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Abstract. Support Vector Machines (SVMs) have been applied to solve the 
classification of volatile organic compounds (VOC) data in some recent studies. 
SVMs provide good generalization performance in detection and classification 
of VOC data. However, in many applications involving VOC data, it is not un-
usual for additional data, which may include new classes, to become available 
over time, which then requires an SVM classifier that is capable of incremental 
learning that does not suffer from loss of previously acquired knowledge. In our 
previous work, we have proposed the incremental SVM approach based on 
Learn++.MT. In this contribution, the ability of SVMLearn++.MT to incremen-
tally classify VOC data is evaluated and compared against a similarly con-
structed Learn++.MT algorithm that uses radial basis function neural network as 
base classifiers.  

1   Introduction 

Gas sensing systems for detection and recognition of VOCs are of significant impor-
tance for many industries and organizations. Examples include food industries for 
testing the quality of food products, military and humanitarian organizations for locat-
ing buried land mines, petrochemical and valve manufacturing companies for detect-
ing and identifying hazardous gases, and airport security and customs inspection 
agencies for detecting illegal drugs and plastic bombs. Consequently, gas sensing 
systems for detection and recognition of VOCs, an important class of chemicals that 
can readily evaporate, have gained considerable attention, due to VOCs are encoun-
tered in many real-world applications. The VOCs classification problem is often made 
harder due to the irreversible behavior of the sensor array overtime such as parameter 
drift or just noisy data [1]. Furthermore, one of the main challenges in using gas sens-
ing systems is to be able to increase the number of odorants that can be identified over 
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time with additional data. On the other hand, the training dataset that was originally 
used to train the system may not be available by the time new training datasets be-
come available.  

Support Vector Machines (SVMs) have been used to recognition of VOC data in 
some studies [1-4]. SVMs provide good generalization performance in the context of 
odor detection and classification, despite the fact that it does not incorporate problem-
domain knowledge [1]. As with any type of classifier, the performance and accuracy 
of SVMs rely on the availability of a representative set of training dataset. However, 
acquisition of such a representative VOC dataset is expensive and time consuming as 
mentioned above. Consequently, such data often become available in small and sepa-
rate batches at different times. In such cases, a typical approach is combining new 
data with all previous data, and training a new classifier from scratch. In other words, 
such scenarios require a classifier to be trained and incrementally updated, where the 
classifier needs to learn the novel information provided by the new data without for-
getting the knowledge previously acquired from the data seen earlier. Since SVMs 
need to be reinitialized and retrained with the combined old and new data to learn the 
additional information, they are not capable of incremental learning. This causes all 
previously acquired knowledge to be lost, a phenomenon known as catastrophic for-
getting [5]. Therefore, SVMs require incrementally training in recognition of VOC 
data. 

In our previous work [6], integrating the SVM classifiers into an ensemble frame-
work using Learn++.MT, we have shown that the SVM classifiers can in fact be 
equipped with the incremental learning capability. Learn++.MT was developed in 
response to reduce the effect of out-voting problem, called classifier proliferation, in 
the ensemble of classifiers for the incremental learning [7]. In this paper, considering 
that the problem is caused by the nature of gas sensing system, we investigate the 
ability of the incremental SVM (SVMLearn++.MT) to classify of VOC data, while 
avoiding the catastrophic forgetting problem and also reducing the effect of out-
voting problem. Its performance have been compared the performance of radial basis 
function network used as the base classifier of the Learn++.MT. 

2   Gas Sensing System 

Due to their ability to mimic the human olfactory system, although in a very limited 
sense, gas sensing systems are often referred to as Electronic Nose (E-nose) Systems 
(Figure 1). An electronic nose is an instrument, which comprises an array of elec-
tronic chemical sensors with partial specificity and an appropriate pattern recognition 
system, capable of recognizing simple or complex odors [8]. The sensor array is a 
collection of sensors exposed to the same sample and producing individual responses 
as well as an entire response pattern. Piezoelectric acoustic wave sensors, which com-
prise a versatile class of chemical sensors, are used for the detection of VOCs data 
used in this study [9]. For sensing applications, a sensitive polymer film is cast on the 
surface of the Quartz Crystal Microbalance (QCM). This layer can bind a VOC of 
interest, altering the resonant frequency of the device, in proportion to the added 
mass. 
  



324 Z. Erdem et al. 

 

•
•
•

 

Fig. 1. An Electronic Nose System 

Addition or subtraction of gas molecules from the surface or bulk of an acoustic 
wave sensor results in a change in its resonant frequency. The frequency change ∆f, 
caused by a deposited mass ∆m can be described as following: 

A

m
ff

∆⋅⋅×−=∆ 26103.2  (1) 

where f is the fundamental resonant frequency of the bare crystal, and A is the active 
surface area. The sensor typically consists of an array of several crystals, each coated 
with a different polymer. This design is aimed at improving identification, hampered 
by the limited selectivity of individual films. Employing more than one crystal, and 
coating each with a different partially selective polymer, different responses can be 
obtained for different gases. The combined response of these crystals can then be used 
as a signature pattern of the VOC detected. 

 
 
 
 
 
 
 

 
 
 
 

Fig. 2. Sample responses of the six-QCM sensor array to VOCs data 

The gas sensing dataset used in this study consisted of responses of six QCMs to 
five VOCs, including ethanol (ET), xylene (XL), octane (OC), toluene (TL), and 
trichloroethelene (TCE). Figure 2 illustrates sample patterns for each VOC from six 
QCMs coated with different polymers, where the vertical axis represents normalized 
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frequency change. Note that the patterns from toluene, xylene, and trichloroethelene 
look considerably similar; hence, they are difficult to distinguish from each other.  

3   Incremental SVM 

3.1   Learn++.MT Algorithm 

The Learn++ algorithm has been introduced as an incremental learning algorithm that 
is capable of learning additional information [10], even difficult learning conditions. 
Learn++ not only assumes the previous data to be no longer available, but it also al-
lows additional classes to be introduced with new data, while retaining the previously 
acquired knowledge. It is an ensemble approach, inspired primarily by the AdaBoost 
algorithm [11]. Learn++ also creates an ensemble of classifiers, each trained on a sub-
set of the current training dataset, and later combined through weighted majority vot-
ing. Training instances for each classifier are drawn from an iteratively updated dis-
tribution. The main difference is that the distribution update rule in AdaBoost is based 
on the performance of the previous classifier, which focuses the algorithm on difficult 
instances, whereas that of Learn++ is based on the performance of the entire ensemble, 
which focuses this algorithm on instances that carry novel information. This distinc-
tion gives Learn++ the ability to learn new data, even when previously unseen classes 
are introduced. As new data reach, Learn++ creates additional classifiers, until the 
ensemble learns the new information. Since no classifier is discarded, previously 
acquired knowledge is retained.  

Learn++ uses weighted majority voting, where each classifier receives a voting 
weight based on its training performance. This works well in practice even for incre-
mental learning problems. However, if the incremental learning problem involves 
introduction of new classes, then the voting scheme proves to be unfair towards the 
newly introduced class: since none of the previously created classifiers can pick the 
new class, a relatively large number of new classifiers need to be generated that rec-
ognize the new class, so that their total weight can out-vote the first batch of classifi-
ers on instances coming from this new class. This in return populates the ensemble 
with an unnecessarily large number of classifiers. Learn++.MT, explained below, is 
specifically designed to address this issue of classifier proliferation [7]. 

The main innovation in Learn++.MT is the way by which the voting weights are de-
termined. Learn++.MT, also obtains a set of voting weights based on the individual 
performances of the classifier, however, these weights are then adjusted based on the 
classification of the specific instance at the time of testing, through dynamic weight 
voting (DWV) algorithm [7]. For any given test instance, Learn++.MT compares the 
class predictions of each classifier and cross-references them with the classes on 
which they were trained. Essentially, if a subsequent ensemble overwhelmingly 
chooses a class it has seen before, then the voting weights of those classifiers that 
have not seen that class are proportionally reduced. The Learn++.MT algorithm is 
given in Figure 3. 

For each dataset (Dk) that becomes available to Learn++.MT, the inputs to the algo-
rithm are (i) a sequence of m training data instances xi along with their correct labels 
yi, (ii) a classification algorithm, and (iii) an integer Tk specifying the maximum num-
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ber of classifiers to be generated using that database. If the algorithm is seeing its first 
database (k=1), a data distribution (Dt), from which training instances will be drawn, 
is initialized to be uniform, making the probability of any instance being selected 
equal.  If k>1 then a distribution initialization sequence initializes the data distribu-
tion.  The algorithm adds Tk classifiers to the ensemble starting at t=eTk+1, where eTk 
denotes the current number of classifiers in the ensemble. 
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              Call DWV to obtain the final hypothesis, Hfinal. 
 

Fig. 3. The Learn++.MT Algorithm 

For each iteration t, the instance weights, wt, from the previous iteration are first 
normalized to create a weight distribution Dt.  A classifier, ht, is generated from a subset 
of k that is drawn from Dt. The error, εt, of ht is then calculated; if εt > ½, the algorithm 
deems the current classifier, ht, to be too weak, discards it, and returns and redraws a 
training dataset, otherwise, calculates the normalized classification error βt. The class 
labels of the training instances used to generate this classifier are then stored. The DWV 
algorithm is called to obtain the composite classifier, Ht, of the ensemble. Ht represents 
the ensemble decision of the first t hypotheses generated thus far. The error of the com-
posite classifier, Et is then computed and normalized. The instance weights wt are finally 
updated according to the performance of Ht such that the weights of instances correctly 
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classified by Ht are reduced and those that are misclassified are effectively increased. 
This ensures that the ensemble focus on those regions of the feature space that are not 
yet learned, performing the incremental learning [7]. 

3.2   SVM Classifiers and Its Ensemble 

Support vector machines (SVMs) have been successfully employed in a number of 
real world problems [12, 13]. They directly implement the principle of structural risk 
minimization [12] and work by mapping the training points into a high dimensional 
feature space, where a separating hyperplane (w, b) is found by maximizing the dis-
tance from the closest data points (boundary-optimization). Given a set of training 
samples S={(xi,yi) ׀ i=1,…,m}, where xi∈Rn are input patterns, yi ∈ {+1, −1} are class 
labels for a 2-class problem, SVMs attempt to find a classifier h(x), which minimizes 
the expected misclassification rate. A linear classifier h(x) is a hyperplane, and can be 
represented as h(x) = sign(wTx+b). The optimal SVM classifier can then be found by 
solving a convex quadratic optimization problem: 

∑
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where b is the bias, w is weight vector, and C is the regularization parameter, used to 
balance the classifier’s complexity and classification accuracy on the training set S. 
Simply replacing the involved vector inner-product with a non-linear kernel function 
converts linear SVM into a more flexible non-linear classifier, which is the essence of 
the famous kernel trick. In this case, the quadratic problem is generally solved 
through its dual formulation:  
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where αi are the coefficients that are maximized by Lagrangian. For training samples 
xi, for which the functional margin is one (and hence lie closest to the hyperplane),    
αi > 0. Only these instances are involved in the weight vector, and hence are called the 
support vectors [13]. The non-linear SVM classification function (optimum separat-
ing hyperplane) is then formulated in terms of these kernels as: 
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The final composite SVM classifier is obtained using the DWV algorithm for 
Learn++.MT algorithm (Figure 4), as follows. Inputs of DWV are (i) the current train-
ing data and corresponding correct labels, (ii) classifiers ht (iii) βt, normalized error 
for each ht, and (iv) a vector containing the classes on which ht has been trained. The 
SVMs classifier weights, Wt =log(1/βt), are first initialized according to where each 
single SVM classifier first receives a standard weight that is inversely proportional to 
its normalized error βt so that those classifiers that performed well on their training 
data are given higher voting weights. A normalization factor is then created as the 
sum of the weights of all classifiers trained with class c=1,2,…,C. For each instance, a 
per-class confidence factor 0<Pc<1 is generated.  Pc is the sum of weights of all the 
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classifiers that choose class c divided by the sum of the weights of all classifiers 
trained with class c. Then, for each class, the weights are adjusted for classifiers that 
have not been trained with that class, that is, the weights are lowered proportional to 
the ensemble’s preliminary decision on that class. The final composite SVM classifier 
is then calculated as the maximum sum of the weights that chose a particular class: 
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Fig. 4. The Dynamic Weight Voting Algorithm 

4   Experimental Results 

A single hidden layer classical Radial Basis function (RBF) network and SVM with 
RBF kernel were used as the base classifier in our experiments. SVM and RBF net-
work with Learn++.MT (SVMLearn++.MT and RBFLearn++.MT) have been tested on 
VOC dataset.  

RBF kernel :  ⎟
⎠
⎞

⎜
⎝
⎛ −−= 22

2/exp),( σjiji xxxxK  (6) 

SVM classifier parameters are the regularization constant C, the spread σ of RBF 
kernel. RBF classifier parameters are the mean squared error goal and the spread of 
radial basis functions. The choice of classifier parameters is a form of model selec-
tion. Although the machine learning community has extensively considered model 
selection with SVMs, optimal model parameters are generally domain-specific [14]. 
Therefore, we used the cross-validation technique with 5-folds to jointly select the 
SVM and also RBF network parameters. 

The VOC dataset consisted of 384 six dimensional signals, 220 of which were used 
for training, and 164 of which were used for testing (TEST). Training dataset was 
divided into three training subsets (DS1, DS2, DS3). DS1 had instances from ET, OC, 
and TL, DS2 added instances mainly from TCE and very few from the previous three, 
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Table 1. VOC data distribution 

Class ETHANOL (C1) TCE (C2) OCTANE (C3) XYLENE (C4) TOLUENE (C5) 
DS1 20 0 20 0 40 
DS2 10 25 10 0 10 
DS3 10 15 10 40 10 
Test 24 24 24 40 52 

Table 2. SVMLearn++.MT with RBF kernel (σ = 3, C = 100) results 

 C1 C2 C3 C4 C5 Gen. Std 
DS1 94% - 91% - 100% 59% 1.42% 
DS2 98% 97% 83% - 93% 70% 1.24% 
DS3 95% 95% 90% 100% 71% 88% 1.63% 

Table 3. RBFLearn++.MT (σ = 0.45, goal = 0.5) results 

 C1 C2 C3 C4 C5 Gen. Std. 
DS1 93% - 82% - 98% 57% 1.18% 
DS2 96% 96% 77% - 91% 68% 1.44% 
DS3 90% 92% 80% 99% 69% 85% 3.83% 
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Fig. 5. Performance Results 

and DS3 added instances from XL and very few from the previous four. TEST set 
included instances from all classes. Only DSk was used during the kth training session. 
Table 1 presents the distribution of the datasets where subsequent datasets are biased 
toward the new class. Such a distribution results in challenge; since the algorithm will 
no longer have the opportunity to see adequate number of instances from previously 
introduced classes in the subsequent training sessions. 
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SVMLearn++.MT  and RBFLearn++.MT were incrementally trained with three sub-
sequent training datasets. They were permitted to generate as many classifiers as nec-
essary to obtain their maximum performance. The numbers of classifiers generated 
were 6, 5, and 4 to achieve their best performance in three training sessions, respec-
tively. Results from tests are shown in Tables 2 and 3 based on averages of 30 trials. 

As expected, the performances of the classifiers on their own training data were 
very high. We note that the performance on the TEST dataset improves as incre-
mental learning progresses and the system learns new classes. This is also expected, 
since TEST set had instances from all five classes, and instances from all classes were 
not introduced to classifiers until the last session. The performance improvement on 
the TEST data as new datasets are introduced demonstrates the incremental learning 
capability of the algorithm. 

Performance results from tests are shown in Figure 5 based on mean of 30 trials. 
Generalization performance of SVMLearn++.MT and RBFLearn++.MT on the test 
dataset progressively improved from 59-57% to 88-85%, respectively, as new data 
was introduced, demonstrating its incremental learning capability even when in-
stances of new classes are introduced in subsequent training sessions. 

5   Conclusions 

In this contribution, we have shown that incremental SVM (SVMLearn++.MT) can 
incrementally learn new classes, while retaining the previously acquired knowledge 
and also reducing of the classifier proliferation. In other words, the ability of learning 
new information provided by subsequent datasets, including new knowledge provided 
by instances of previously unseen classes, has been presented. SVMLearn++.MT with 
RBF kernel has also been compared against standard RBF network used as the base 
classifier of Learn++.MT. The results demonstrate that SVMLearn++.MT produced 
slightly better generalization performance, but also provided a significantly more 
stable improvement as seen from the reduced standard deviation. 
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