficult instances with respect to dif-
ferent sampling of a given single database, whereas that of 
Learn++ is based on the performance of the entire ensemble 
[4], which focuses this algorithm on instances that carry 
novel information with respect to consecutive databases. 

This becomes particularly critical when new database in-
troduces instances from a previously unseen class. Since 
none of the previous classifiers in the ensemble has seen the 
instances from the new class, Ht initially misclassifies them, 
forcing the algorithm to focus on these instances that carry 
novel information. The procedure would not work nearly as 
efficiently, however, if the weight update rule were based on 
the performance of ht only (as AdaBoost does) instead of Ht. 
This is because the training performance of the first ht on in-
stances from the new class is independent of that of the pre-
viously generated classifiers. Therefore, ht is likely to cor-
rectly classify new class instances that it has just seen, but 
only at the time they are first introduced. This would cause 
the algorithm to focus on other difficult to learn instances, 
such as outliers, rather then the instances with novel informa-
tion content. 

Once Tk hypotheses are generated for each database Dk, 
the final hypothesis Hfinal can be obtained by combining all 
hypotheses by dynamically weighted majority voting, choos-
ing the class that receives the highest total vote among all 
hypotheses: 
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The intuition in using dynamically updated voting 
weights is as follows: if we knew which hypotheses would 
perform best ahead of time, we would give those hypotheses 
higher weights. We cannot have this information a priori, 
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however, we can estimate which classifiers are more likely to 
correctly identify a given instance based on the location of 
that instance in the feature space with respect to the instances 
used to train individual classifiers. If an instance is spatially 
close – in a distance metric sense – to the training data used 
to train a classifier, then it is reasonable to expect that that 
classifier will perform well on the given instance.  

We use the class-specific Mahalanobis distance metric to 
compute the distance between the training data and the un-
known instance for each classifier. Classifiers whose training 
dataset are closer to the unknown instance are weighted 
higher. We note that previously seen data need not be stored 
in order to compute the desired distances, but only the means 
and covariance matrices of the training sets. We formalize 
the computation of these weights as follows: 

Let us define TRtc as the subset of TRt, the training dataset 
used during the tth iteration, to include only those instances 
that belongs to class c, that is, 
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where C is the total number of classes. Class-specific Maha-
lanobis distance is then computed as, 
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where mtc is the mean and Ctc is the covariance metric of 
TRtc. For any instance x, the Mahalanobis distance based dy-
namic weight of the tth

 hypothesis is then computed as 
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where T is the total number of hypotheses generated. 
The Mahalanobis distance implicitly assumes that the un-

derlying data distribution is Gaussian, which in general is not 
the case.  Yet it is more informative then other distance met-
rics as it takes the data covariance into consideration, and 
provides promising results demonstrating its effectiveness. 

 III. SIMULATION RESULTS 
In this paper, we present simulation results of Learn++ 

with dynamic voting weight update along with Learn++ and 
Adaboost.M1 on one real world and two benchmark datasets. 
All results are given as 95% confidence interval obtained 
through 10-fold cross validation. To simulate incremental 
learning, the training is done in sessions, where only the 
most recently available database is shown to the algorithm 
during the current training session (TS).  

A. Volatile Organic Compounds (VOC) Database 

This database was generated from responses of six quartz 
crystal microbalances (QCMs) to various concentrations of 
five volatile organic compounds, Ethanol (ET), Octane (OC), 
Toluene (TL), Xylene (XL) and Trichloroethylene (TCE). 
The database was partitioned into four sets, S1~S3 for train-

ing, where each set introduces one new class, and TEST for 
validation. The data distribution is shown in Table 1. The 
base classifier used for all three algorithms was a single layer 
MLP with just enough hidden layer nodes and a rather toler-
ant error goal to make it a reasonably weak classifier for this 
database. Tables 2, 3, and 4 illustrate the percent training and 
generalization performances of Learn++ with dynamically 
updated voting weights (DUVW),  original Learn++ and 
Adaboost.M1, respectively, on VOC data, after each training 
session, TS1~TS3. 

TABLE 1. DATA DISTRIBUTION FOR VOC DATABASE 
Dataset ET OC TL TCE XL 
S1 20 20 40 0 0 
S2 10 10 10 25 0 
S3 10 10 10 15 40 
TEST 24 24 52 24 40 

TABLE  2. DUVW- LEARN++ PERFORMANCE ON VOC DATA 
Dataset TS1 TS2 TS3 

S1 99.37~100.0 90.65~95.82 81.03~87.47 
S2 … 83.65~90.90 85.86~90.14 
S3 … … 90.95~94.78 

TEST 59.71~60.81 68.39~70.90 86.91~88.60 
TABLE 3. ORIGINAL LEARN++ PERFORMANCE ON VOC DATA 

Dataset TS1 TS2 TS3 
S1 99.19~100.0 76.67~85.57 78.07~81.93 
S2 --- 78.43~94.56 77.51~93.49 
S3 --- --- 88.65~95.68 

TEST 61.70~62.62 67.82~71.50 84.68~88.46 
TABLE 4. ADABOOST.M1 PERFORMANCE ON VOC DATA 

Dataset TS1 TS2 TS3 
S1 100.0 90.82~93.22 75.62~77.88 
S2 --- 90.24~93.03 80.79~84.30 
S3 --- --- 94.13~94.87 

TEST 61.21~61.95 71.67~72.38 81.65~82.58 

While all algorithms achieved incremental learning, 
Learn++ with dynamically updated voting weights per-
formed best, just slightly better than the original version of 
Learn++, and significantly better than Adaboost.M1. It is 
also worth noting that the confidence interval of the modified 
Learn++ was also narrower than that of its predecessor, indi-
cating less variability and increased stability in the perform-
ance of the modified algorithm. 

Tables 2~4 also show some decline in training perform-
ances over three training sessions (on datasets S1~S3). This is 
expected due to stability-plasticity dilemma. We note, how-
ever that the loss of previously acquired knowledge – as 
measured by training data performance – is much less in the 
modified Learn++ then it is in others. 

B. Wisconsin Breast Cancer (BC) Database 
This database, originally created at The University of 

Wisconsin, Madison [16], was obtained from the UCI reposi-
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tory [17]. The database consists of nine features and a total of 
683 instances from two classes of breast tumors: benign and 
malignant. The data distribution is shown in Table 5. The 
base classifier was again a MLP type neural network with 
similar characteristics as described earlier. Tables 6~8 pre-
sent the 10-fold cross validation percent training and general-
ized performances. 

TABLE 5. DATA DISTRIBUTION FOR BC DATA 
Dataset Benign Malignant 

S1 100 85 
S2 104 70 

TEST 240 84 
TABLE 6. DUVW LEARN++  PERFORMANCE ON BC DATA 

Dataset TS1 TS2 
S1 93.97~97.92 93.76~96.18 
S2 --- 94.35~95.76 

TEST 94.82~96.91 98~98.41 
TABLE 7. ORIGINAL LEARN++ PERFORMANCE ON BC DATA 

Dataset TS1 TS2 
S1 94.71~98.01 94.58~96.44 
S2 --- 94.83~96.08 

TEST 96.34~97.12 97.57~98.17 
TABLE 8. ADABOOST.M1 PERFORMANCE ON BC DATA 

Dataset TS1 TS3 
S1 94.72~98.11 93.99~97.57 
S2 --- 94.25~95.63 

TEST 94.95~97.76 97.66~98.51 

The training and generalization performances in Tables 
6~8 indicate that all three algorithms do equally well in 
learning additional information if no new classes are intro-
duced. In this application, all algorithms have acquired most 
of their knowledge from S1 during the first training session, 
however, they were still able to extract incremental amount 
of new knowledge from the second dataset, S2. The perform-
ance difference between the modified Learn++, original 
Learn++ and AdaBoost.M1 become less significant under 
such scenarios, where no new classes are introduced, or no 
substantial novel content is provided with the new database. 
This is expected, as the main difference between the original 
Learn++ and AdaBoost.M1 is the distribution update rule 
that is geared towards learning new classes. Similarly, the 
modification with the dynamic voting weights becomes more 
meaningful when different datasets cover substantially dif-
ferent portions of the feature space, which happens more 
drastically when either a new class is introduced, or the new 
instances carry substantial amount of novel information con-
tent. 

C. Vehicle Silhouettes Database 
 Vehicle database was also obtained from the UCI reposi-
tory [17]. This database consists of 18 features in 946 in-
stances from four vehicle classes. This database is known to  

be challenging database, as typical performances on various  
algorithms on this database has reportedly been around 
65~75% on non-incremental learning [17].  
      The vehicle database was divided into three training data-
set S1 ~ S3 and one test dataset, TEST. The data distribution is 
shown in Table 9, which was specifically biased towards 
new classes. Tables 10~12 summarize 10-fold cross valida-
tion percent training and generalization performances of 
Learn++ with dynamic voting weight update, Learn++ and 
Adaboost.M1, respectively  after each training session, TS1 ~ 
TS3. The base classifier used was again a single layer MLP 
type neural network, with similar characteristics as described 
above.  

TABLE 9. DATA DISTRIBUTION FOR THE VEHICLE DATABASE 
Dataset Opel Saab Bus Van 

S1 0 70 70 0 
S2 120 50 50 0 
S3 35 30 30 140 

TEST 57 67 68 59 
TABLE 10. DUVW LEARN++ PERFORMANCE ON VEHICLE  

Dataset TS1 TS2 TS3 
S1 88.66~90.34 79.43~86.70 68.18~79.68 
S2 --- 72.28~77.17 66.88~73.66 
S3 --- --- 82.70~87.43 

TEST 47.00~49.09 52.81~55.55 71.79~75.46 
TABLE 11. ORIGINAL LEARN++ PERFORMANCE ON VEHICLE 

Dataset TS1 TS2 TS3 
S1 89.60~92.60 68.81~88.76 60.94~76.78 
S2 --- 50.15~70.76 49.24~64.03 
S3 --- --- 78.02~86.92 

TEST 47.81~49.72 51.57~52.94 68.40~73.20 
TABLE 12. ADABOOST.M1 PERFORMANCE ON VEHICLE  

Dataset TS1 TS2 TS3 
S1 67.20~90.80 55.86~91.57 59.07~83.21 
S2 --- 37.59~62.69 40.67~52.88 
S3 --- --- 40.63~80.90 

TEST 35.37~47.82 44.25~47.47 52.54~63.48 

The generalization (TEST) performances in Tables 10~12 
indicate that the modified Learn++ has outperformed other 
two algorithms both in performance and in the confidence in-
terval of the performance. Based on 10-fold cross validation, 
the generalization performance of the modified Learn++ was 
in 72~75% range, compared to 68~73% for original Learn++ 
and 52~63% for AdaBoost.M1. Furthermore, the modified 
Learn++ places itself much more favorably along the plastic-
ity – stability spectrum, as it was able to retain significantly 
more of its previously acquired knowledge then the other al-
gorithms.
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IV. DISCUSSION AND CONCLUSIONS 
In this paper, we presented a modified approach to 

weighted majority voting rule, where the classifiers are 
weighted dynamically for each instance, depending upon the 
estimated likelihood of the hypotheses to correctly classify 
the unknown instance. The intuitive idea behind this ap-
proach is that the classifier whose training dataset is closest 
to the given instance, has more information about that par-
ticular instance and therefore is more likely to classify that 
instance correctly.  

Simulation results indicate that all three algorithms are 
capable of incremental learning; however, the results were 
most favorable and promising for the modified Learn++ us-
ing dynamically updated voting weights. We note that the 
generalization performances obtained by the modified 
Learn++ during incremental learning were very similar, if 
not better, then the generalization performances obtained by 
several other algorithms on these datasets when used in a 
non-incremental learning setting as reported in [16]. Learn-
ing in a non-incremental setting allows the entire data to be 
made available to the algorithm at once, which is a much 
simpler problem.   

The modified Learn++ algorithm exhibited not only a 
better generalization performance, but also a significantly 
narrower confidence interval. The improved confidence in-
terval is in fact worth attention. This is because a narrower 
confidence interval indicates improved stability and robust-
ness, qualities of considerable concern in incremental learn-
ing. In particular, improved generalization performance cou-
pled with a narrower confidence interval is a satisfying out-
come, since this combination places the modified Learn++ 
very favorably on the stability-plasticity spectrum. 

We also run all algorithms multiple times under several 
other scenarios, such as changing the order in which the 
training data are presented, and changing the base classifier 
training parameters (such as number of hidden layer nodes, 
error goal, etc.). We have found out that all algorithms are 
robust to the order in which the datasets are presented, as 
well as to reasonable modifications in the training parame-
ters. Also, none of the algorithms suffer from catastrophic 
forgetting, since previously generated classifiers are retained. 
Loss of some information is inevitable due to the stability-
plasticity dilemma while new information is being learned. 
However, this loss of previously acquired knowledge was 
very marginal with the modified Learn++, but most promi-
nent with AdaBoost, when the data introduced significant 
amount of novel information content, such as a new class. 

We conclude by restating that in applications where the 
additional information content is minimal, the performance 
differences between the algorithms become less significant. 
The promising results of the modified Learn++ with dynami-
cally updated voting weights are most meaningful and bene-
ficial when the algorithm is used under the scenarios for 
which it is specifically designed, that is, when the additional 
data provide significant novel information content.  
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