
Learning Concept Drift in Nonstationary Environments Using
an Ensemble of Classifiers Based Approach

Matthew Karnick, Metin Ahiskali, Michael D. Muhlbaier and Robi Polikar*

1Abstract –We describe an ensemble of classifiers based
approach for incrementally learning from new data
drawn from a distribution that changes in time, i.e.,
data obtained from a nonstationary environment. Spe-
cifically, we generate a new classifier using each addi-
tional dataset that becomes available from the chang-
ing environment. The classifiers are combined by a
modified weighted majority voting, where the weights
are dynamically updated based on the classifiers’ cur-
rent and past performances, as well as their age. This
mechanism allows the algorithm to track the changing
environment by weighting the most recent and relevant
classifiers higher. However, it also utilizes old classifi-
ers by assigning them appropriate voting weights
should a cyclical environment renders them relevant
again. The algorithm learns incrementally, i.e., it does
not need access to previously used data. The algorithm
is also independent of a specific classifier model, and
can be used with any classifier that fits the characteris-
tics of the underlying problem. We describe the algo-
rithm, and compare its performance using several clas-
sifier models, and on different environments as a func-
tion of time for several values of rate-of-change.

I. INTRODUCTION

particularly challenging problem in computational
intelligence is the ability of a classifier to learn from

incrementally updated data drawn from a nonstationary
environment, where the underlying data distribution
changes in time. Solving this problem requires an algo-
rithm that can track such changes and update the decision
boundaries accordingly. Further complication arises if pre-
viously learned information is still partially relevant, yet
the data it generated is no longer available. Such a scena-
rio requires an incremental learning algorithm that strikes
a very fine balance between stability and plasticity. The
stability allows the algorithm to retain any information that
is still relevant, whereas the stability allows the algorithm
to acquire new knowledge. These two requirements are
often conflicting in nature, and therefore known as the sta-
bility-plasticity dilemma [1].

Perhaps due to lack of a standard and formal definition
of the problem, or perhaps due to the inherent difficulty of
the problem, learning in nonstationary environments (NSE)
has traditionally received relatively little attention from the
computational intelligence and machine learning commun-
ities. A vast majority of the machine learning research has
focused, instead, on developing and optimizing a variety

Manuscript received December 15, 2007. This work was
supported by the National Science Foundation under Grant No:
ECS 0239090.

Authors are with the Electrical and Computer Engineering
Department, Rowan University, Glassboro, NJ 08028 USA.
*Corresponding author: R. Polikar (e-mail: polikar@rowan.edu).

of algorithms that make one fundamental assumption: the
data are drawn from a fixed but unknown distribution.

There is, however, an increasing level of interest in
nonstationary learning problems, which may in part be due
to many challenging applications for which traditional al-
gorithms have been shown to be suboptimal. Such applica-
tions include spam or fraud detection, analysis of long
term financial, epidemiological, climate or demographic
data. In all such applications, the distribution that gene-
rates the data is known to change – or drift – over time, a
phenomenon also known as concept drift.

Consider an environment from which we obtain a se-
ries of data in batches over a period of time. We say that
the environment is nonstationary – and hence there is
concept drift – if there is any alteration in the underlying
data distribution between any two consecutive time steps.
The drift in the concepts (i.e., classes, or class boundaries
for classification problems) can be gradual or abrupt, de-
terministic or random, contracting or expanding, and even
cyclical. It is clear, however, some restrictions must be
imposed on the concept change for the concept to be lear-
nable – after all, no classifier can learn a function that
changes entirely at random. Earliest work in NSE learning
has therefore explored different types of nonstationary
learning, and identifying the types of nonstationary envi-
ronments that can in fact be learned [2-5]. For example, it
was shown that concept drift can be learned if either the
amount [2] or the rate [3] of drift is restricted. Then, a
typical concept drift algorithm needs to implement one or
more of the following procedures: i) detect that there is a
drift; ii) detect its magnitude; iii) adjust its parameters to
learn the (drifted) new concept; and iv) forget what is no
longer relevant.

A commonly used approach is to use a sliding window
on incoming data, and train a new classifier with the latest
data that fall within the window. In this case, it is assumed
that the rate of change is slow enough that the data within
the window does not exhibit any drift. Such an assumption
is of course not usually met in practice. A variation of this
approach is then to use a variable length window, as in the
FLORA family of algorithms [5;6]. The approach has a
built-in forgetting mechanism: only those instances that
fall within the current window are deemed relevant, and
hence any information carried by those samples that fall
outside of the current data window is automatically for-
gotten. A related approach is to determine which previous
instances are most similar to the current batch of instances,
and train the current classifier on all such instances [7],
which may also be weighted based on their estimated re-
levance. This approach, also called instance selection /
weighting, is also similar to that of partial memory learn-
ing [8], where only those instances that are believed to be
the most relevant are used for training.

Other approaches include novelty detection to deter-
mine when concept drift occurs [9-11], or treating the

A

3455

978-1-4244-1821-3/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

concept drift as a prediction problem and use an adaptive
neural network that can adjust its parameters according to
the environment [12]. An overview of these approaches
can be found in [13].

A relatively new group of algorithms used for nonsta-
tionary learning is the ensemble of classifiers, or multiple
classifier systems (MCS) based approaches. These algo-
rithms use more than one classifier to track the changing
environment. The aforementioned algorithms, such as
FLORA, also create multiple classifiers, since a new clas-
sifier is generated as new data become available. However,
these algorithms do not constitute MCS based approaches,
since only one classifier (specifically the one generated
last) is used for classification.

In her recent review [14], Kuncheva puts MCS based
approaches into one of three general categories: (i) a fixed
ensemble whose combination rules (weights) are changed
based on the changing environment (dynamic combiners),
as in Winnow [15]; (ii) the new data is used to update the
parameters or members of an online learning algorithm, as
in Oza’s online boosting [16]; and/or (iii) alter the struc-
ture of the ensemble by adding new members to an exist-
ing ensemble, such as Nishida’s adaptive classifier ensem-
ble (ACE) which uses a combination of online and batch
classifiers [17], or replace the least contributing ensemble
members with a new one generated based on new data,
such as Street’s streaming ensemble algorithm (SEA) and
Kolter’s dynamic weighted majority (DWM) [18;19].

Recently, we introduced an alternative MCS based ap-
proach, that can perhaps best described as a hybrid of the
above listed strategies [20;21]. Specifically, we use new
data to create new ensemble members, but we also adjust
the combination rule based on the errors of the existing
classifiers on the new data. The algorithm does not use any
of the previously seen data to ensure that the algorithm
remains truly incremental, and instead relies on the earlier
classifiers to refer to previously learned but still relevant
information. Furthermore, the algorithm does not discard
any of the previously generated classifiers, in case those
classifiers become relevant again should there be a cyclical
change in the distribution. We call this algorithm
Learn++.NSE, which is based on our previously introduced
– and AdaBoost inspired [22] – incremental learning algo-
rithm Learn++ [23].

In this paper, we describe the algorithm and evaluate
its performance on several scenarios, where we alter the
rate-of-change of the environment, as well as the base
classifier model used to train the ensembles. We show that
the algorithm closely tracks the performance of the optim-
al Bayes classifier, and routinely beats a single classifier
that is trained on the latest training dataset.

II. LEARN++.NSE

A. An overview of the algorithm

We begin with the specific interpretation of concept
drift as it is used in this paper. The learning algorithm is
provided with a series of training datasets ���

�
� �� ��

�
�

��� � � ��� ���, where t is an index on the changing en-
vironments; hence ��

� is the ith instance obtained from the
tth dataset (environment), drawn from an unknown distri-
bution �������, which is the current snapshot of a possi-
bly drifting distribution at time t. At time t +1, we obtain a
new training dataset drawn from ���������. At each time

step there may or may not have been a change in the envi-
ronment, and if there were, the rate of this change is not
known, nor assumed constant. Furthermore, we presume
previously seen datasets – whether any of them is still re-
levant or not – are no longer available, or storing previous
data is not possible or not allowed. Hence, we require the
algorithm to work in an incremental fashion. Note that
most instance selection or instance weighting approaches
do not make this restriction. Any information previously
provided by earlier data must necessarily be stored in the
parameters of the previously generated classifiers.

Based on this description of the nonstationary envi-
ronment, the proposed algorithm Learn++.NSE generates a
new classifier every time a new dataset becomes available.
Note that the algorithm does not use a sliding window to
choose the instances, nor does it fix the number of in-
stances used to train each classifier. Perhaps more impor-
tantly, unlike most other algorithms, Learn++.NSE does not
permanently discard any of the older classifiers based on
their age or even on their current performance.

Instead, Learn++.NSE employs a dynamically updated
weighted majority voting for combining the classifiers,
strategically controls which classifiers are allowed to vote
in the final decision, and by how much. While the previous
datasets are not stored or used, the performance of the
classifiers on previous datasets are stored. The voting
weights are then determined by a weighted average of the
classifiers’ individual performances on current and past
datasets, where current environments are more heavily
weighted using a sigmoid-type weighting function. Hence,
rather than removing previously generated classifiers, their
voting weights are reduced or even (temporarily) nullified
if their performance on the current data fall below a certain
threshold. This approach then allows the algorithm to use
older classifiers, which may become useful again if a cyc-
lical environment returns to its earlier states, or if only
some of the class conditional distributions experience
concept drift. In such cases, Learn++.NSE recognizes the
relevance of earlier classifiers, and awards them with
higher weights.

Consequently, the change in the environment is tracked
not only by the addition of new classifiers, but also by the
dynamic adjustment of the voting weights of the existing
classifiers. We describe the algorithm in detail in the next
section, whose pseudocode is given in Figure 1.

B. Algorithm description

The algorithm has two inputs: a supervised classifica-
tion algorithm, BaseClassifier, to train individual classifi-
ers, and the training data �

� drawn from the current dis-
tribution�������� at time t. The training dataset �� of
cardinality mt serves as a snapshot of the current environ-
ment. As mentioned above, we assume that the distribution
������� has changed, in some manner and rate unknown
us, since the previous distribution ���������.

Learn++.NSE maintains a distribution ����� over the
training data instances ��. �

����� is initialized to be uni-
form giving equal probability to each instance being drawn
from the first dataset. When new data arrives at time t, the
algorithm generates one new classifier ht, which is then
combined with all previous classifiers to create the com-
posite hypothesis Ht. The decision of Ht serves as the en-
semble decision. Before a new ht is trained, however,
Learn++.NSE first evaluates the classification performance

3456 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

of the currently available composite hypothesis Ht-1 on the
new dataset ��. This represents the existing ensemble’s
knowledge of the current environment. The error of the
composite hypothesis, Et, is computed on the new dataset,
which is then used to update the distribution weights (steps
1 and 2 within the Do loop in Figure 1). The distribution
update rule decreases the probability of the correctly clas-
sified instances being selected into the next training set,
since that part of the feature space covered by those in-
stances are already known by the ensemble. The new
training dataset for the next classifier is then drawn from
this distribution, which then focuses on those instances
that are not yet learned by the current ensemble.

Input: For each dataset �����	 � ���� �

Training data ���� � ����� � � � ��� � �
��� � � ��� ���.
Supervised learning algorithm BaseClassifier
Do for 	 � ���� �

If � ���� Initialize ����� � ����� � �����, ��, ���
Go to step 3.

Endif
1. Compute error of the existing ensemble on new data

�� � � ������ � �������� � ���
��

��� ���

2.Update and normalize instance weights

��
� � �

��
� ����������� � ��
�� �	��������������

���

Set �� � ���� ��
�����

��� � ��� is a distribution ���

3.Call BaseClassifier with �
�, obtain ���� � �

4.Evaluate all existing classifiers on new data ��

�	
� � � ����� � ��	���� � ���

��

��� for � � �� � � 	 ���

If �	��
� � ���, generate a new ��.�

If �	
�
� � ���, set �	

� � ���,
�	
� � �	

����� �	��, for � � �� � � 	 ���

5.Compute the weighted average of all normalized
errors for ��� classifier �	: For �� � � �
�	
� � ��	�
 ������	���� �	� � �	

� �� �	
�����	

��� �	�

��	
� � � �	

�����	
��� �	

���
� for � � �� � � 	 �
�

6.Calculate classifier voting weights
�	

� � ���������	
��, ����� � �� � � 	 ���

7.Obtain the final hypothesis
����� � ���	�
� � �	

� � ��	���� �
�	 ����

Fig. 1. Learn++.NSE algorithm

Once the distribution is updated, the algorithm calls the
BaseClassifier and asks it to create the tth classifier ht using
data drawn from the current training dataset �

� (step 3).
All classifiers generated thus far hk, k=1,...,t are evaluated
on the current dataset, by computing �k

t, the error of the kth

classifier hk at the tth time step (Equation 5, step 4). At
current time step t, we now have t error measures, one for
each classifier generated thus far.

These error values are used as follows: if the error of
the most recent classifier on its own training data is greater
than ½, we discard that classifier and generate a new one.
After all, if it cannot perform at least 50% on the training
data it has just seen, then this last classifier is of very little
use. We do not hold the old classifiers to the same standard
however: if their error is greater than ½, it is set to ½. This

effectively sets the normalized error of that classifier at
that time step to 1, and removes all voting power of that
classifier. When the errors are normalized (Equation 6),
those in the [0 ½] interval are mapped to [0 1] range. A
normalized error of �	

� �1, carries a voting weight of 0 in
the weighted majority voting (Equation 9). Note that
unlike the current classifier, previously generated
classifiers are not discarded when their error exceeds ½.
The reason for this double standard is that it is not
unreasonable for a classifier to perform poorly on a future
dataset, if the environment has changed drastically since it
was created. This classifier can still be useful in the future,
however, should a cyclical environment returns to an
earlier state it was in when the classifier was generated. If
the future distributions are different enough that the
previous classifiers are not useful, they are made dormant
by setting their error rate to ½. If, on the other hand, these
classifiers become relavant again in the future, then such
relevance will be reflected by a lower than ½ error rate
they obtain on the then current environment, and will
therefore receive nonzero voting weights.

The errors are used to determine the voting weight of
each classifier using the following process. We first obtain
a weighted average of all t error measures �k

t for each clas-
sifier hk. A nonlinear sigmoid function is used for the
weighting (Equation 7), such that a large weight is given
to errors on most recent environments, and a smaller
weight is given to errors on older environments. Note that
the weights �	

� used for averaging the error rates are not
the voting weights (which are denoted as �	

��. The error
averaging weights �	

� �are used to weigh normalized errors
�	
� to obtain ��	

� (Equation 8); the logarithm of�� ��	
� � is

the final voting weight �	
� of classifier hk at time t.

Note that this process does not give less weight to old
classifiers: it gives less weight to their error on old envi-
ronments. Therefore, a classifier generated long time ago
can still receive a large voting weight, if its error on the
recent environments is small. Finally, all classifiers are
combined through weighted majority voting (Step 7, Equ-
ation 10).

III. SIMULATION EXPERIMENTS AND RESULTS

A. Experimental Setup

We designed two experiments to demonstrate several
traits and properties of the proposed algorithm. In both
experiments, we created a nonstationary environment
where the data distribution – chosen to be Gaussian –
changes continuously over time. We chose Gaussian dis-
tribution so that the performance of the algorithm could be
compared to that of an optimal Bayes classifier. In both
cases, we have varied the rate of change in order to eva-
luate the ensemble’s adaptability to environments that
change at different rates. To do so, we assume that the en-
vironment is at its initial state at t = 0, and at each consec-
utive time instance t we receive data from an environment
that has drifted by some amount, until some arbitrary time
instance t = 1, where we terminate the experiment. We use
a parameter T to control how many time steps are observed
between t = 0 (start) and t = 1 (end). A larger T value indi-
cates that we observed many intermediate updates from
the environment between the start and end, indicating a
smoother and slower drift at each step. Conversely, smaller
values of T represent abrupt changes, as we observe fewer

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3457

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

datasets between the start and end points. At each time
step t, mt = 20 instances are drawn from the current distri-
bution that make up �

� which are used to train the cur-
rent base classifier. We have repeated the experiments for
several values of T = {10, 20, 40, 60, 80, 100}.

We further repeated all experiments using three differ-
ent base classifiers to evaluate whether the algorithm can
work with different base classifiers. We chose the multi-
layer perceptron (MLP), support vector machine (SVM)
and naïve Bayes to be used as base classifiers. Note that
the MLP and SVM – in their original formulation – are
strictly batch-learning algorithms that are not capable of
online learning, whereas naïve Bayes can be used as an
online learning algorithm.

Finally, for each experiment we also compared the
performance of the ensemble created by Learn++.NSE to
that of a single classifier trained on the latest dataset. Note
that this is not a trivial comparison: considering that the
test data always come from the current (latest) environ-
ment, a single classifier trained on the data generated by
that last environment is most likely to do better than all
other classifiers trained on previous environments. For an
ensemble-based system to achieve an improvement over
such a single classifier, the ensemble members must pro-

vide relevant information – about the current environment
– even though all but one of the ensemble members were
trained on data obtained from a – now partially irrelevant -
past environment.

B. Simulation Results – Experiment 1

In our first experiment, we generated a four-class dataset
drawn from a two-dimensional Gaussian distribution. Fig-
ure 2 shows the probability distributions at four instances t
= 0, t = 1/3 ; t = 2/3; and t = 1, whereas Table 1 shows the
parametric equations used to calculate the path of the drift,
where each row represents how the distribution of one of
the four classes was varied. The parametric equations
themselves were also changed at t = 1/3 and t = 2/3. For
example, during the first phase of t = 0 to t = 1/3, all class
means remained the same, but the x-direction (horizontal)
standard deviations of class 3 (C3) and class 4 (C4) distri-
butions were shrunk from �x = 3 to �x = 1 through the pa-
rametric expression 3-6t and C1’s standard deviation in-
creased from �x = 1 to �x = 2 through the parametric ex-
pression 1+6t. As another example, during t = 2/3 to t = 1,
C1 means moved from μ = [2,5] to μ = [5,2], whereas its
standard deviations moved from � = [1,6] to � = [1,2] (all
cross covariances were zero).

Fig. 2.a: Snapshot of the environment at t = 0 Fig. 2.b: Snapshot of the environment at t = 1/3

Fig. 2.c: Snapshot of the environment at t = 2/3 Fig. 2.d: Snapshot of the environment at t = 1

TABLE 1. PARAMETRIC EQUATIONS GOVERNING PATH OF DRIFT

t = 0 to t = 1/3 t = 1/3 to t = 2/3 t = 2/3 to t = 1
�x �y �x �y �x �y �x �y �x �y �x �y

C1 2 5 1 1+6t 2 5 1 3 2+6(t-2/3) 5-9(t-2/3) 1 6(t-2/3)
C2 8 5 1 1 8-9(t-1/3) 5 1 1 5-3(t-2/3) 5+9(t-2/3) 1 1
C3 5 2 3-6t 1 5+9(t-1/3) 2 1 1 8 2 1 1
C4 5 8 3-6t 1 5+9(t-1/3) 8 1 1 8 8 1 1

C 1 C2

C3

C4

C 1 C2

C3

C4

C 1 C2

C3

C4

C 1

C2

C3

C4

3458 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

Figures 3~6 show the simulation results obtained on
this environment. All classification performances were
computed on the entire feature space, calculated with
respect to individual instances’ (likelihood) probability
of occurrence (to prevent instances away from decision
boundaries artificially increasing the performance, and to
obtain a fare comparison to Bayes classifier). All results
are average of 100 independent trials.

Figure 3 illustrates the classification performance of
a single classifier (an MLP) for various values of
rate-of-change (inversely proportional to parameter T)
compared to that of the Bayes classifier. We include this
rather crowded figure primarily to show that a single
classifier performance – including the Bayes classifier –
on the concept drift problem is independent of the rate of
change, since there is only one classifier evaluated on the
most current environment only. In subsequent figures,
we plot the ensembles performances for various values T,
however, we only plot one performance for single clas-
sifiers, to prevent figures from getting overcrowded.

Fig.3 Single MLP performance for various values of T.

Figures 4~6 show Learn++.NSE performances when
trained with MLP, SVM and naïve Bayes classifiers, re-
spectively. The top curve in each plot is the performance
of the optimal Bayes classifier, statistically the best per-
formance that can be achieved. The remaining curves are
Learn++.NSE performances for various T values, and that
of the single classifier (usually the bottom-most curve).
The same line styles are used in all figures.

Several observations can be made from these figures.
First, the Learn++.NSE ensemble follows the optimal
Bayes classifier performance quite closely.

Second, the slower the rate of change, the higher the
performance, and the closer is the ensemble performance
to that of the Bayes classifier. In fact, there is a strong
negative correlation between the rate of change and the
performance. This makes intuitive sense, since a slower
changing environment is easier to track. Furthermore, as
T increases, the most recently generated previous clas-
sifiers in the ensemble become more relevant to the cur-
rent environment, thus increasing the performance.

Third, in all cases, for all types of base models and
rate-of-change values, the ensemble performs as good or
better – and usually much better – than the single clas-
sifier. As mentioned earlier, this is not a trivial achieve-
ment, as the single classifier does not carry any informa-
tion that is not relevant to the current environment,

Fig. 4. Learn++.NSE performance with MLP

Fig. 5. Learn++.NSE performance with SVM

Fig. 6. Learn++.NSE performance with naïve Bayes

whereas the older classifiers do. The ensemble perfor-
mance was substantially better than that of the single
classifier, particularly for MLP and SVM classifiers.

Fourth, the performance trends exhibited in all expe-
riments are very similar, regardless of the base classifier
used to generate ensemble members. In all cases, the en-
semble performance matches or beats the single classifi-
er performance – and usually by wide margins.

Note that the actual performance numbers – as prom-
ising as they may be – are not of primary importance in
this experiment. For example, the apparent drops and in-
creases in the performance throughout the experiment
merely indicate that the underlying classification prob-
lem is getting increasingly easier or more difficult in
time, as evidenced by the declining or improving optimal
Bayes classifier performance. We are primarily con-

0 0.2 0.4 0.6 0.8 1
60

65

70

75

80

85

90

95

100
Single Classifer Performance (MLP)

P
er

fo
rm

an
ce

(%
)

t=0 (start) to t=1 (finish)

T=10 T=20 T=40 T=60 T=80 T=100 Bayes

0 0.2 0.4 0.6 0.8 1
60

65

70

75

80

85

90

95

100

P
er

fo
rm

an
ce

(%
)

t=0 (start) to t=1 (finish)

Base Classifier: MLP

Single classifier

T = 20

T = 10

T = 40

T = 100Bayes

0 0.2 0.4 0.6 0.8 1
70

75

80

85

90

95

100

P
er

fo
rm

an
ce

(%
)

t=0 (start) to t=1 (finish)

Base Classifier: SVM

0 0.2 0.4 0.6 0.8 1
75

80

85

90

95

100

P
er

fo
rm

an
ce

(%
)

t=0 (start) to t=1 (finish)

Base Classifier: Naive Bayes

T=10 T=20 T=40 T=60 T=80 T=100 Single Bayes

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3459

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

cerned with
fier, as we c

These o
indeed track
it is able to
classifiers, a
sifiers, whe
Bayes, or a
mode, such
C. Experim

As we
Learn++.NSE
sifiers throu
mechanism
environmen
aspect of th
ment where
original stat
0) with the m
(of equal v
shown in F
traversing a
final stage o
returns to i
the probabil
four differen
riment is
shown in T
have varied

Fig. 8. S

0

2

4

6

8

10
0

0.1

0.2

0.3

y

0

2

4

6

8

10
0

0.1

0.2

0.3

y

h how well Le
cannot expect a
observations in
k the changing
retain and ext

and able to do
ether it is an o
an algorithm th

as MLP or SV
ment 2: Cyclic
discussed ear

E is its inclus
ugh a strategi
allows older

nt returns to an
he algorithm,
e the data distri
te. Specifically
mean of three

variance) locate
Figure 7. The
a triangular pat
of the drift is re
its original sta
lity density dis
nt time instanc
defined throu

Table 2. As in
d the number o

Snapshots of th

0 2
x

0 20
x

C

C2

C 1

earn++.NSE trac
any algorithm t
ndicate that th
 environment q
tract informatio
so using a var

online algorith
hat can only be
VM.
c Environment
rlier, an impo
sion and exclu
ic weighting m
classifiers to

n earlier state.
we designed
ibution eventu
y, the experime
different Gaus
ed at their ini
simulation inv
th in a clockwi
eached at t = 1
arting position.
stributions of a
ces. The drift p
ugh the param
n the previous
f time steps fr

he environment

4 6

 t =

4 6

 t =

C 1

C3

cks Bayes clas
to do any bette
he algorithm c
quite successfu
on from previo
riety of base cl
hm such as naï
e trained in bat

ortant feature
usion of old cl
mechanism. T
be reused if t
To evaluate t

a second expe
ually returns to
ent begins (at
ssian distributio
itial positions,
volves each cl
ise direction. T
, when each cl
. Figure 8 sho
all three classes
path for this exp
metric equatio
s experiment,
om start to fin

t showing curre

8

= 0

6 8

 2/3

C3

C2

ssi-
er.
can
ully,
ous
las-
ïve
tch

of
las-

This
the
this
eri-
its
t =
ons

as
ass

The
ass

ows
s at
pe-
ons
we

nish

using th
All simu
perform
indepen

Fig. 7. C
 f

ent distribution

10 2

4

6

8

10
0

0.1

0.2

0.3

y

10

4

6

8

10
0

0.1

0.2

0.3

he array of T =
ulations were

mances presente
ndent trials.

Conceptual des
for the cyclic e

ns at time t = 0

0 20
x

0 20

2

x
y

C

C3

C2

= {10, 20, 40,
again repeated

ed below are a

scription of the
environment

0, t = 1/3, t = 2/

4

 t =

2 4

C2

C 1

2

60, 80, 100} v
d 100 times, a
averages of the

e drift path

/3 and t = 1.

6 8

= 1/3

6 8

 t = 1

C 1

C3

values.
and the
ese 100

10

10

3460 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

TABLE 2. PARAMETRIC EQUATIONS GOVERNING THE PATH OF DRIFT FOR THE CYCLIC ENVIRONMENT DRIFT

t = 0 to t = 1/3 t = 1/3 to t = 2/3 t = 2/3 to t = 1
�x �y �x �y �x �y �x �y �x �y �x �y

C1 5+9t 8-18t 2 2 8-18(t-1/3) 2 1 3 2+9(t-2/3) 2+18(t-2/3) 2 2
C2 2+9t 2+18t 2 2 5+9(t-1/3) 8-18(t-1/3) 1 1 8-18(t-2/3) 2 2 2
C3 8-18t 2 2 2 2+9(t-1/3) 2+18(t-1/3) 1 1 5+9(t-2/3) 8-18(t-2/3) 2 2

The simulation results comparing the Learn++.NSE
ensemble performance to that of Bayes classifier and the
single classifier are shown in Figures 9, 10, and 11 for
MLP, SVM and naïve Bayes base classifiers, respectively.
The same formatting and line styles are used as before.

Fig. 9. Learn++.NSE performance with MLP

Fig. 10. Learn++.NSE performance with SVM

Fig. 11. Learn++.NSE performance with naïve Bayes

In general, the observations made in Experiment 1
can also be seen in this experiment: the proposed algo-
rithm very closely follows the Bayes performance, with
increasing performance for increasing T values. The al-
gorithm also matches or exceeds – and typically with
wide margins – the performance of the single classifier
of the same type used in generating the ensemble, re-
gardless of the base classifier.

However, the cyclical nature of the environment re-
veals additional observations. Note that while the envi-
ronment returns to its original state only at t = 1, the
symmetric nature of the problem renders a sinusoidal
performance characteristic. This can be easily seen from
Figure 8, where the class conditional probabilities re-
ceive identical and rotating values at t = 0, t = 1/3, t = 2/3
and t = 1. For example, if class conditional probabilities
are ��������� � ����������� � ���������������� �

at t = 0, then these probabilities will be ��������� �
�

��������� � ���������������� � � at t = 1/3, and
��������� � �� ��������� �
���������������� � � at
t = 2/3. Therefore, the Bayes error at these time instances
will all be identical, explaining the sinusoidal nature of
performance plots. Another interesting observation can
be made at t = 1, where the class distributions return to
their starting values of t = 0. As mentioned above, the
Bayes error at t = 1 is identical to those at t = 0, t = 1/3
and t = 2/3. The Learn++.NSE performances, while equal
at t = 1/3 and t = 2/3, are not identical at t = 0 and t = 1.
Specifically, the algorithm’s performance is relatively
low at the first few time steps after t = 0; this is because
there are very few classifiers in the ensemble. However,
the algorithm quickly catches up and starts closely fol-
lowing the performance of Bayes classifier. On the other
hand, at t = 1, Learn++.NSE exceeds its t = 1/3 and t =
2/3 performances and virtually reaches the Bayes per-
formance. This is because, the algorithm can now take
advantage of its earliest classifiers, which were trained
on data drawn from a very similar distribution to the
current one. The weighting mechanism realizes that
those classifiers carry relevant information and uses
them in the ensemble by assigning them higher weights.

IV. CONCLUSIONS

We have outlined an ensemble of classifiers based
algorithm that can learn in non-stationary environments.
When presented with data from then current snapshot of
a drifting environment, Learn++.NSE creates a new clas-
sifier that is added to the ensemble. The classifiers are
then combined using dynamically weighted majority
voting, where each classifier’s weight is determined by
its error, age, and performance on current and all pre-
vious environments. The algorithm learns in an incre-
mental fashion, that is, it does not use or store any of the
previous datasets, but rather just the classifiers’ perfor-
mances on earlier environments. Unlike many other

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

P
er

fo
rm

an
ce

(%
)

t=0 (start) to t=1 (finish)

Base Classifier = MLP

0 0.2 0.4 0.6 0.8 1
45

50

55

60

65

70

75

80

85

90

P
er

fo
rm

an
ce

(%
)

t=0 (start) to t=1 (finish)

Base Classifier: SVM

0 0.2 0.4 0.6 0.8 1
50

55

60

65

70

75

80

85

90

P
er

fo
rm

an
ce

(%
)

t=0 (start) to t=1 (finish)

Base Classifier: Naive Bayes

T=10 T=20 T=40 T=60 T=80 T=100 Single Bayes

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3461

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

concept-drift algorithms, Learn++.NSE does not discard
any of the classifiers, but rather temporarily lowers their
voting weights or even suspends them in proportion of
their performance on the current environment. This
weighting mechanism provides a delicate stability- plas-
ticity balance.

On two experiments, we showed that the algorithm
can track the changing environments regardless of the
rate of change, though – as expected – the performance
markedly increases for slower rates of change. The expe-
riments used synthetically generated data drawn from
Gaussian distributions so that the performance of the al-
gorithm could be compared to that of the optimal Bayes
classifier. The simulation results indicate that the algo-
rithm is able to track the changing environment and fol-
low the Bayes classifier performance. The ensemble al-
ways meets or exceeds the single classifier trained on the
most recent data. The algorithm can also work with any
supervised base classifier, whether that classifier can
learn in an online fashion or not.

This algorithm is not intended for all concept drift
problems. Specifically, we expect Learn++.NSE to per-
form well when the data available from each snapshot
cannot adequately describe the environment, and when
there is overlap in data distributions over consecutive
time instances. Under these relatively mild conditions, a
portion of the earlier classifiers will always carry rele-
vant information and help improve the performance of
the ensemble on the current environment.

Finally, we note that retaining all classifiers come
with its own price tag: the memory requirement
necessary to store the parameters of all classifiers, some
of which may be dormant at any time. Given the current
availability of low cost memory, and that we only save
the classifier parameters and not the entire data, we
believe this is a very reasonable price to pay.

This algorithm is currently in its early stages of its
development; however, initial results are promising and
warrant further analysis of this approach. Our current
and future work includes evaluating the algorithm on
higher dimensional datasets, including those obtained
from real world problems.

REFERENCES

[1] S. Grossberg, "Nonlinear neural networks: Principles,
mechanisms, and architectures," Neural Networks, vol. 1,
no. 1, pp. 17-61, 1988.

[2] D. P. Helmbold and P. M. Long, "Tracking drifting con-
cepts by minimizing disagreements," Machine Learning,
vol. 14, no. 1, pp. 27-45, 1994.

[3] A. Kuh, T. Petsche, and R. L. Rivest, "Learning
time-varying concepts," Advances in Neural Information
Processing, San Mateo, CA: Morgan Kaufmann, 1991,
pp. 183-189.

[4] J. C. Schlimmer and R. H. Granger, "Incremental Learn-
ing from Noisy Data," Machine Learning, vol. 1, no. 3,
pp. 317-354, Sept.1986.

[5] G. Widmer and M. Kubat, "Learning in the presence of
concept drift and hidden contexts," Machine Learning,
vol. 23, no. 1, pp. 69-101, 1996.

[6] R. Klinkenberg and T. Joachims, "Detecting concept drift
with support vector machines," 17th International Con-
ference on Machine Learning, 2000, pp. 487-494.

[7] R. Klinkenberg, "Learning Drifting Concepts: Example

Selection vs. Example Weighting," Intelligent Data
Analysis, Incremental Learning Systems Capable of
Dealing with Concept Drift, vol. 8, no. 3, pp. 281-300,
2004.

[8] M. A. Maloof and R. S. Michalski, "Incremental learning
with partial instance memory," Artificial Intelligence, vol.
154, no. 1-2, pp. 95-126, Apr.2004.

[9] J. Gama, P. Medas, G. Castillo, and P. Rodrigues,
"Learning with Drift Detection," Advances in Artificial
Intelligence - SBIA 2004, Lecture Notes in Computer
Science, vol. 3171, 2004, pp. 286-295.

[10] P. Vorburger and A. Bernstein, "Entropy-based Concept
Shift Detection," 6th Int. Conference on Data Mining
(ICDM '06.), 2006, pp. 1113-1118.

[11] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and
O. Kipersztok, "Real-time data mining of non-stationary
data streams from sensor networks," Information Fusion,
(in press), 2007.

[12] L. Rutkowski, "Adaptive probabilistic neural networks
for pattern classification in time-varying environment,"
IEEE Transactions on Neural Networks, vol. 15, no. 4,
pp. 811-827, 2004.

[13] A. Tsymbal, "Technical Report: The problem of con-
cept drift: definitions and related work," Trinity College,
Dublin, Ireland,TCD-CS-2004-15, 2004.

[14] L. I. Kuncheva, "Classifier Ensembles for Changing En-
vironments," Multiple Classifier Systems (MCS 2004),
Lecture Notes in Computer Science , vol. 3077, 2004, pp.
1-15.

[15] A. Blum, "Empirical Support for Winnow and
Weighted-Majority Algorithms: Results on a Calendar
Scheduling Domain," Machine Learning, vol. 26, no. 1,
pp. 5-23, Jan.1997.

[16] N. Oza, "Online Ensemble Learning." Ph.D. Dissertation,
University of California, Berkeley, 2001.

[17] K. Nishida, K. Yamauchi, and O. Takashi, "ACE: Adap-
tive Classifiers-Ensemble System for Concept-Drifting
Environments," Multiple Classifier Systems, Lecture
Notes in Computer Science ,N. Oza, R. Polikar, J. Kittler,
and F. Roli, Eds. vol. 3541, 2005, pp. 176-185.

[18] J. Z. Kolter and M. A. Maloof, "Dynamic weighted ma-
jority: a new ensemble method for tracking concept
drift," 3rd IEEE Int. Conf. on Data Mining (ICDM 2003),
2003, pp. 123-130.

[19] W. N. Street and Y. Kim, "A streaming ensemble algo-
rithm (SEA) for large-scale classification," Seventh ACM
SIGKDD International Conference on Knowledge Dis-
covery & Data Mining (KDD-01), 2001, pp. 377-382.

[20] D. Muhlbaier and R. Polikar, "An Ensemble Approach
for Incremental Learning in Nonstationary Environ-
ments," 7th. Int. Workshop on Multiple Classifier Sys-
tems, Lecture Notes in Computer Science, vol. 4472,
Berlin: Springer, 2007, pp. 490-500.

[21] M. D. Muhlbaier and R. Polikar, "Multiple Classifiers
Based Incremental Learning Algorithm for Learning in
Nonstationary Environments," Int. Conf. on Machine
Learning and Cybernetics, vol. 6, 2007, pp. 3618-3623.

[22] Y. Freund and R. E. Schapire, "Decision-theoretic gene-
ralization of on-line learning and an application to
boosting," Journal of Computer and System Sciences, vol.
55, no. 1, pp. 119-139, 1997.

[23] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar,
"Learn++: An incremental learning algorithm for super-
vised neural networks," IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews,
vol. 31, no. 4, pp. 497-508, 2001.

3462 2008 International Joint Conference on Neural Networks (IJCNN 2008)

Authorized licensed use limited to: Drexel University. Downloaded on November 4, 2008 at 13:31 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

