
Quantifying the Limited and Gradual Concept Drift Assumption

Joseph Sarnelle, Anthony Sanchez, Robert Capo, Joshua Haas, and Robi Polikar

Abstract—Nonstationary environments, where underlying dis-
tributions change over time, are becoming increasingly common
in real-world applications. A specific example of such an environ-
ment is concept drift, where the joint probability distributions
of observed data drift over time. Such environments call for a
model that can update its parameters to adapt to the changing
environment. An extreme case of this scenario, referred to as
extreme verification latency, is where labeled data are only
available at initialization, with unlabeled data becoming available
in a streaming fashion thereafter. In such a scenario, the classifier
must update its hypothesis based on only unlabeled data drawn
from the drifting distributions. In our prior work, we described
a framework, called COMPOSE, that works well in this type
of environment, provided that the data distributions experience
limited (or gradual) drift. Limited drift assumption is common in
many concept drift algorithms yet — surprisingly — there is little
or no formal definition of this assumption. In this contribution,
we describe a mechanism to formally quantify limited drift.
We define two metrics, one that represents the normalized class
separation drift, and the other that uses the ratio of between-
class separations and within class drift through time. We test
these metrics on both synthetic and real world problems, and
argue that the latter can be more suitably used.

I. INTRODUCTION

Concept drift is a challenging classification problem for
nonstationary data, for which the joint probability distribution
of observations and their corresponding grouping variables
(i.e., labels) change with time. In the most general sense,
concept drift can be described as

pt(X,L) ̸= pt−1(X,L) (1)

where X is an N x d observation matrix with N observations
in d dimensions, L is a length N vector containing labels
corresponding to each observation in X , and pt(X,L) is
the joint probability distribution of the data and their labels.
The problem becomes even more difficult if L is completely
unknown at all times beyond initialization t > t0. This type of
problem presents itself in many situations, where some data
are manually annotated at a specific point in time t0, and only
unlabeled data are available thereafter. This scenario is known
as an initially labeled nonstationary environment (ILNSE) [1],
[2]. The relevance of the labels received at t0 degrades as
the data distributions continue to drift away from their initial
positions. Our previous efforts [1], [2] have explored various

Joseph Sarnelle, Anthony Sanchez, Robert Capo, Joshua Haas,
and Robi Polikar are with the Department of Electrical &
Computer Engineering at Rowan University, Glassboro, NJ, USA.
(emails: sarnel62@students.rowan.edu, sanche08@students.rowan.edu,
robcapo@gmail.com, haasj74@students.rowan.edu, polikar@rowan.edu)

This work is supported by the NSF under Grant No: ECCS-1310496.

methods for classification in these environments and defined
a framework, called COMPOSE, for doing so.

The COMPacted Object Sample Extraction (COMPOSE)
framework is a wrapper approach for learning in an ILNSE.
The framework makes minimal assumptions about the nature
of the drift aside from the constraint that it is limited in nature
(i.e. abrupt changes do not occur). Limited drift is an intuitive
constraint for an algorithm designed to operate in an ILNSE.
While there are several algorithms on concept drift that make
the gradual drift assumption [3]–[6], a quantification or a
formal definition of what gradual (or abrupt, for that matter)
drift has not yet been defined. Our goal is to quantify drift in
a way that allows us to determine its impact on COMPOSE’s
classification performance in particular, and on concept drift
algorithms in general.

COMPOSE is a three-step approach that runs every time
a new batch of unlabeled data is received. The first step
employs a semi-supervised learning (SSL) algorithm using
currently available labeled data to classify the new unlabeled
data. Currently available labeled data are the initial data at
timestep t = t0, or the labels generated by COMPOSE
using core supports (described below) on all future timesteps,
t > t0. Many SSL algorithms have been developed (see
[7] for examples), but we chose the label propagation al-
gorithm [8] for our experiments. The second step involves
class-specific density estimation followed by compaction to
determine those central regions of the distribution that are
most heavily represented in the current data. In COMPOSE,
these areas are referred to as core support regions. Any of the
density estimation procedures can be used for this step, such
as α-shapes, Gaussian mixture models, k-nearest neighbor
based estimation, etc. Each approach has its own strengths
and weaknesses, as compared in [9]. In this work, we use
Gaussian mixture models due to their substantially reduced
computational complexity over other methods. The third step
is core support extraction (CSE), which takes a sample of
instances from the core support region of each class. These
sampled instances were originally unlabeled, but have just
been labeled by the semi-supervised learning algorithm. These
instances, called core supports, then serve as the ”current”
labeled data to be used in the next time step to help the SSL
algorithm label the new set of unlabeled data. The algorithm
then iteratively continues to label unlabeled data, determine
core support region as the most dense region of the current
distribution, and extract samples from this region as core
supports to be used as labeled data for the next iteration. A
block diagram of COMPOSE that illustrates the approach is
shown in Figure 1. The algorithmic and implementation details
can be found in [1]. Steps shown in blue are the three main

978-1-4799-1959-8/15/$31.00 cO2015 IEEE

1

components of COMPOSE while the steps shown in red are
data processing tasks.

If the environment can provide labeled data - perhaps at
least occasionally - such information can also be used by
COMPOSE, where the new labeled data are used as the current
core supports. An active learning step can optionally be added
as well [10]. Doing so trades the constraint of limited drift for
the ability to request the labels of a small number of carefully
selected instances at any given time. In this work, we assume
that no future labeled data are available, and that all subsequent
data are unlabeled.

Receive Labeled
Data Lt

at time 𝑡 = 0

Receive
Unlabeled Data

Ut

Replace Lt with
extracted core

supports

Classify Ut with
SSL algorithm

using Ut and Lt

Compact CSR
and sample core

supports from
compacted CSR

Determine core
support region -

CSR (density
estimation)

COMPOSE

𝑡 = 𝑡 + 1

Fig. 1. Flowchart of the COMPOSE algorithm

COMPOSE requires limited (gradual) drift so that it can
track the unlabeled data by following the core support regions.
Limited, however, drift is a general assumption with a heuristic
description that lacks a formal mathematical definition. How
slow the drift needs to be to qualify as ”limited” or ”gradual”?
An obvious approach to determine the drift rate from one
timestep to the next is to measure distances or divergences be-
tween distributions. We explored three metrics, the Kullback-
Leibler (KL) divergence [11], the Hellinger distance [12], and
the average pairwise distance between observations to serve
as a basis in determining a suitable metric for the drift rate.

Determining and quantifying the drift rate is not just to
satisfy a theoretical interest, but it also has some practical
reasons as well. Depending on the SSL algorithm and CSE
method chosen, COMPOSE can be computationally expensive,
particularly in high dimensional feature spaces. Due to the
computational time and resources needed to run the algorithm,
it may be prudent to determine ahead of time whether the
limited drift assumption of the algorithm is satisfied, and hence
the algorithm is suitable for the data at hand to begin with.
The data must not violate the limited drift assumption if the
algorithm is to perform well. We show in this work that under
certain cases, it is possible to define a metric and determine
whether the data satisfy the limited drift assumption with the
help of this metric.

Section II explains the theory behind the three metrics we
use to measure the distance between distributions. Section III
explores methods for using these distance metrics to determine
the drift between two timesteps. Section IV presents the

experimental setups for our metrics and discusses the results
from these experiments. Section V explains the conclusions
and avenues for future work based on our results.

II. DIVERGENCE & DISTANCE MEASURES

Without loss of any generality, we assume a two class
problem, where Xt is the set of observations belonging to class
1 at time t and Yt is the set of observations belonging to class 2
at time t. Our discussion below naturally extends to data with
multiple classes. Any references to the distributions X and Y
at time t − 1 are the corresponding core supports for classes
X and Y , respectively. We define D(X,Y) as the distance (or
divergence) between distributions X and Y , regardless of the
specific distance or divergence metric used.

It is important for distance metrics to be independent of
distribution volume. An increase or decrease in cardinality is
not indicative of an increase or decrease in distance between
the underlying class distributions.

A. Kullback-Leibler Divergence

Kullback-Leibler (KL) divergence, also known as relative
entropy, is a measure of the information loss between two
probability distributions. The KL divergence of distribution
Y from X is written as KL(X ∥ Y) and is a measure
of the information lost when Y is used to approximate X .
Although KL divergence is not a true distance metric (due to
KL(X ∥ Y) ̸= KL(Y ∥ X) i.e. it is not symmetric), it is
one of the most commonly used measures to determine how
”far” two distributions are from each other. The general equa-
tion to calculate the KL divergence between two probability
distributions X and Y is given as

KL(X ∥ Y) =
∑

x∈(X∪Y)

ln

(
P (X(x))

P (Y (x))

)
P (X(x)) (2)

Here P (X(x)) and P (Y (x)) represent the probability density
functions (PDFs) of the distributions X and Y , respectively.
When X and Y are well separated, the ratio of P (X(x)) and
P (Y (y)) is a large positive number for values of x that are
in the core support of P (X(x)), contributing large positive
numbers to the sum in Equation (2), whereas the values of x
that are in the core support region of P(Y(x)) contribute small
negative numbers, resulting in a positive large number for the
divergence between X and Y.

Conversely, when the distributions are not well separated,
P (Y (x)) and P (Y (x)) have similar values for the same x.
In the extreme case, where the distributions are equivalent,
the natural logarithm evaluates to ln(1) = 0 for all x,
making the sum zero. Therefore, the KL divergence is an
appropriate divergence metric to measure the distance between
two distributions.

B. Hellinger Distance

Hellinger distance is a quantification of the similarity be-
tween two probability distributions. Unlike the KL divergence,
the Hellinger distance is symmetric, and therefore is a proper

2

distance metric. The Hellinger distance between two distri-
butions, X and Y , has a general form given by Equation 3
below.

H(X,Y) =
1√
2

√ ∑
x∈X∪Y

(√
P (X(x))−

√
P (Y (x))

)2
(3)

When X and Y are completely separated, the Hellinger dis-
tance is close to 1. When X and Y are completely overlapping,
the distance evaluates to a small number greater than 0, and
if they are identical, the Hellinger distance is 0.

C. Average Pairwise Distance

A commonly — if perhaps rather naively — used non-
statistical distance metric to measure the distance between
two distributions is the average pairwise distance between all
observations in both distributions. This metric simply iterates
through each observation of both distributions, computes the
distances, and takes the average across all observations. The
average pairwise distance is given by

Davg(X,Y) =
1

|X||Y |
∑
x∈X

∑
y∈Y

(x− y)2 (4)

We use Euclidean pairwise distances, but any function that
measures the distance between two points can be used. The
average pairwise distance is a simple and effective way to
measure the distance between two distributions when the
probability density functions (PDFs) generating their data are
unknown. This distance metric relies only on the closeness
assumption (that instances near each other in the feature
space are related), which is the main assumption of the label
propagation algorithm as well.

Figure 2 shows a comparison of the three basic metrics
discussed above. These metrics were taken between two
distributions that initially started on top of each other and
gradually drifted apart over time. We can see that each metric
has a different characteristic. As the distance between cluster
centers increases, the KL divergence increases exponentially,
the Hellinger distances increase logarithmically, and the pair-
wise distance increases linearly. Due to its linearity and ease
of computation, we employ the average pairwise distance in
the experiments described below.

III. CALCULATING DRIFT

The ability to measure distance between two distributions is
obviously important when calculating drift. Two types of dis-
tances are relevant: between class separation, and within class
drift. The between class separation is the distance between
distributions X and Y at any timestep. The within class drift
is the distance that a class drifts between time t − 1 to time
t. We investigate two new metrics for quantifying the amount
of drift in an ILNSE.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

K
L

 d
iv

e
rg

e
n

c
e

 a
n

d
 p

a
ir
w

is
e

difference between class means

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

H
e

lli
n

g
e

r
d

is
ta

n
c
e

pairwise

Kullback−Leibler

Hellinger

Fig. 2. Comparison of the metrics. The red axis (on the right) represents the
Hellinger distance, the black axis represents the value of the KL divergence
and pairwise distance .

A. Normalized Class Separation (NCS) Based Drift: ∆(t)

We define ∆(t) as the drift that has occurred between two
consecutive timesteps, t − 1 and t. Rather than considering
only within class drift, we use between class separation as a
normalization factor, as distributions can be tracked even when
they drift faster if they are well separated. Hence, we define
the normalized class separation based drift as

∆(t) =
max

(
D(Xt, Xt−1), D(Yt, Yt−1)

)
D(Xt−1, Yt−1)

(5)

where D is a method for calculating distance or divergence
such as the average pairwise distance or KL divergence. We
note that class labels must be known for all data at timesteps
t−1 and t a priori. In a controlled synthetic data experiment or
in cases where there are labeled data available, this information
is easily obtained, and the amount of drift in an environment
can then be used to benchmark performance of different
algorithms. In the practical case, labeled data are not always
available in large quantities, but there may exist an initial,
manually annotated dataset that represents a larger unannotated
dataset. Drift calculations on the initial dataset can be used to
infer whether the drift rate is gradual enough for the chosen
concept drift algorithm, provided that the drift profile does not
change dramatically in the future.

It is important to note that ∆(t) only measures the drift
within an environment, with no consideration given to the
direction of the drift. The direction can impact the difficulty of
the problem. For example, when distributions are drifting away
from each other, the classification problem is much easier to
solve than when they are drifting towards each other, even if
the distance the distributions have drifted is large.

B. Drift Classification Risk

As stated previously, the direction of the drift is not taken
into consideration in ∆(t). A scenario where distributions are

3

drifting away from each other is easily tracked by COMPOSE,
regardless of how much each distribution drifts. Conversely,
using ∆(t) to model the drift in this scenario results in a value
indicating - incorrectly - that COMPOSE will perform poorly.
In order to properly quantify the drift in more challenging
environments, we define a ratio that takes into account the
divergence of the unlabeled data with its own corresponding
core supports, as well as the nearest core supports from
any other class. When there is little drift within a class
between timesteps, the distance (or divergence) is small and
the ratio is also small, a scenario that can easily be handled
by COMPOSE. As the unlabeled data drifts away from its
corresponding core support towards the core support of another
class, the divergence between the unlabeled data and both core
supports approach the same value. In this scenario, the ratio
yields a value of 1, indicating an uncertainty of around 50% for
unlabeled data between core supports from two classes. A ratio
much greater than 1 represents a scenario that is unfavorable
for COMPOSE, where the unlabeled data are misclassified,
because the new unlabeled data are closer to the core supports
of a different class than the class they belong. We call this
ratio the drift classification risk (DCR), a measure of drift
rate that is also suitable for multiple classes, and is defined as

DCR = max
j

(
D(dj,t+1, dj,t)

mini ̸=j D(dj,t+1, di,t)

)
(6)

This measure calculates the ratio of the distance from any
unlabeled data of a given class to its own core supports and
the same unlabeled data to the nearest core supports of any
other (nearest) class. Here D(dj,t+1, dj,t) corresponds to the
distance between the unlabeled data distribution of class j at
time t+ 1 and the core supports from class j at the previous
time t. The distance (average pairwise, Hellinger, etc.) or
divergence (KL), between the unlabeled data distribution of
class j at time t + 1 and the core supports from class i at
the previous time t is referred to as D(dj,t+1, di,t). Unlike
COMPOSE, which requires labeled only at initialization, the
DCR requires class labels for all data at each timestep it is
calculated at, making it difficult to use in a scenario where no
labeled data is available beyond the first timestep; however,
it is common for a dataset to have labeled data for several
timesteps, or have a larger set of initial data that has the drift
already present. Such data can be used to calculate the DCR
and provide a quantified feedback to the user as to whether
the scenario qualifies as limited drift.

IV. EXPERIMENTAL SETUP & RESULTS

To test the utility of both drift rate quantification metrics,
we implemented two categories of experimentation. The first
round of testing includes experiments using synthetic datasets,
which serve as a proof of concept that these metrics are indeed
capable of appropriately quantifying drift. The second round
of testing extends the usefulness of these metrics from the
synthetic domain to real world datasets. Results on real world
datasets prove the practical utility of these metrics for pre-
classification assessment on the labeled data provided.

A. Synthetic Data
To test the ∆(t) drift metric, we started with a two class,

unimodal Gaussian case. We initialize two distributions at
time t − 1, horizontally separated by h units of distance and
vertically separated by v units of distance, as shown in Figure
3. We then generate two new distributions at time t that have
drifted by d, a user controlled parameter. In order to determine
the exact conditions under which COMPOSE fails, we extract
core supports from the distributions at time t − 1, and use
them to classify the distributions at time t, while gradually
increasing the drift distance d from 0 to h.

Obviously, there are many possibilities for the direction
of drift, and as previously mentioned, drift direction has a
significant impact on the difficulty of the problem. In the most
challenging scenario, the distributions drift directly toward
each other. In the easiest scenario, the distributions drift di-
rectly away from each other. In our first experiment, we adjust
the values of v and h to change the amount of separation, and
force each distribution to drift horizontally toward each other.
The goal of the experiment is to determine the value at which
COMPOSEs performance drops below 50%, the minimum
performance one can expect from a classifier in a binary class
problem.

Fig. 3. Experiment 1 setup

The results of the first experiment are shown in Figure
4, where the blue and red curve is the value of ∆(t) and
COMPOSE’s performance, respectively. This experiment was
run over 10 iterations with different realizations of the same
distributions in order to show the 95% confidence intervals,
indicated as shaded regions in Figure 4. The most challenging
situation (a) is shown where v = 0, because the distributions
are drifting directly toward each other. We can see that the
performance drops earliest in this case, when ∆(t) = 0.5
(indicated by the vertical line). We marked the point at which
∆(t) = 0.5 in the rest of the plots for easy visual comparison.
Figure 4 (b) and (c) show that if h is kept constant, increasing
v makes the problem easier, as expected. The performance
remains higher, and ∆(t) stays under 0.5 for larger values of
d. Figure 4 (d) and (e) show that ∆(t) works if the angle
of approach remains constant. When the ratio of v

h remains
constant, the performance drop occurs at the same value of
d. ∆(t) also remains constant, indicating that it is robust to
changes in the spread of data. Contrarily, there exists a case,
discussed in the following experiment, where exactly the same

4

amount of drift occurs, but in the opposite direction, which
yields the same ∆(t) profile, despite no negative impact on
the performance of COMPOSE. Therefore, ∆(t) serves as a
metric to quantify how much any one class has drifted in an
environment, but it is not reliable for determining the difficulty
a classifier will experience during classification.

Fig. 4. Experiment 1 results, the left axis represents the ∆(t) value and
COMPOSE’s performance (performance normalized between 0 and 1), both
are shown with a 95% confidence interval. d represents the distance between
class means.

To determine if the DCR is a useful metric for quantifying
drift in an ILNSE, we explore a special case of the two class,
unimodal Gaussian case shown in Figure 3. This experiment
lasts for only two timesteps, as the goal is to simulate varying
severity in the abruptness of drift between receiving new
batches of data. Two distributions are initialized at a set
horizontal distance apart that does not change throughout the
experiment, and with no vertical separation (i.e., v=0) between
the y-coordinates of their means. Core supports are extracted
from this data and serve as labeled data to be used by the SSL
algorithm during classification. At the next timestep, unlabeled
data are generated for each class. The unlabeled data for one

class remains relatively close to its core support, and are easily
classified. We are interested in the unlabeled data for the
other class as it drifts at incremental distances away from its
own core support and towards the core support of the other
class. We calculate the DCR of this unlabeled data as well
as the performance of COMPOSE on this class to establish
a relationship between the two. This process constitutes one
trial, and is repeated with increasing levels of drift between the
unlabeled data of one class and its corresponding core support.
The entire experiment is repeated 10 times to establish a 95%
confidence interval. A visual representation of this setup is
shown in Figure 5.

Fig. 5. Experiment 2 setup

The results from this second experiment are shown in Figure
6. This figure represents the performance of COMPOSE when
the level of drift changes as indicated by the DCR values.
It can be seen that COMPOSE experiences no difficulties in
classifying the unlabeled data when the DCR is significantly
less than 1, but as the value approaches 1, the performance
begins to decrease and as the DCR continues to increase
beyond 1, COMPOSE’s performance on the unlabeled data
decreases until it reaches 0% accuracy, or a total loss of
support for class X(t), represented by red in Figure 6.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

Drift Classification Risk (DCR)

C
O

M
P

O
S

E
 c

la
s
s
if
ic

a
ti
o

n
 p

e
rf

o
rm

a
n

c
e

 o
n

 u
n

c
e

rt
a

in
 c

la
s
s
 (

%
)

Fig. 6. Experiment 2 results calculating DCR when unlabeled data drifts in
increasing magnitudes from its corresponding core supports to that of another
class. The x-axis shows these DCR values and the corresponding performance
of COMPOSE (shown on the y-axis) on the unlabeled data. The width of the
red curve indicates the 95% confidence interval over 10 trials.

To demonstrate the inability of ∆(t) to reliably determine
when a classifier will perform poorly, we recreate the same
experiment from Figure 5 and calculate ∆(t) and the DCR.
We then repeat the experiment with the direction of the drift
rotated 180 degrees, so that the classes are no longer drifting
toward one another. In Figure 7, ∆(t) is plotted on the
right axis and the DCR is plotted on the left axis for easy

5

comparison. We observe that the value of ∆(t) remains the
same when the magnitude of the drift is constant regardless
of the direction (i.e., a class is drifting towards or away from
another). The DCR value approaches 1 only when a class is
drifting towards the core support of another class, but remains
far below 1 when drifting away from it.

1 2 3 4 5 6 7 8 9
0

5

10

D
C
R

timestep
1 2 3 4 5 6 7 8 9

0

0.5

1

C
O
M
P
O
S
E

p
er
fo
rm

a
n
ce

a
n
d
∆
(t
)

DCR
∆(t)

Performance

1 2 3 4 5 6 7 8 9
0

5

10

D
C
R

timestep
1 2 3 4 5 6 7 8 9

0

0.5

1

C
O
M
P
O
S
E

p
er
fo
rm

a
n
ce

a
n
d
∆
(t
)

DCR
∆(t)

Performance

Fig. 7. Experiment 2 results comparing ∆(t) and DCR. The blue axis
represents the DCR values versus the timesteps represented on the horizontal
axis. The black axis (on the right) represents the ∆(t) value and COMPOSE’s
performance (performance normalized between 0 and 1). The top plot shows
COMPOSE’s performance, DCR, and ∆(t) values as unlababled data drifts
towards another class. The bottom plot shows COMPOSE’s performance,
DCR, and ∆(t) values as unlababled data drifts away from another class.

DCR is defined in such a way that it assumes the value
of 1 when the unlabeled data is just as close to its own
core support as the core support of another class, representing
a scenario with the most uncertainty as to which group of
instances belong to which class. This situations also corre-
sponds to the case where the label propagation algorithm used
by COMPOSE is likely to encounter the most difficulty in
correctly determining the classification of the unlabeled data.
To test the robustness of the characteristics of the DCR,
such as recovery from a drift with a DCR value of 1, we
create an experiment shown in Figure 8 where we reverse the
direction of the drift at this DCR value to determine if any
overlapping core supports left behind in the previous timestep
allow COMPOSE to recover from near failure.

Fig. 8. Experiment 3 setup

The results of this experiment are shown in Table I, which
demonstrate that COMPOSE can indeed recover from abrupt
drift quantified by a DCR close to 1 as long as the data
distribution does not sustain this level of drift for an extended
period of time. This is due to the label propagation process.
When unlabeled data lie nearly equidistantly between two core
supports, labels have similar probabilities of propagating to

either class of the unlabeled data. The result is a division of
the unlabeled data between both classes. Figure 9 shows this
scenario.

Fig. 9. Split unlabeled data at DCR=1

Results in Table I show a degrading classification perfor-
mance as the DCR values approaches 1. The classification
performance is 56.85% at a peak DCR value of 1.19. Upon
the direction reversal, classification performance immediately
begins to increase as the unlabeled is now drifting away from
the core support of the other class, with COMPOSE eventually
recovering completely. DCR values much greater than 1 have
proven to be irrecoverable in other tests and would require our
active learning component of COMPOSE [10] to be initiated
for success.

TABLE I
EXPERIMENT 3 RESULTS

DCR Value Performance (%)
0.20 100
0.33 98.65
0.60 87.05
0.85 74.25
1.19 56.85
0.86 75.70
0.59 86.56
0.44 94.30
0.36 98.05
0.22 100

B. Real World Data

We have also tested COMPOSE and the DCR metric using
the electricity dataset obtained from pricing information in the
Australian New South Wales (NSW) Electricity Market and its
neighboring state Victoria [13]. Seven features (week, period,
NSW price, NSW demand, Victoria price, Victoria demand,
transfer from NSW to Victoria) are used to determine whether
the price of electricity in NSW will be higher than the previous
24 hour average. The original dataset contains 45,312 instances
recorded every 30 minutes, with many instances missing data.
Tests were performed with the 27,549 instances that are not
missing any data, in 11,445 of which the price went up and

6

in 16,104 of which the price went down, indicating a class
imbalance around 59%. Data were grouped into 55 batches of
500 instances each (corresponding to about 10 days per batch)
and remaining data that did not fit in the batches were dropped
to insure a consistent test-bed across all timesteps. All features
were whitened before classification.

It turns out, COMPOSE does not perform as well as we
had hoped on this dataset. However, running the algorithm
to find out about this is an inefficient way to do so. Having
the DCR metric allows us to realize why the algorithm
was not performing well: the dataset does not meet the
“gradual drift” assumption. Computing the DCR provides
us with an alternative to test the algorithm ahead of time
— a prescreening if you will — without actually running
the algorithm. In this particular scenario, COMPOSE takes
12.53 seconds to run while the DCR calculations only take
0.49 seconds to compute. As dimensionality of the data
increases, the computational complexity of COMPOSE also
increases, but the complexity for the DCR calculations remain
unchanged. The time and resources saved by knowing whether
the algorithm is to be run on an unfavorable environment is a
desirable advantage. Results from this experiment are shown in
Figure 10, which prove that the DCR metric is an appropriate
metric for determining the drift rate, and in turn whether the
given environment can qualify as limited or gradual drift. The
large green spike in the DCR around timestep 20 indicates a
very abrupt drift in the data. Before this drift, COMPOSE
maintains an average classification performance of around
65%, after initially being given only 20% of the data at the first
timestep and no labeled data thereafter. After the drift, average
classification performance drops to 45%. With no new labeled
information, COMPOSE is unable to recover after this drift.

0 5 10 15 20 25 30 35 40 45 50 55
0

50

100

Timesteps

C
O

M
P

O
S

E
 P

e
rf

o
rm

a
n
c
e
 (

%
)

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

D
C

R

Fig. 10. Real world data analysis. The blue axis represents COMPOSE’s
performance, the green axis (on the right) represents the DCR value.

V. CONCLUSIONS AND FUTURE WORK

The ability to quantify drift is extremely important to
concept drift algorithms, such as COMPOSE. It can be used
to determine whether the algorithm is suitable for the dataset.
It can also be used to generate parameters that adjust to

the drift rate. Our first experiment evaluates the normalized
class-separation based drift metric, ∆(t), and shows that as
long as ∆(t) ≤ 0.5, COMPOSE should perform well in an
environment where classes drift directly towards each other.
As previously stated, however, this metric only takes the
magnitude of the drift, but not the direction of the drift
into consideration. This is a crucial component for concept
drift algorithms, as the direction of the drift can impact
performance.

To remedy this concern, the drift classification risk was
developed. As expected, COMPOSE operates favorably when
this metric has a value less than 1, may encounter some
classification errors around 1, and will ultimately fail beyond
values significantly greater than 1. We have also shown
through experiment 3 that COMPOSE can recover from a drift
at a drift quantified by DCR around 1, if this drift does not
remain in effect for an extended period of time.

COMPOSE’s relatively poor performance on the Electricity
dataset is in fact a testament of the utility of the new metric
as well as a confirmation of the algorithm’s basic assumptions
of operation. This metric also proves that the commonly
used electricity data has indeed an abrupt drift. The primary
contribution of this work is therefore the formal definition and
a quantitative description of the drift rate. The experiments
demonstrate that the DCR is indeed a suitable metric, and
can be used for finding the areas of drift that will lead to
failure of concept drift algorithms that make the gradual drift
assumption. We note while labeled data is needed to compute
the DCR, in practice it would not be uncommon to have
several annotated timesteps to perform the DCR analysis,
and to determine if the environment is suitable for learning
by algorithms that make the gradual drift assumption.

Our future work includes tailoring the DCR metric to
different types of data using more appropriate distance metrics.
Also, more work needs to be done to normalize the metric
when using non-linear distance metrics. The ultimate goal
would be to modify the DCR to work in an ILNSE where
it does not need labeled information to calculate the metric.
It then can be run alongside COMPOSE or any other concept
drift algorithm in real time to detect drift before the data is
misclassified. The DCR is a positive first step in quantifying
what limited drift means and can be applied to different types
of classification algorithms and datasets.

REFERENCES

[1] K. Dyer, R. Capo, and R. Polikar, ”COMPOSE: A semi-supervised
learning framework for initially labeled nonstationary streaming data,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 25,
no. 1, pp. 12-26, 2014.

[2] K. Dyer and R. Polikar, ”Semi-supervised learning in initially labeled
and nonstationary environments with gradual drift,” The 2012 Interna-
tional Joint Conference on Neural Networks (IJCNN), 2012, Brisbane,
Australia, pp. 1-9.

[3] Alippi, C.; Boracchi, G.; Roveri, M., ”An effective just-in-time adaptive
classifier for gradual concept drifts,” Neural Networks (IJCNN), The
2011 International Joint Conference on Neural Networks (IJCNN), vol.,
no., pp.1675,1682, July 31 2011-Aug. 5 2011

7

[4] D. Gregory and R. Polikar. ”Incremental learning of concept drift from
streaming imbalanced data.” Knowledge and Data Engineering, IEEE
Transactions on Knowledge and Data Engineering 25.10 (2013): 2283-
2301.

[5] G. Krempl, The algorithm APT to classify in concurrence of latency
and drift, in Advances in Intelligent Data Analysis (Lecture Notes in
Computer Science), vol. 7014, J. Gama, E. Bradley, and J. Hollmen,Eds.
Berlin Heidelberg, Germany: Springer-Verlag, 2011, pp. 222233.

[6] T.Alexey. ”The problem of concept drift: definitions and related work.”
Computer Science Department, Trinity College Dublin 106 2004.

[7] X. Zhu, ”Semi-supervised learning literature survery,” Computer Sci-
ences, University of Wisconsin-Madison, Tech. Rep., 2002.

[8] X. Zhu and Z. Ghahramani, ”Learning from labeled and unlabeled data
with label propagation,” Carnegie Melon University, Pittsburgh, PA, Rep.
CMU-CALD-02-107, 2002.

[9] R. Capo, A. Sanchez, and R. Polikar, ”Core supper extraction for learn-
ing from initially labeled nonstationary environments using COMPOSE,”
The 2014 International Joint Conference on Neural Networks (IJCNN),
Beijing, China, 2014.

[10] R. Capo, K. Dyer, and R. Polikar, ”Active learning in nonstationary
environments,” Neural Networks (IJCNN),The 2013 International Joint
Conference on Neural Networks (IJCNN), Dallas, TX, 2013.

[11] S. Kullback and R. A. Leibler, ”On information and sufficiency,” Annals
of Mathematical Statistics, vol. 22, pp. 49-86, 1951.

[12] M. Hazewinkel, Encyclopaedia of mathematics: an updated and anno-
tated translation of the Soviet ”Mathematical encyclopaedia”. Dordrecht
Boston Norwell, Ma. U.S.a: Reidel Sold and distributed in the U.S.A.
and Canada by Kluwer Academic Publishers, pp. 188.

[13] M. Harries, ”SPLICE-2 Comparative Evaluation: Electricity Pricing,”
University of New South Wales, Australia, Rep. UNSW-CSE-TR-9905,
1999.

8

