
LEVELIW: Learning Extreme Verification Latency
with Importance Weighting

Muhammad Umer
Rowan University

umerm5@students.rowan.edu

Christopher Frederickson
Rowan University

fredericc0@students.rowan.edu

Robi Polikar
Rowan University

polikar@rowan.edu

Abstract—Nonstationary streaming data are characterized by
changes in the underlying distribution between subsequent time
steps. Learning in such environments becomes even more chal-
lenging when labeled data are available only at the initial time
step, and the algorithm is provided unlabeled data thereafter,
a scenario referred to as extreme verification latency. Our
previously introduced COMPOSE framework works very well
in such settings. COMPOSE is a semi-supervised approach that
iteratively labels strategically chosen instances of the next time
step using the instances it labeled in the previous time step.
COMPOSE originally assumed a significant distribution overlap
at consecutive time steps, allowing instances lying in the center
of the feature space to be used as the most representative labeled
instances from current time step to help label the new data at the
next time step. Such an assumption is also inherent in importance
weighting based domain adaptation, but only for a single time
step with mismatched train and test data distributions. We
explore importance weighting not for a single time step matching
training / test distributions, but rather matching distributions
between two consecutive time steps, and estimate the posterior
distribution of the unlabeled data using importance weighted
least squares probabilistic classifier. The estimated labels are then
iteratively used as the training data for the next time step. We
call this algorithm as LEVELIW, Learning Extreme VErification
Latency with Importance Weighting. Our primary goal in doing
so is to determine if and when importance weighting provides
an advantage over COMPOSE’s core support extraction, and
whether it provides an alternate solution with reduced param-
eter sensitivity. Several datasets are used to compare the two
approaches, which produced some unique insights.

I. INTRODUCTION

One of the basic assumptions made by most traditional

machine learning algorithms is that training and test data are

drawn from a fixed but unknown distribution (also known

as the independent and identically distributed assumption).

Such an assumption is often not realistic in many real-

world applications, particularly those that are associated with

streaming data. Learning from such streaming nonstationary

data is sometimes referred to as the concept drift problem

[1]–[3].

Given a dataset D = {xt, yt}, where xt represents the data

obtained at time t, with corresponding labels yt, two types of

drift are commonly encountered: i) virtual drift, closely related

to covariate shift or the domain adaptation, characterized

by changes in the marginal distribution between two time

steps, i.e., pt(x) �= pt+1(x) with the posterior distribution

remaining unchanged, i.e., pt(y|x) = pt+1(y|x); and ii) real
drift or just concept drift, characterized by changes in the

posterior probability distribution, i.e., pt(y|x) �= pt+1(y|x)
while marginal data distribution may remain unchanged, i.e.,

pt(x) = pt+1(x).
Domain adaptation approaches are designed to handle a

specific case of virtual drift, i.e., mismatched source (training)

and target (test) data distributions over a single time step [4],

[5], where the classification model is trained not on the original

training data, but rather on a modified, specifically weighted,

version of this data through an approach called instance or

importance weighting. The modification makes the source do-

main data behave more like the target domain data distribution.

The weighting factor is known as the importance ratio, which

is essentially the ratio of target distribution pt(x) to source

distribution ps(x). The primary task in domain adaptation

is then to estimate this ratio directly and use it to weigh

the training data. Several approaches have been proposed to

estimate the importance ratio, including kernel mean matching

(KMM) [6], using a probabilistic classifier such as logistic

regression to estimate importance ratio directly [7], and using

a Kullback-Leibler based importance estimation procedure

(KLIEP) [8] etc. However, many of these approaches typically

assume an abundantly available labeled data in the source

domain, which is often an unrealistic assumption.

Ensemble based techniques, such as Learn++.NSE [9]–[11],

Learn++.NIE [12], DWM [13], and SEA [14] represent a

different family of approaches to tackle both virtual and real

drift problems, and are capable of tracking data distributions

not just over a single time step, but over a streaming setting.

However, ensemble approaches also require a large amount

of labeled data, and the potential scarcity or the high cost

of obtaining labeled data is a major obstacle. In an effort to

reduce the amount of required labeled data, semi supervised

learning (SSL) approaches have also been used in this sce-

nario where a hypothesis is formed using modest amount of

labeled data and more abundant unlabeled data. The primary

application domain of SSL techniques has been in stationary

environments, but recently the focus has been shifting towards

non stationary distributions. SSL approaches, of course, also

require labeled data at each time step [15], albeit in smaller

quantities.

Network intrusion, web usage and user interest analysis,

natural language processing, speech and speaker identification,

spam detection, anomaly detection, analysis of financial, cli-

mate, medical, energy demand, and pricing data, as well as

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 1740

the analysis of signals from autonomous robots and devices

are just a few examples of the applications of the concept

drift problem. The concept drift problem poses great difficulty

because streaming data are usually unlabeled and unstructured.

All of the above-mentioned approaches for domain adapta-

tion or concept drift further assume that there is (preferably

ample) labeled training data in each time step. There are

several application domains where obtaining labeled data is

expensive or impractical, perhaps beyond an initial investment.

Such problems, where only unlabeled data are available in all

future time steps of a nonstationary data stream, are referred

to as extreme verification latency. Compacted Object Sam-

ple Extraction (COMPOSE) [16], [17] is a semi-supervised

framework designed to work in such settings with only a

limited drift assumption, however, this algorithm is compu-

tationally expensive (due to its density estimation module),

and extremely sensitive to the parameter selection of its semi-

supervised learning module.

Clearly, domain adaptation and concept drift problems are

related, though algorithms for each make different assump-

tions. Primarily, domain adaptation problems are single time

step problems where training and test data marginal distri-

bution differ, but have the same support and same posterior

distributions. Concept drift problems are, however, streaming

data problems, where the test data in any given time step

becomes the training data during the next time step once they

are labeled. Concept drift problems typically assume at least

a gradual (or limited) drift assumption, but do not require

stationary posteriors or same support. In this contribution, we

explore whether and when well-established, computationally

efficient domain adaptation approaches can be used for concept

drift problems associated with extreme verification latency,

i.e., when labeled data is available during the initialization

step, followed by only unlabeled nonstationary data. We show

that the answer to this question is affirmative, when indeed the

original domain adaptation assumptions are satisfied, i.e., the

class conditional distributions at consecutive time steps share

support, and posterior distributions do not change.

II. RELATED WORK

A. Extreme verification latency

Tracking distributions in a continuously changing envi-

ronment becomes more challenging if labeled data are not

available at every time step. Marss describes a scenario where

true class labels are only available sometime after the classifier

has made a prediction on current environment [18], a scenario

referred to as verification latency. The duration of this lag

may vary with time, and if this lag is infinite, i.e., no labeled

data are ever received after initialization, such a scenario is

referred to as an extreme verification latency. If this scenario

is also characterized by a nonstationary environment, we call

this initially labeled non stationary environment (ILNSE) or

simply initially labeled streaming environment (ILSE) [16].

In our prior work, we described the COMPOSE framework

[16], [17] that works in such environments. COMPOSE is

an iterative, semi-supervised framework that runs every time

a new batch of unlabeled data is received. At time step t,
the new and currently unlabeled data is combined with the

labeled data from the previous time step t − 1, and are used

to train a semi-supervised learning (SSL) algorithm to label

those unlabeled instances from the current time step t. Any

SSL algorithm can be used with COMPOSE, though we prefer

cluster and label due to its lower computational complexity

and generally good performance. The core support extraction

(CSE) step then extracts those newly labeled data drawn from

the center region of current distribution (i.e., core supports).

Core supports are then used as the labeled data during the next

time step’s SSL algorithm. The CSE step samples observations

from dense areas of the labeled data, as such areas are most

likely to best represent incoming unlabeled data.

Other related algorithms that can learn in extreme verifica-

tion latency scenario include Arbitrary sub-populations tracker

(APT) [19], stream classification algorithm guided by clus-

tering (SCARGC) [20], and micro-clusters for classification

(Mclassification) [21]. The central premise of each is briefly

discussed below.

APT is based on the principle that each class in the data

can be represented as a mixture of arbitrarily distributed sub-

populations. The APT algorithm makes following assumptions

i) The drift is gradual or limited; ii) the drift can be represented

as a piecewise linear function; iii) the covariance of each sub-

population (a mode in the class conditional distribution) re-

mains constant; iv) each sub-population to be tracked must be

present at the initialization; and v) the drift remains constant.

The learning strategy of APT is two-fold; first, the optimal

one-to-one assignment between labeled instances in time step

t and unlabeled instances in time step t + 1 is determined

using expectation maximization (EM). In expectation step,

EM predicts which instances are most likely to correspond to

a given sub-population, and during the maximization step, it

determines which drift parameters maximize the expectation.

Then, the classifier is updated to reflect the population parame-

ters of the newly received data and drift parameter relating the

previous time step to the current one. When the assumptions

are satisfied, APT works very well. However, APT has two

primary weaknesses: 1) some of its assumptions often do not

hold true, causing a decrease in performance, and 2) it is

computationally very expensive [16], even when compared to

already expensive COMPOSE.

SCARGC is a clustering based algorithm that repeatedly

clusters unlabeled input data, and then classifies the clusters

using the labeled clusters from the previous time step [20]. The

mapping between the clusters is performed by centroid simi-

larity between current and previous iterations using Euclidean

distance. Given the current centroids from the most recent

unlabeled clusters and past centroids from the previously

labeled clusters, one-nearest neighbor algorithm or support

vector machine is used to label the centroid from current

unlabeled clusters. SCARGC is computationally efficient but

its performance is highly dependent on the clustering phase.

It also requires some prior knowledge about the number of

classes, and the number of modes for each class in the data,

1741

and this requirement may limit the use of this algorithm when

such information is not available.

Mclassification uses the idea of micro clusters (MC) [22]

to adapt to the changes in the data over time. Micro clusters

is a method of storing information about a set of data points

without requiring all examples to be retained. A set of labeled

MC are first built from the initial labeled data. At each time

step, each example from the streaming input data receives its

label from the nearest MC. If the addition of an example in its

corresponding nearest MC causes its MC radius not to exceed

the maximum MC radius defined by the user, this example is

added to the nearest MC and its sufficient statistics, i.e., its

centroid and micro cluster radius are updated; otherwise a new

MC is created. MClassification does not require the number

of clusters to be known prior to execution as with APT or

SCARGC, however it is also computationally expensive.

B. Importance Weighted Least-Squares Probabilistic Classi-
fier

Importance weighted least-squares probabilistic classifier

(IWLSPC) combines a probabilistic classification method,

called least-squares probabilistic classifier, with the covariate

shift adaptation technique. As described in more detail in [23],

probabilistic classification is used to estimate the true class-

posterior probability p(y|x), modeled through

p(y|x,θy) =
∑
n

θy,nK(x,xte,n) (1)

where n is an index on number of instances, xte,n is the nth

test instance, θy = (θy,1, . . . , θy,n) is the parameter vector,

and K(x,xte) is a Kernel function, typically the Gaussian

kernel

K(x,xte,n) = exp (−||x− xte,n||2
2σ2

) (2)

with kernel width σ serving as the first free parameter for

IWLSPC. The parameter vector θy is determined by minimiz-

ing the squared error Jy(θy) through quadratic programming

Jy(θy) =
1

2

∫
(p(y|x;θy)− p(y|x))2pte(x)dx

=
1

2
θT
y Qθy − qT

y θy +
λ

2
θT
y θy

(3)

where the last term is a regularization term to minimize over-

fitting through the algorithms’s second free parameter λ, and

where Q – an nte × nte matrix – and qy = (qy,1, . . . , qy,nte
)

are approximated using the adaptive importance sampling

technique, through the importance weight defined as

w(x) =
pte(x)
ptr(x)

(4)

The quantities Q and qy are then obtained as follows

Qn,n′ =

∫
K(x,xte,n)K(x,xte,n′)ptr(x)w(x)dx (5)

qy,n = p(y)

∫
K(x,xte,n)ptr(x|y)w(x)dx (6)

where ptr(x|y) denotes the training input density for class

y. These quantities are then approximated by replacing the

integral over x with averaging over the training data xte,n [23]

to solve for θy , which in turn is used to determine the class-

posterior probability p(y|x;θy) through Equation 1. Given a

test instance xte, the class label yte is finally estimated as

ŷte = argmax
y

p(y|xte;θy). (7)

The critical parameter in model selection for IWLSPC

is kernel width σ, which is obtained through importance

weighted cross validation (IWCV) [24] in IWLSPC’s original

description in [23] and is updated each time step separately. In

this effort, we used parameter sweep, keeping the parameter

constant through out experiment, not only because such a

cross validation is unrealistic for each time step in a streaming

environment, but we also wanted to determine the sensitivity

of this parameter on the algorithm classification performance.

The importance weights in Equation (4) are estimated through

unconstrained least squares importance fitting (uLSIF) [25] as

done in [23].

In summary then, we suitably modified IWLSPC – orig-

inally proposed for only single time step problems, where

it was used to match the divergence in the training and

test distributions on a non-streaming data application (i.e., to

handle covariate shift or domain adaptation problems), and

extended its use to problems in which i) data arrive in a

continuous streaming fashion, where concept drift is occurring

possibly at every time step, and perhaps more importantly ii)

data arrive with extreme verification latency. The pseudocode

of the original IWLSPC is given below.

Algorithm 1 IWLSPC
Inputs: unconstrained least squares importance fitting uLSIF

- Importance weighted cross validation IWCV
1: Receive training data xtr

2: Receive test data xte

3: Run uLSIF to estimate importance weights

4: Run IWCV to estimate Gaussian kernel width σ
5: Compute Gaussian Kernel Function using σ as defined in

Equation 2

6: Estimate parameter θy by minimizing squared error

Jy(θy) as defined in Equation 3

7: Use θy , and the Gaussian Kernel function to compute

posterior probability as defined in Equation 1.

III. APPROACH

The COMPacted Object Sample Extraction (COMPOSE)

framework was introduced in [16] to address the extreme

verification latency problem in an ILSE setting, i.e., to learn

drifting concepts from a streaming non stationary environment

that provides only unlabeled data after initialization. The

basic assumption behind COMPOSE is the same assumption

used by most concept drift algorithms: that the data drifts

gradually between two time steps. Under this gradual drift

assumption, it is reasonable to expect that the class-conditional

1742

distributions of any class will have significant overlap at each

consecutive time steps. In fact, this is the reason why core-

support extraction allows COMPOSE to track the drifting

distribution. On the other hand, significant overlap is also the

motivation behind using the importance weighting approach as

such overlap is likely to result in satisfying the two important

assumptions of importance weighting approaches: i) shared

support of class-conditional distributions at two consecutive

time steps; and ii) posterior distribution for each class remains

the same (or at least, changes very little). If that is the case,

the SSL and core support extraction steps of COMPOSE can

be replaced with an importance weighting based approach.

On the other hand, importance weighting, as used in domain

adaptation, is intended for a single time step scenario with

mismatched training and test datasets, whereas COMPOSE is

intended to be used in streaming datasets with nonstationary

distributions. Iteratively applying importance weighting, where

each consecutive time step serve as the traditional source and

target datasets, allows us to cast the importance weighting in

a streaming data environment - of course, with the caveat that

we are working in an extreme verification latency environment.

Hence, we name our approach Learning Extreme VErification

Latency with Importance Weighting: LEVELIW

The pseudocode and implementation details of this approach

are described below and summarized in Algorithm 2.

LEVELIW takes advantage of the importance weighted least

squares probabilistic classifier (IWLSPC) as a subroutine [23],

and hence serves as a wrapper approach. At initial time step

t = 0, LEVELIW receives data x with their corresponding

labels y, and initializes the test data xt=0
te to initial data x

received, and sets their corresponding labels yt=0
te equal to

the initial labels y. Then, the algorithm iteratively processes

the data, such that at each time step t, a new unlabeled

test dataset xt
te is first received, the previously unlabeled test

data from previous time step xt−1
te , which is now labeled by

the IWLSPC subroutine, becomes the labeled training data

xttr for the current time step, and similarly the labels yt−1
te

obtained by IWLSPC during the previous time step become

the labels of the current training data xttr. The training data at

the current time step xttr, the corresponding label information

at the current time step yttr, the kernel bandwidth value σ
and the unlabeled test data at the current time step xtte are

then passed onto the IWLSPC algorithm, which predicts the

labels ytte for the test unlabeled data. The entire process is

then iteratively repeated.

Recall that the central premise behind COMPOSE is core

support extraction, where core supports are those labeled

instances located at the densest part (typically the core or

central region) of the feature space, which can be used

to represent the drifted distribution at the next time step,

subject to gradual drift assumption. This assumption results

in significant overlap between the data distributions at two

consecutive time steps, which is illustrated in Fig. 1(a) where

the yellow circle represents the core support region at time

step t, denoted as CSt. Xt−1 represents the now-labeled data

from the previous time step, and Xt represents the unlabeled

Algorithm 2 LEVELIW

Inputs: Importance weighted least squares probabilistic clas-

sifier - IWLSPC; Kernel bandwidth value σ
1: At t = 0, receive initial data x ∈ X and the corresponding

labels y ∈ Y = 1, . . . , C.

Set xt=0
te = x

Set yt=0
te = y

2: for t = 1,, do
3: Receive new unlabeled test data xtte ∈ X
4: Set xttr = xt−1

te

5: Set yttr = yt−1
te

6: Call IWLSPC with xttr, xt
te, y

t
tr, and σ to estimate ytte

7: end for

Fig. 1. Core support extraction process in COMPOSE vs. importance weight-
ing in LEVELIW: (a) yellow region represents the core supports extracted
using COMPOSE, which works well when there is significant overlap; (b)
blue region represents the overlapping region of two distributions, training
instances in this region receive more weight using LEVELIW; (c) yellow
region represents the core supports extracted using COMPOSE, which does
not work well when there is only marginal overlap; (d) blue region represents
the marginally overlapping regions of two distributions, LEVELIW still works
by assigning higher weights to instances in this region.

data received in the current time step, t.

When there is such significant overlap, there is also signif-

icant shared support, and LEVELIW assigns higher weights

to those instances that are drawn from the shared support

region, as shown in Fig. 1(b). Here, the overlapping region,

denoted as OR, is shaded in blue, Xt−1 and Xt represent

the labeled data currently available, and the newly received

unlabeled data, respectively. The weighting scheme then seeks

to match the distributions in the two consecutive time steps.

The primary advantage of using the importance weighting

approach over the core support extraction of the original

COMPOSE algorithm can be best observed when the drifting

scenario is not as gradual, and the overlapping regions of

the two distributions at two consecutive time steps is only

marginal. In such cases, the core support region at time step

t may no longer adequately represent the distribution at time

step t + 1, as illustrated in Fig. 1(c). However, as long as

there is some shared support – however marginal – importance

weighting can still be applied to those instances in that region,

1743

albeit more aggressively, as indicated in Fig. 1(d).

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

Fifteen synthetic datasets and one real dataset are used

in the evaluation and comparison of LEVELIW and COM-

POSE. Some of these datasets (indicated by an asterix in

Table I) were originally provided by us in our prior works

of [12] and [16], and others are provided by the authors

of SCARGC in [20], and then provided at one convenient

web site (https://sites.google.com/site/nonstationaryarchive/)

for machine learning community. Table I briefly describes the

important characteristics of these datasets. We analyze the

algorithm behavior from two perspectives: the raw average

accuracy of LEVELIW and COMPOSE, shown in Table II, and

a more detailed parameter sensitivity based analysis shown

in Tables III, and IV. From a raw classification accuracy

perspective, we see that it is difficult to pick a clear winner

between LEVELIW and COMPOSE - in some cases one

algorithm does better, and in some cases the other, with some

advantage in favor of COMPOSE when there is significant

between-class overlap. The advantage of COMPOSE appears

to be dramatic when the class-overlap lasts for the entire period

of experiment, as was the case for datasets, such as 2CDT
and 2CHT. This between-class overlap coupled by a drifting

environment ultimately leads to a significant change in the

posterior probability distribution p(y|x) of classes for these

datasets, hence violating one of the main assumptions of im-

portance weighting approaches. Further analysis of results and

the dataset properties revealed that the ability of COMPOSE

to perform well even under significant between-class overlap

is in fact due to a crucial piece of information provided to

COMPOSE, through one of the free-parameters of its SSL

module. Parameter sensitivity analysis, described in detail

below, shows that the advantage shifts towards LEVELIW,

when the user is not able to provide optimal free-parameters.

Recall that COMPOSE uses a clustering-based SSL al-

gorithm to track the drifting distributions. The cluster-and-

label (as used in our experiments), or label propagation, or

other clustering-based SSL algorithms are able to identify the

structure in the data from few labeled instances, and they

do so reasonably well even when there is overlap among the

clusters. In a drifting scenario, as long as at least part of the

feature space from which there is labeled information is not

completely overlapping with another class, a clustering-based

SSL algorithm (and hence COMPOSE) can recover as soon

as the classes separate again (as described in the case-studies

below). However, this performance is subject to correct choice

of the SSL’s algorithm’s primary user-provided free parameter,

the number of clusters k in the data, to which the algorithms

tend to be rather sensitive.

To better understand the underlying behavior of each algo-

rithm, let’s consider a few specific datasets as case studies:

i) 1CSurr, a two-class, two dimensional problem where one

class circumnavigates the other class, ii) UG 2C 2D, where

two unimodal bi-dimensional Gaussians circle around each

TABLE I
DATASET DESCRIPTION

Datasets
of
classes

of
features

Cardinality
Drift
interval

Class
Over-
lap

1CDT 2 2 16000 400 no

1CHT 2 2 16000 400 no

1CSurr 2 2 55283 600 yes

2CDT 2 2 16000 400 yes

2CHT 2 2 16000 400 yes

4CE1CF 5 2 173250 750 no

4CR 4 2 144400 400 no

4CRE-V2 4 2 183000 1000 yes

5CVT 5 2 40000 1000 yes

FG 2C 2D* 2 2 200000 2000 no

GEARS 2C 2D 2 2 200000 2000 no

MG 2C 2D* 2 2 200000 2000 yes

UG 2C 2D* 2 2 100000 1000 yes

UG 2C 3D* 2 3 200000 2000 yes

UG 2C 5D* 2 5 200000 2000 yes

keystroke 4 10 1600 200 DNK

TABLE II
AVERAGE ACCURACY

DATASETS COMPOSE (GMM) LEVELIW

1CDT 99.8563 99.9250
1CHT 99.3462 99.5187
1CSurr 89.7210 91.3025
2CDT 95.9169 58.3250

2CHT 89.6350 52.1500

4CE1CF 93.9038 97.7403
4CR 99.9896 99.9924

4CRE-V2 92.3026 24.1011

5CVT 45.0988 33.1021

FG 2C 2D 95.5025 95.7115
GEARS 2C 2D 95.8284 97.7380

MG 2C 2D 93.2010 85.4445

UG 2C 2D 95.7130 74.3370

UG 2C 3D 95.2056 64.6890

UG 2C 5D 92.1265 80.1720

keystroke 87.2125 90.5625

other; and iii) keystroke, 10-dimensional, four-class dataset

with a complex drift scenario. In the 1CSurr dataset, both

classes are drawn from a Gaussian distribution, however the

circumnavigating distribution has a much smaller covariance

than the other distribution (that stay stationary). What makes

this dataset particularly challenging is that the distribution

of the class with smaller variance in each dimension first

moves around the other class, completely circumnavigating the

perimeter with some – but not complete overlap – followed

by diagonally crossing over the second class distribution with

complete overlap. We note that “overlap”, in this context,

refers to overlapping class distributions (which is bad for

the classifiers), and not to overlap between two consecutive

timesteps of a particular class distribution (which is good for

the classifiers). Fig. 2 illustrates this dataset in six different

time snapshots.

1744

Fig. 2. Six different snapshots of the 1CSurr dataset with arrows representing
the drift direction of red class throughout the experiment

0 10 20 30 40 50 60 70 80 90 100

Timesteps

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

LEVEL-IW with sigma = 1
LEVEL-IW with sigma = 1.5
LEVEL-IW with sigma = 2
COMPOSE with k = 5
COMPOSE with k = 4
COMPOSE with k = 6

Fig. 3. Accuracy comparison of COMPOSE vs. LEVELIW on 1CSurr for
various values of their free parameters.

Fig. 3 shows the classification accuracy of both LEVELIW

and COMPOSE with different values of their respective pri-

mary parameters: k, the number of clusters for COMPOSE and

σ, the value of the kernel bandwidth for LEVELIW. During

the first 80 time steps, corresponding to the modest class

overlap during the circumnavigation of one class around the

other, LEVELIW performance is consistently high for all three

values of σ, whereas COMPOSE performance is significantly

lower for k = 6, which is only 1 higher than the optimal

value of k = 5 (note that k is not the number of classes).

A dramatic drop in performance is seen for both algorithms

and for all cases at time step 80, which corresponds the class

crossover; since there is complete class overlap during this

interval, the performance drop is to be expected. With no

labeled data coming thereafter, no algorithm can recover from

this scenario – with or without optimal parameter values –

though LEVELIW performance is still more consistent and

stable for different values of σ, while COMPOSE performance

fluctuates significantly for different values of k.

The UG 2C 2D dataset is also a two-class problem where

two classes are rotating around each other. There is class

overlap at all time steps, but with varying degree: the class

overlap increases between time steps 0 and 20, decreases

between time steps 20 and 40. Then, between time steps 60

Fig. 4. UG 2C 2D data for six different snapshots with arrows representing
the drift direction of classes throughout the experiment

0 10 20 30 40 50 60 70 80 90 100

Timesteps

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y LEVEL-IW with sigma = 0.2
LEVEL-IW with sigma = 0.5
LEVEL-IW with sigma = 1
COMPOSE with k = 2
COMPOSE with k = 3

Fig. 5. Accuracy comparison of COMPOSE vs. LEVELIW on UG 2C 2D.

and 70 overlap increases again, but this time significantly.

After time step 70, the classes separate. Fig. 4 illustrates the

behavior of the dataset at six different time snapshots.

This is a more interesting dataset and explains the perfor-

mance and behavior of both algorithms very clearly, as shown

in Fig. 5. Both algorithms do well when there is only modest

overlap, and when using the optimal values of their free

parameters, k = 2 and σ = 0.5. However, while LEVELIW

performance is consistent and stable for other σ values that

differ significantly from its optimal value, COMPOSE per-

formance drops dramatically for k = 3, the smallest change

possible from its optimal value. At time step 60, when there

is significant class-overlap, both algorithms see a drop in their

performance (as expected); however COMPOSE is able to

recover when the classes separate, whereas LEVELIW cannot.

Of course, COMPOSE recovery is subject to correct and exact

choice of the optimal value of k = 2, as it too cannot recover

for k = 3.

Finally, let’s also take a look at the keystroke dataset, a real-

world dataset that contains the information from the keystrokes

dynamics obtained from the users who type a fixed password,

.tie5Roan1, followed by the Enter key 400 times in 8 sessions

performed on different days. The task of the classifier is to

classify each one of four different users over time according

to their typing profile. Fig. 6 shows the classification accuracy

1745

1 2 3 4 5 6 7 8

Timesteps

40

50

60

70

80

90

100

A
cc

ur
ac

y

LEVEL-IW with sigma = 0.5
LEVEL-IW with sigma = 1
LEVEL-IW with sigma = 2
COMPOSE with k = 10
COMPOSE with k = 9
COMPOSE with k = 11

Fig. 6. Accuracy comparison of COMPOSE vs. LEVELIW on keystroke.

obtained by both LEVELIW and COMPOSE on this dataset

using various values of their respective free parameters. Since

this is a 10-dimensional real-world dataset, we do not know

(indicated as DNK in Table 1) whether this dataset have class-

overlap. However, the robustness of LEVELIW with respect to

the selection of its free parameter, and relative high sensitivity

of COMPOSE to its free parameter is also visible on this

dataset.

Given these observations, we now take a deeper and more

methodical look at the parameter sensitivity of both algo-

rithms.

B. Parameter Sensitivity Analysis

One particular benefit observed above with LEVELIW ap-

pears to be its relative resilience (less sensitivity) to the choice

of its primary free parameter, the Gaussian kernel width σ
as used by IWLSPC, compared to the number of clusters k
as used by the SSL algorithm in COMPOSE. To determine

whether this benefit is consistent across the datasets, we

conducted a series of parameter sweep experiments, running

each algorithm with different values of its free parameter.

Table III shows the results obtained by COMPOSE using

cluster-and-label, where for each dataset, we provided the

COMPOSE performance with the optimal k value, as well as k
incorrectly chosen by just ”1.” This ±1 represents the smallest

possible change in k around its optimal value. For example,

if the optimal value is k = 4, the three values of k used for

comparison are k = 3, k = 4, and k = 5. When optimal k
is two, the selection of k = 1 is, of course, meaningless, as

k = 1 would result in all instances being classified into the

same class. Hence, such cases are indicated as N/A in Table III.

We observe that in most datasets changing the value of k from

the optimal value just by 1, significantly and catastrophically

reduces the average accuracy for that dataset. The datasets

where this is observed most dramatically are the ones that

show class overlap. Perhaps not so surprisingly, if the data

has no class overlap, “increasing” the value of k from the

optimal value does not hurt the performance as cluster and

label can easily find more clusters in the data.

The free parameter for LEVELIW is the value of the kernel

width σ as used in Gaussian kernel. The parameter sweep

range was chosen to cover a range commonly known to

work well in other algorithms that use Gaussian kernels, and

included the values of 0.01, 0.1, 0.2, 0.5, 1, 1.2, 1.5, 2, and

TABLE III
ACCURACY WITH THREE DIFFERENT VALUES OF K FOR CLUSTER AND

LABEL (COMPOSE)

DATASETS
Reduced k
(Accuracy)

Optimal k
(Accuracy)

Increased k
(Accuracy)

1CDT N/A k=2 (99.85) k=3 (99.76)

1CHT N/A k=2 (99.34) k=3 (98.72)

1CSurr k=4 (88.38) k=5 (89.72) k=6 (77.81)

2CDT N/A k=2 (95.91) k=3 (52.91)

2CHT N/A k=2 (89.63) k=3 (77.33)

4CE1CF k=4 (78.96) k=5 (93.90) k=6 (94.66)

4CR k=3 (74.88) k=4 (99.98) k=5 (99.98)

4CRE-V2 k=3 (25.13) k=4 (92.30) k=5 (22.78)

FG 2C 2D k=3 (68.91) k=4 (95.50) k=5 (95.44)

GEARS 2C 2D N/A k=2 (95.82) k=3 (87.99)

MG 2C 2D k=3 (65.32) k=4 (93.20) k=5 (92.07)

UG 2C 2D N/A k=2 (95.71) k=3 (56.28)

UG 2C 3D N/A k=2 (95.20) k=3 (91.46)

UG 2C 5D N/A k=2 (92.12) k=3 (88.03)

keystroke k=9 (68.62) k=10 (87.21) k=11 (81.56)

5. Perhaps not too unsurprisingly, the extreme values never

yielded the best results. In Table IV, we show the performance

of LEVELIW for each of the datasets with three different values

of σ, representing the smallest and largest values of σ on which

the algorithm performed the best, and an additional value in

the middle of two. We observed that LEVELIW is surprisingly

robust to such wide fluctuations of σ values of typically

five fold, and sometimes as wide as an order of magnitude

difference. This outcome shows the consistent and stable

performance of LEVELIW, its most prominent advantage over

COMPOSE.

TABLE IV
ACCURACY WITH THREE DIFFERENT VALUES OF SIGMA (LEVELIW)

DATASETS
lowest sigma
(Accuracy)

Middle
sigma
(Accuracy)

Highest
sigma
(Accuracy)

1CDT 0.2 (99.91) 1 (99.91) 2 (99.92)

1CHT 0.2 (99.40) 1 (99.42) 2 (99.51)

1CSurr 1 (91.30) 1.5 (90.00) 2 (87.79)

2CDT 0.2 (58.32) 0.5 (50.32) 1 (50.48)

2CHT 0.2 (50.10) 0.5 (50.89) 1 (52.15)

4CE1CF 0.2 (97.74) 0.5 (97.12) 1.5 (92.40)

4CR 0.2 (99.99) 1 (99.99) 2 (99.99)

4CRE-V2 0.2 (20.96) 0.5 (20.84) 1 (24.10)

FG 2C 2D 0.2 (95.71) 0.5 (86.41) 1 (94.28)

GEARS 2C 2D 0.2 (97.73) 1 (95.28) 2 (95.36)

MG 2C 2D 0.2 (78.03) 0.5 (78.21) 1.2 (85.44)

UG 2C 2D 0.2 (70.61) 0.5 (71.81) 1 (74.33)

UG 2C 3D 0.1 (61.21) 1 (64.30) 2 (64.68)

UG 2C 5D 0.5 (77.67) 0.5 (80.07) 1.5 (80.17)

keystroke 0.5 (88.12) 1 (90.56) 2 (89.43)

V. CONCLUSION & FUTURE WORK

We described an importance weighting based approach for

addressing concept drift in the presence of extreme verification

1746

latency, where data with a changing underlying distribution

arrive in a continuous streaming fashion with only unlabeled

data provided beyond the initialization step. Traditionally,

importance weighting is used for domain adaptation problems

characterized in a single time step, where the change in

distribution is simply the mismatch between training and test

dataset, with no consideration of streaming data or extreme

verification latency.

The primary contribution of this effort is therefore a modi-

fication to the importance weighted least squares probabilistic

classifier so that it can work within a) a streaming data

environment and b) when there is extreme verification latency.

The proposed approach is called Learning Extreme VErifica-

tion Latency with Importance Weigthing (LEVELIW) and is

compared in accuracy and parameter sensitivity to our prior

work in this setting, called COMPOSE. Over fifteen datasets,

the two algorithms exchanged claims to better accuracy, with

COMPOSE generally performing better when there is signifi-

cant class-overlap, but only if – and that is an important if –

its free-parameter is chosen correctly.

While LEVELIW showed modest to moderate advantage in

accuracy over COMPOSE when the class overlap itself was

modest, its primary benefit was revealed when we observed its

robustness and higher tolerance (less sensitivity) to fluctuations

around the optimal value of its free parameter. Of course,

we should note that in all cases where LEVELIW performed

relatively poorly in comparison to COMPOSE, the dataset had

experienced drifting posterior probabilities, a violation of the

primary assumption of importance sampling approaches.

Further work is needed to further verify whether these

general observations generalize to other datasets and scenarios.

Specifically, additional work is needed in generating other

challenging synthetic dataset scenarios and additional real

datasets, and evaluating LEVELIW on datasets that contain

abrupt drift, recurring concepts, feature or class noise, and

high dimensional features. It is, after all, a challenging dataset

or scenario, or a collection thereof that provide the motivation

for the development of specialized algorithms within a specific

disciple.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under grant nos. 1310496 and 1429467.

REFERENCES

[1] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol. 106,
2004.

[2] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[3] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: a survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[4] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset shift in machine learning. The MIT Press, 2009.

[5] H. Shimodaira, “Improving predictive inference under covariate shift by
weighting the log-likelihood function,” Journal of statistical planning
and inference, vol. 90, no. 2, pp. 227–244, 2000.

[6] J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola,
“Correcting sample selection bias by unlabeled data,” in Advances in
neural information processing systems, 2006, pp. 601–608.

[7] S. Bickel, M. Brückner, and T. Scheffer, “Discriminative learning under
covariate shift,” Journal of Machine Learning Research, vol. 10, no.
Sep, pp. 2137–2155, 2009.

[8] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawan-
abe, “Direct importance estimation with model selection and its appli-
cation to covariate shift adaptation,” in Advances in neural information
processing systems, 2008, pp. 1433–1440.

[9] M. Muhlbaier and R. Polikar, “Multiple classifiers based incremental
learning algorithm for learning in nonstationary environments,” Inter-
national Conference on Machine Learning and Cybernetics, pp. 3618–
3623, 2007.

[10] M. Karnick, M. Ahiskali, M. Muhlbaier, and R. Polikar, “Learning
concept drift in nonstationary environments using an ensemble of
classifiers based approach,” International Joint Conference on Neural
Networks, pp. 3455–3462, 2008.

[11] R. Elwell and R. Polikar, “Incremental learning of concept drift in non-
stationary environments,” IEEE Transactions Neural Networks, vol. 22,
no. 10, pp. 1517–1531, 2011.

[12] G. Ditzler and R. Polikar, “Incremental learning of concept drift from
streaming imbalanced data,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, pp. 2283–2301, 2013.

[13] J. Kolter and M. Maloof, “Dynamic weighted majority: An ensemble
method for drifting concepts,” Journal of Machine Learning Research,
vol. 8, pp. 2755–2790, July 2007.

[14] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 377–382, 2001.

[15] G. Ditzler and R. Polikar, “Semi-supervised learning in nonstationary
environments,” International Joint Conference on Neural Networks, pp.
2741–2748, 2011.

[16] K. B. Dyer, R. Capo, and R. Polikar, “Compose: A semisupervised
learning framework for initially labeled nonstationary streaming data,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 25,
no. 1, pp. 12–26, 2014.

[17] R. Capo, A. Sanchez, and R. Polikar, “Core support extraction for learn-
ing from initially labeled nonstationary environments using compose,”
International Joint Conference on Neural Networks, pp. 602–608, 2014.

[18] G. R. Marrs, R. J. Hickey, and M. M. Black, “The impact of latency
on online classification learning with concept drift,” in International
Conference on Knowledge Science, Engineering and Management.
Springer, 2010, pp. 459–469.

[19] G. Krempl, “The algorithm apt to classify in concurrence of latency and
drift,” Intelligent Data Analysis, pp. 223–233, 2011.

[20] V. M. A. Souza, D. F. Silva, J. Gama, and G. E. A. P. A. Batista, “Data
stream classication guided by clustering on nonstationary envi- ronments
and extreme verication latency,” SIAM International Conference on Data
Mining, pp. 873–881, 2015.

[21] V. M. A. Souza, D. F. Silva, G. E. A. P. A. Batista, and J. Gama,
“Classification of evolving data streams with infinitely delayed labels,”
IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 214–219, 2015.

[22] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for
clustering evolving data streams,” Very Large Data Bases, vol. 29, pp.
81–92, 2003.

[23] H. Hachiya, M. Sugiyama, and N. Ueda, “Importance-weighted least-
squares probabilistic classifier for covariate shift adaptation with ap-
plication to human activity recognition,” Neurocomputing, vol. 80, pp.
93–101, 2012.

[24] M. Sugiyama, M. Krauledat, and K.-R. MÃžller, “Covariate shift adap-
tation by importance weighted cross validation,” Journal of Machine
Learning Research, vol. 8, no. May, pp. 985–1005, 2007.

[25] T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares approach to
direct importance estimation,” Journal of Machine Learning Research,
vol. 10, no. Jul, pp. 1391–1445, 2009.

1747

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

