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Abstract—Learning in nonstationary environments, also called
concept drift, requires an algorithm to track and learn from
streaming data, drawn from a nonstationary (drifting) distri-
bution. When data arrive continuously, a concept drift algo-
rithm is required to maintain an up-to-date hypothesis that
evolves with the changing environment. A more difficult problem
that has received less attention, however, is learning from so-
called initially labeled nonstationary environments, where the
the environment provides only unlabeled data after initialization.
Since the labels to such data never become available, learning
in such a setting is also referred to as extreme verification
latency, where the algorithm must only use unlabeled data to
keep the hypothesis current. In this contribution, we analyze
COMPOSE, a framework recently proposed for learning in such
environments. One of the central processes of COMPOSE is
core support extraction, where the algorithm predicts which data
instances will be useful and relevant for classification in future
time steps. We compare two different options, namely Gaussian
mixture model based maximum a posteriori sampling and α-
shape compaction, for core support extraction, and analyze
their effects on both accuracy and computational complexity
of the algorithm. Our findings point to—as is the case in
most engineering problems—a trade-off: that α-shapes are more
versatile in most situations, but they are far more computationally
complex, especially as the dimensionality of the dataset increases.
Our proposed GMM procedure allows COMPOSE to operate on
datasets of substantially larger dimensionality without affecting
its classification performance.

I. INTRODUCTION

A nonstationary environment—in the context of machine
learning—refers to an environment generating (typically)
streaming data whose underlying distribution changes with
time. This means that the joint probability distribution of the
unlabeled data X and corresponding grouping variables (i.e.,
labels) Y changes at each time step, such that

pt(X,Y ) 6= pt+1(X,Y )

where X is an N x d observation matrix with N observations
in d dimensions, Y is the corresponding length N vector of
labels, and t is the current time step. In this contribution, we
focus on nonstationarity caused by drifting distributions [1]
rather than a stationary feature distribution with only a change
in the labeling function, p(Y |X). Furthermore, we assume this
drift to be limited or gradual by nature, as opposed to an abrupt
concept change.
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The problem of learning concept drift becomes even more
difficult if labeled data are only available initially (i.e., at
t = 0), beyond which only unlabeled data are available at
all future time steps. Obviously, the relevance of the initially
received data and their labels degrades as the data distributions
drift further from their initial positions. In our previous efforts
[2], [3] we introduced a framework, called COMPOSE, for
learning in precisely such an environment, whose data we refer
to as “initially labeled nonstationary streaming data.”

The COMPacted Object Sample Extraction (COMPOSE)
algorithm is a wrapper approach to learning in initially labeled
nonstationary environments. The framework itself makes only
the gradual drift assumption about the nature of the change
and makes no assumptions about the shape of the underlying
distributions. COMPOSE receives a new batch of data at
every time step, t, during which two distinct processes occur.
The semi-supervised learning (SSL) process uses the currently
available labeled data, XL(t), to assign labels to the currently
unlabeled data, XU (t), and adds these observations to the
labeled set. SSL is a mature topic in machine learning (see
[4]–[6] for examples). We use the label propagation algorithm
in our experiments, though COMPOSE is indepedent of the
selection of the SSL algorithm, and can use any SSL algo-
rithm that the user deems most appropriate for the problem.
The second primary component, developed specifically for
COMPOSE, is the core sample extraction (CSE) process,
which prepares COMPOSE for future time steps by replacing
XL with X∗L ∈ XL, the set of labeled observations that
will be most useful in classifying the future unlabeled data.
An optional active learning process can be added as well as
described in [7]. Doing so removes the constraint of limited
drift for the ability to request the labels of a small number
of carefully selected instances at any given time. Each of
these processes is implemented modularly, such that different
modular algorithms can be switched in and out.

The general process of COMPOSE can be seen in Figure 1,
and our efforts for this contribution are focused around steps
4 and 5, specifically, on the analysis of the CSE process. The
consequence of the gradual drift assumption on CSE is that the
instances at the central core (typically high-density) regions
of the currently available data will be the most useful ones in
the future, as such instances are most likely to represent data
generated during the next time step of a gradually drifting
distribution. These instances will have the most overlap with
future data regardless of the direction of drift, under the
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Fig. 1: Overview of COMPOSE. CSE steps outlined in bold
dashed lines

gradual drift assumption. The goal of the CSE algorithm
is to create an object or shape (preferably non-parametric)
enveloping the data from each class, and extract (sample)
new labeled data from compacted versions (i.e., areas of high
density) of these objects. In this contribution we explore two
methods to do so: i) α-shape compaction as used in the original
formulation of COMPOSE [8], and ii) Gaussian mixture model
(GMM) [9] maximum a posteriori sampling, which we propose
in this effort.

This rest of this paper is organized as follows: Section II
explains the theory behind two CSE methods and explores
the strengths and weaknesses of each, Section III presents
the results of our experiments, and Section IV explains the
conclusions and path for future work based on our results.

II. CORE SUPPORT EXTRACTION THEORY

A natural outcome of the gradual drift assumption is that
class distributions overlap at subsequent time steps. In other
words, as long as drift is limited, the center or core region
of each class-conditional data distribution will have the most
overlap with future data, regardless of drift direction or drift
type. Figure 2 shows three different types of drift, rotational,
translational, and volumetric, and shows that the compacted
core region (outlined) has the most overlap with the drifted
distribution (dashed line). The core support extraction (CSE)
procedures we explore attempt to accurately identify which
instances lie in the core region of the existing class distribu-
tions; these instances, which are previously labeled by the last
SSL step, are then used as training data for the next iteration’s
SSL step in labeling the new unlabeled data. The input to the
CSE process is p, the percentage of available observations to
retain as training data for future time steps, and the output is a
set of indices describing which instances are determined to be
core supports. The two methods we compared for CSE are α-
shape compaction and GMM maximum a posteriori sampling,
which are described in Sections II-A and II-B respectively.

Fig. 2: Types of distribution drift: (a) rotational, (b) transla-
tional, (c) volumetric

A. Compacted α-shape Sampling

Compacted α-shape sampling is the original CSE approach
that was developed for COMPOSE [2], [3]. An α-shape is a
geometric representation of a dataset that can be described as
a generlization of the dataset’s convex hull. The convex hull of
a dataset X ∈ Rd is the convex shape with minimum area that
contains all of the observations in X , and can be described
as the set of all possible convex combinations of the points in
X , or 

|X|∑
i=1

aixi|(∀i : ai ≥ 0) ∧
∑
i

ai = 1


for all possible ai. The α-shape, however, contains a free
parameter that allows for concavities in the shape. The free
parameter, α, determines the level of detail of the shape. When
α = ∞, the α-shape is equivalent to the convex hull. As α
decreases, concavities, holes, and disjoint shapes are created,
depending on the data.

The α-shape creation first requires obtaining the Delaunay
tessellation [10] of the data. The Delaunay tessellation is a set
of adjacent d-simplices from the data forming a partitioned
version of the convex hull. A d-simplex is the convex hull
of d + 1 observations; the observations are connected via
faces, which are d − 1-simplices. Therefore, a 2D simplex
is the convex hull of 3 points (a triangle) connected via 1D
simplices (lines), and a 3D simplex is the convex hull of 4
points, each connected via 2D simpexes (triangles), and so
forth. The tessellation can be extended to any space of abritrary
dimenison, but it is most easily explained in the 2D case (i.e.,
the Delaunay triangulation). There exist Delaunay conditions,
which ensure that the triangulation is the unique solution that
maximizes the minimum angle of any of these triangles, such
that every observation is assigned to one or more triangles,
and the entire set of triangles form the convex hull.

Each triangle has a circle that circumscribes it (i.e., all
3 vertices fall on the edge of the circle). If the Delau-
nay conditions are met, no observation will fall inside any
circumcircle besides the three belonging to the triangle it
circumscribes. A valid Delaunay tessellation exists for any
dataset of abritrary dimension and arbitrary size as long as
two non-limiting and non-restricting conditions are satisfied
by the data: no observation in the dataset may be repeated
exactly, and all of the data must not fall on the same (d− 1)-
hyperplane. The α-shape simply finds the Delaunay tesselation
of the dataset and sets a threshold on the maximum radius

603



Fig. 3: Layers of an α-shape constructed from the Delaunay
triangulation. Observations marked with stars indicate core
supports.

of the circumsphere of any simplex belonging to the shape.
Simplices whose circumsphere is too large are removed from
the α-shape. The remaining simplices and their corresponding
observations make up the final α-shape.

The algorithm used for the Delaunay tessellation is the
Quickhull algorithm. This algorithm is of order O(n(d+1)/2)
where n is the number of observations and d is the dimen-
sionality of the data. Hence, the algorithm is exponential
in dimensionality, which makes it very expensive for large
dimensional datasets.

In order to obtain the core support region, the α-shape is
compacted (shrunk) by iteratively stripping away its outermost
layer of simplices until the desired number of observations
remain. The outer most layer is defined as the set of simplices
that have one or more face not shared by any other simplex in
the shape. After the first outer layer is found, those simplices
are removed from the shape, and the new outer layer is
found. The process continues until p′ ≥ p percent of the
original observations remain from each class. As many layers
as possible are removed such that at least p percent of the
observations remain. The CSE procedure then returns the
indices of the remianing observations as core supports. An
example of a layered α-shape and its Delaunay triangulation
is shown in Figure 3 [2].

B. GMM Maximum A Posteriori Sampling

The Gaussian mixture model (GMM) is a probalistic model
that describes the data as a mixture of unimodal Gaussian
distributions. The GMM algorithm tries to fit K Gaussians to
the data X , where K is a free parameter specified by the user.
The probability density function of a GMM is the weighted
sum of the K Gaussians as given by the equation,

p(θ) =
K∑

k=1

πkN (µk,Σk) (1)

where
θ = {θk∀k} = {µk,Σk, πk∀k}

and µk, Σk and πk are the mean, covariance and mixing coef-
ficient (i.e., prior probability) of each Gaussian component, θk
is the set of parameters describing the kth component, and θ is
the set of parameters describing the entire model. The GMM
algorithm randomly initializes K Gaussians in the feature
space, and uses the expectation maximization (EM) algorithm
to fit the Gaussians to the data with maximum likelihood. The
EM procedure is an iterative two step procedure that runs until
convergence (or a maximum number of iterations is reached).
In the expectation step, the probability that each component,
θk, can be explained by observation xi is calculated. This is
often called the membership weight and is defined as

p(θk|xi) =
πkp(xi|µk,Σk)∑
j πjp(xi|µj ,Σj)

(2)

for all k, i. The maximization step then calculates new
parameters for each component to maximize the likelihood
that the mixture model represents the data based on the new
membership weights.

µk =

∑
i p(θk|xi)xi∑
i p(θk|xi)

(3)

Σk =

∑
i p(θk|xi)(xi − µk)(xi − µk)T∑

i p(θk|xi)
(4)

πk =

∑
i p(θk|xi)
N

(5)

The EM procedure is not guaranteed to find the model with
global maximum likelihood (even if correct K is chosen), but
local maxima found by the algorithm are often sufficient, as
has been the case in our experiments. In addition, in real world
scenarios, we rarely know the true value of K. The common
solution to the optimal choice of K is to try a range of K
values and choose the one that minimizes some penalty or
cost function. In our implementation, we have used the Bayes
Information Criterion (BIC) [11]. The BIC adds a penalty for
large K to the negative log likelihood in order to prevent
overfitting, and is given by

BIC = −2 lnL+K lnN (6)

Once the best model is chosen, core supports are extracted
by calculating the Mahalanobis distance [12] for each xi to
each component in the GMM. The minimum distance to any
component is calculated as

dmin(xi) = min
k

√
(xi − µk)T Σ−1k (xi − µk) (7)

The p observations with the smallest dmin are kept as core
supports.

One important assumption GMMs make is that the un-
derlying distribution is actually a mixture of Gaussians. Of
course, in real world situations, this may not be the case,
however, arbitrary shaped distributions can be approximated
with GMMs provided that they are well represented by the
data and K is chosen sufficently large.
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C. Comparison of CSE Methods

Both α-shapes and GMMs have one free parameter, the res-
olution parameter α and the number of Gaussian components,
K, respectively. One important consideration for choosing
a CSE method is therefore the parameter that is easiest to
estimate based on the data, and causes the least sensitivity
to suboptimal choices. α-shapes require knowledge of the
resolution of data. This parameter can be difficult to guess
and may be mismatched among different features of the data.
A potential solution is to normalize the features by a certain
factor and experiment with different values of α on the training
data. GMMs require correct K to be in the range of values
that are searched. Our experiments have shown that it is better
to pick K too large than too small. GMMs are resistant to
overfitting as long as K � N , which is typically the case.
One benefit of the K parameter is that it is a discrete number,
whereas the range of possible α values is continuous with
infinitely many possibilities.

GMMs are also significantly more computationally efficient
than α-shapes, particularly when d is large. The computational
complexity of the EM procedure for GMMs is difficult to
quantify, because it is an iterative procedure, but it has been
shown that the E-step and the M-step are order O(NKd +
NK) and O(2NKd), respectively, for each iteration, where
N is the number of observations, K is the number of mixture
components and d is the dimensionality [13]. Our results in
Section III confirm that that the GMM approach is indeed
substantially faster than constructing α-shapes for any given
dimensionality and data cardinality. The computational advan-
tage allows for many more values of the parameter to be tested
in a given time period.

One major advantage of the α-shape algorithm is that it
relies only on the closeness assumption (i.e., highly related
data reside close to each other in the feature space). GMMs,
however, make implicit assumptions that the data represents
a mixture of Gaussians. As we explained in Section II-B,
GMMs can successfully extract meaningful core supports from
arbitrary distributions as long as they are well represented
and K is chosen sufficiently large. The relative computational
efficiency of the EM procedure allows us to test many values
of K and find the one that optimizes the BIC. Doing so
allows us to relax the assumption that the data must strictly
follow a mixture of Gaussians. Figure 4 shows a comparison
of both CSE methods on arbitrarily shaped datasets. The α
parameter was set to different values depending on the dataset,
and the K parameter was the value that minimized the BIC
in the range of 1 - 20. The figure clearly shows that α-
shapes sample core supports that more accurately represent
the overall distrubtion than GMMs. However, the accuracy
of α-shapes is very sensitive to the proper selection of alpha,
and the optimal values of α were chosen for each dataset. The
GMMs, however, used the same range for all three datasets
and chose the optimal K automatically. In order for α-shapes
to properly extract core supports, the user must have extensive
prior knowledge about the dataset.

Fig. 4: Core supports (black) extracted by α-shape compaction
and GMM based maximum a posteriori sampling on arbitrarily
shaped datasets (original data in red)

III. RESULTS

When extracting core supports, our general assumption is
that the most informative data lie in the central core region
or the densest region of the distribution. This is the typically
the case in most situations, however it is not uncommon for a
distribution to have two modes, one being less dense than the
other, as shown in Figure 5. The information at the core region
of both modes is important to keep for the next time step, as
they both represent the underlying concepts generating data.

Our first experiment tested the ability of both α-shape’s and
GMM’s in extracting core supports from both modes of an
imbalanced distribution. Figure 5 shows the two distributions,
the underrepresented D1 (bottom) and D2 (top), which was
well represented throughout the experiment. The number of
observations generated by D2 remained constant at 10,000,
while the number of observations generated by D1 iterated
from 100 to 10,000. The goal was to find the percentage of
observations, p1, extracted from D1 as the cardinality, |D1|,
increased.

Figure 6 shows the ratio of the number of observations
extracted from D1 to the number of observations extracted
from D2, p1/p2, on the y-axis and the ratio of observations
generated by D1 to the number of observations generated by
D2, |D1|/|D2| on the x-axis. Ideally, the CSE methods should
extract the same percentage of observations from each mode,
so the optimal value of p1/p2 is 1.
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Fig. 5: Bimodal distribution with imbalanced densities

Fig. 6: Samples extracted from imbalanced bimodal distribu-
tion

Figure 6 shows that α-shapes generally fail to extract
any core supports from D1 until it is generating at least
25% of the data. Furthermore, p1/p2 doesn’t approach the
optimal value of 1 until D1 is no longer underrepresented (i.e.,
|D1|/|D2| = 1). GMMs, however, extract core supports from
D1 almost immediately. The GMMs converge with minimal
BIC when K = 2, and the observations that have small dmin

(from Equation ) to D1 are selected as core supports. The
outliers for GMMs are caused by improper convergence of
the EM procedure, which is generally caused by poor initial
conditions. These outliers indicate that GMMs are not as
robust as α-shapes, and may cause unexpected results.

To determine the impact of the results of this experiment
on the actual COMPOSE implementation, we developed a
synthetic two class dataset. Each class contained a bimodal
spiral distribution with imbalanced data as shown in Figure
7. We ran COMPOSE with a parameter sweep with values
shown in Table I.

Fig. 7: Experimental setup of rotating spiral experiment

TABLE I: Parameter values for GMM and α-shapes

Method (Parameter) Values

GMM (K) {1, 2, 3, 5, 10, 15, 20}
α-shape (α) {0.1, 0.2, 0.5, 1, 1.5, 2, 3}

During this experiment, we observed that the classification
performance with α-shapes was very stable, while GMMs
where less stable, as the performance relied heavily on the
initial conditions at each time step. However, GMMs were able
to track the underrepresented mode for longer and maintain
higher performance as overlap increased (time steps 14, 43
and 73). Once the overlap was significant, both algorithms
started misclassifying the underrepresented spiral, and their
performances showed a significant drop, as seen in Figure
8. The shaded region in Figure 8 (and later in Figure 10)
represent the 95% confidence interval obtained through 10
number of repetitions of random sampling from the given
distributions..

In order to test each algorithm in a higher dimensional
feature space, we developed a 4D experiment, shown—
representatively—in Figure 9. The figure shows a 2D cross
section of the experiment, as the data remained constant in the
other two dimensions. This experiment contained three classes,
two of which were unimodal, and one that was bimodal.
Each mode of the three classes contained the same number
of instances. The two unimodal classes followed the circular
path indicated by the blue arrows. The two modes of the
bimodal class continuously merged and separated as the other
two classes rotated around them.

The results of the 4D experiment are shown in Figure 10,
again where the shaded regions represent the 95% confidence
intervals. Results are shown for α-shape, GMM, and the
optimal Bayes classifier. The Bayes classifier was provided
with the true means and covariances of each distribution at
each time step, and used this information to output the sta-
tistically best classification. Figure 10 shows that COMPOSE
performed remarkably close to the Bayes classifier using both
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Fig. 8: Comparison of best performing α-shape (α = 1) and
best performing GMM K = 2

Fig. 9: 2D cross section of 4D three class experiment

CSE methods. GMMs appear to perform slightly better, but
the confidence intervals indicate that there is no stastistically
significant difference in performance. However, GMMs ex-
tracted core supports at an average of 0.172 seconds per time
step, while α-shapes required an average of 13.013 seconds
per time step. The difference in computational complexity is
significant, especially if COMPOSE is running online.

We also looked at the empirical computational complexity
of the two approaches. As stated previously, the time complex-
ity of α-shapes is exponential with respect to dimensionality
and linear with respect to number of instances. GMMs time
complexity is less clear, because it depends on the initial
conditions and is iterative by nature. Figure 11 compares the
experimental time complexity of α-shapes to GMMs as N and
d are increased. The computational complexity with respect to
dimensionality was executed on a dataset with 1, 250 instances
and is shown in red (plotted on upper horizontal and right
vertical axes). The computational complexity with respect to

Fig. 10: Performance results of 4D experiment

Fig. 11: Experimental time complexity for increasing dimen-
sionality and cardinality of α-shapes α and GMMs (G)

cardinality was executed on a 2D dataset and is shown in
blue (plotted on lower horizontal and left vertical axes). In
this experiment, we found GMMs to extract core supports
substantially faster than α-shapes with respect to both N and
d.

IV. CONCLUSIONS

Our analysis shows that choosing one CSE algorithm over
another is a tradeoff; each algorithm has its own advantages.
More specifically, α-shapes are fairly robust and are non-
parametric by nature. However, in high dimensional datasets
even with relatively small cardinality, they become computa-
tionally infeasible to run. GMMs perform much faster than
α-shapes, but they are dependent on initial conditions and
may not always converge to the correct solution. Furthermore,
GMMs assume that the data distribution is in fact a mixture
of Gaussians, which is rarely the case for real world data.
If sufficient size K is chosen, the assumption may be vio-
lated without consequence, but the statistical backing for the
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algorithm becomes meaningless. GMMs are also more suited
for mismatched distributions within a class. As long as the
GMM fits a component to the underrepresented distribution,
it will sample sufficient number of core supports from that
distribution.

There are many other options for CSE algorithms. We
would like to analyze other density estimators such as Parzen
windows and k-nearest neighbors. CSE is essentially a den-
sity estimation technique, so existing non-parametric density
estimators are of great interest. Furthermore, we would like
to analyze the impact of different CSE algorithms on the
performance of COMPOSE on real world data, beyond the
evaluated synthetic datasets. Until now, the computational
requirements of α-shape compaction restricted the types of
real world data on which COMPOSE could operate. Our
newly proposed core support extraction method opens up
the possibility for COMPOSE to classify on datasets with
substantially larger dimensionality.
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