

P. Yolum et al.(Eds.): ISCIS 2005, LNCS 3733, pp. 322 – 331, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Classification of Volatile Organic Compounds with
Incremental SVMs and RBF Networks

Zeki Erdem1,3, Robi Polikar2, Nejat Yumuşak 3, and Fikret Gürgen4

1 TUBITAK Marmara Research Center, Information Technologies Institute,
41470 Gebze - Kocaeli, Turkey

zeki.erdem@bte.mam.gov.tr
2 Rowan University, Electrical and Computer Engineering Department,

210 Mullica Hill Rd., Glassboro, NJ 08028, USA
polikar@rowan.edu

3 Sakarya University, Computer Engineering Department,
Esentepe, 54187 Sakarya, Turkey
nyumusak@sakarya.edu.tr

4 Bogazici University, Computer Engineering Department,
Bebek, 80815 Istanbul, Turkey
gurgen@boun.edu.tr

Abstract. Support Vector Machines (SVMs) have been applied to solve the
classification of volatile organic compounds (VOC) data in some recent studies.
SVMs provide good generalization performance in detection and classification
of VOC data. However, in many applications involving VOC data, it is not un-
usual for additional data, which may include new classes, to become available
over time, which then requires an SVM classifier that is capable of incremental
learning that does not suffer from loss of previously acquired knowledge. In our
previous work, we have proposed the incremental SVM approach based on
Learn++.MT. In this contribution, the ability of SVMLearn++.MT to incremen-
tally classify VOC data is evaluated and compared against a similarly con-
structed Learn++.MT algorithm that uses radial basis function neural network as
base classifiers.

1 Introduction

Gas sensing systems for detection and recognition of VOCs are of significant impor-
tance for many industries and organizations. Examples include food industries for
testing the quality of food products, military and humanitarian organizations for locat-
ing buried land mines, petrochemical and valve manufacturing companies for detect-
ing and identifying hazardous gases, and airport security and customs inspection
agencies for detecting illegal drugs and plastic bombs. Consequently, gas sensing
systems for detection and recognition of VOCs, an important class of chemicals that
can readily evaporate, have gained considerable attention, due to VOCs are encoun-
tered in many real-world applications. The VOCs classification problem is often made
harder due to the irreversible behavior of the sensor array overtime such as parameter
drift or just noisy data [1]. Furthermore, one of the main challenges in using gas sens-
ing systems is to be able to increase the number of odorants that can be identified over

 Classification of VOC with Incremental SVMs and RBF Networks 323

time with additional data. On the other hand, the training dataset that was originally
used to train the system may not be available by the time new training datasets be-
come available.

Support Vector Machines (SVMs) have been used to recognition of VOC data in
some studies [1-4]. SVMs provide good generalization performance in the context of
odor detection and classification, despite the fact that it does not incorporate problem-
domain knowledge [1]. As with any type of classifier, the performance and accuracy
of SVMs rely on the availability of a representative set of training dataset. However,
acquisition of such a representative VOC dataset is expensive and time consuming as
mentioned above. Consequently, such data often become available in small and sepa-
rate batches at different times. In such cases, a typical approach is combining new
data with all previous data, and training a new classifier from scratch. In other words,
such scenarios require a classifier to be trained and incrementally updated, where the
classifier needs to learn the novel information provided by the new data without for-
getting the knowledge previously acquired from the data seen earlier. Since SVMs
need to be reinitialized and retrained with the combined old and new data to learn the
additional information, they are not capable of incremental learning. This causes all
previously acquired knowledge to be lost, a phenomenon known as catastrophic for-
getting [5]. Therefore, SVMs require incrementally training in recognition of VOC
data.

In our previous work [6], integrating the SVM classifiers into an ensemble frame-
work using Learn++.MT, we have shown that the SVM classifiers can in fact be
equipped with the incremental learning capability. Learn++.MT was developed in
response to reduce the effect of out-voting problem, called classifier proliferation, in
the ensemble of classifiers for the incremental learning [7]. In this paper, considering
that the problem is caused by the nature of gas sensing system, we investigate the
ability of the incremental SVM (SVMLearn++.MT) to classify of VOC data, while
avoiding the catastrophic forgetting problem and also reducing the effect of out-
voting problem. Its performance have been compared the performance of radial basis
function network used as the base classifier of the Learn++.MT.

2 Gas Sensing System

Due to their ability to mimic the human olfactory system, although in a very limited
sense, gas sensing systems are often referred to as Electronic Nose (E-nose) Systems
(Figure 1). An electronic nose is an instrument, which comprises an array of elec-
tronic chemical sensors with partial specificity and an appropriate pattern recognition
system, capable of recognizing simple or complex odors [8]. The sensor array is a
collection of sensors exposed to the same sample and producing individual responses
as well as an entire response pattern. Piezoelectric acoustic wave sensors, which com-
prise a versatile class of chemical sensors, are used for the detection of VOCs data
used in this study [9]. For sensing applications, a sensitive polymer film is cast on the
surface of the Quartz Crystal Microbalance (QCM). This layer can bind a VOC of
interest, altering the resonant frequency of the device, in proportion to the added
mass.

324 Z. Erdem et al.

•
•
•

Fig. 1. An Electronic Nose System

Addition or subtraction of gas molecules from the surface or bulk of an acoustic
wave sensor results in a change in its resonant frequency. The frequency change ∆f,
caused by a deposited mass ∆m can be described as following:

A

m
ff

∆⋅⋅×−=∆ 26103.2 (1)

where f is the fundamental resonant frequency of the bare crystal, and A is the active
surface area. The sensor typically consists of an array of several crystals, each coated
with a different polymer. This design is aimed at improving identification, hampered
by the limited selectivity of individual films. Employing more than one crystal, and
coating each with a different partially selective polymer, different responses can be
obtained for different gases. The combined response of these crystals can then be used
as a signature pattern of the VOC detected.

Fig. 2. Sample responses of the six-QCM sensor array to VOCs data

The gas sensing dataset used in this study consisted of responses of six QCMs to
five VOCs, including ethanol (ET), xylene (XL), octane (OC), toluene (TL), and
trichloroethelene (TCE). Figure 2 illustrates sample patterns for each VOC from six
QCMs coated with different polymers, where the vertical axis represents normalized

 Classification of VOC with Incremental SVMs and RBF Networks 325

frequency change. Note that the patterns from toluene, xylene, and trichloroethelene
look considerably similar; hence, they are difficult to distinguish from each other.

3 Incremental SVM

3.1 Learn++.MT Algorithm

The Learn++ algorithm has been introduced as an incremental learning algorithm that
is capable of learning additional information [10], even difficult learning conditions.
Learn++ not only assumes the previous data to be no longer available, but it also al-
lows additional classes to be introduced with new data, while retaining the previously
acquired knowledge. It is an ensemble approach, inspired primarily by the AdaBoost
algorithm [11]. Learn++ also creates an ensemble of classifiers, each trained on a sub-
set of the current training dataset, and later combined through weighted majority vot-
ing. Training instances for each classifier are drawn from an iteratively updated dis-
tribution. The main difference is that the distribution update rule in AdaBoost is based
on the performance of the previous classifier, which focuses the algorithm on difficult
instances, whereas that of Learn++ is based on the performance of the entire ensemble,
which focuses this algorithm on instances that carry novel information. This distinc-
tion gives Learn++ the ability to learn new data, even when previously unseen classes
are introduced. As new data reach, Learn++ creates additional classifiers, until the
ensemble learns the new information. Since no classifier is discarded, previously
acquired knowledge is retained.

Learn++ uses weighted majority voting, where each classifier receives a voting
weight based on its training performance. This works well in practice even for incre-
mental learning problems. However, if the incremental learning problem involves
introduction of new classes, then the voting scheme proves to be unfair towards the
newly introduced class: since none of the previously created classifiers can pick the
new class, a relatively large number of new classifiers need to be generated that rec-
ognize the new class, so that their total weight can out-vote the first batch of classifi-
ers on instances coming from this new class. This in return populates the ensemble
with an unnecessarily large number of classifiers. Learn++.MT, explained below, is
specifically designed to address this issue of classifier proliferation [7].

The main innovation in Learn++.MT is the way by which the voting weights are de-
termined. Learn++.MT, also obtains a set of voting weights based on the individual
performances of the classifier, however, these weights are then adjusted based on the
classification of the specific instance at the time of testing, through dynamic weight
voting (DWV) algorithm [7]. For any given test instance, Learn++.MT compares the
class predictions of each classifier and cross-references them with the classes on
which they were trained. Essentially, if a subsequent ensemble overwhelmingly
chooses a class it has seen before, then the voting weights of those classifiers that
have not seen that class are proportionally reduced. The Learn++.MT algorithm is
given in Figure 3.

For each dataset (Dk) that becomes available to Learn++.MT, the inputs to the algo-
rithm are (i) a sequence of m training data instances xi along with their correct labels
yi, (ii) a classification algorithm, and (iii) an integer Tk specifying the maximum num-

326 Z. Erdem et al.

ber of classifiers to be generated using that database. If the algorithm is seeing its first
database (k=1), a data distribution (Dt), from which training instances will be drawn,
is initialized to be uniform, making the probability of any instance being selected
equal. If k>1 then a distribution initialization sequence initializes the data distribu-
tion. The algorithm adds Tk classifiers to the ensemble starting at t=eTk+1, where eTk
denotes the current number of classifiers in the ensemble.

 Input: For each dataset k k=1,2,…,K

• Sequence of m instances S=[(x1,y1),…,(xm,ym)] with labels },...,1{ cYy ki =∈

• Learning algorithm BaseClassifier.
• Integer Tk, specifying the number of iterations

 Do for k=1,2,…,K

 If k=1 Initialize 0,/1)(111 === eTmiDw for all i.

 Else Go to Step 5 to evaluate the current ensemble on new data set

 k, update weights, and recall current number of classifiers ∑
−

=
=

1

1

k

j
jk TeT

 Do for t= keT +1, keT +2,…, kk TeT + :

 1. Set ∑
=

=
m

i
ttt iwwD

1
)(so that Dt is a distribution.

 2. Call BaseClassifier providing it with a subset of k randomly chosen using Dt.

 3. Obtain a hypothesis ht : X Y, and calculate the error ht : ∑
≠

=
iit yxhi
tt iD

)(:
)(ε

 If tε > ½, discard ht and go to step 2.

 Otherwise, compute normalized error as)1(ttt εεβ −= .

 4. CTrt = Yk, save labels of classes used in training ht.
 5. Call DWV to obtain the composite hypothesis Ht.

 6. Compute the error of the composite hypothesis ∑
≠

=
iit yxHi

tt iDE
)(:

)(

 7. Set Bt=Et/(1-Et), and update the instance weights:

⎩
⎨
⎧ =

×=+ otherwise

yxHifB
wiw iitt

tt ,1

)(,
)(1

 Call DWV to obtain the final hypothesis, Hfinal.

Fig. 3. The Learn++.MT Algorithm

For each iteration t, the instance weights, wt, from the previous iteration are first
normalized to create a weight distribution Dt. A classifier, ht, is generated from a subset
of k that is drawn from Dt. The error, εt, of ht is then calculated; if εt > ½, the algorithm
deems the current classifier, ht, to be too weak, discards it, and returns and redraws a
training dataset, otherwise, calculates the normalized classification error βt. The class
labels of the training instances used to generate this classifier are then stored. The DWV
algorithm is called to obtain the composite classifier, Ht, of the ensemble. Ht represents
the ensemble decision of the first t hypotheses generated thus far. The error of the com-
posite classifier, Et is then computed and normalized. The instance weights wt are finally
updated according to the performance of Ht such that the weights of instances correctly

D

D

D

D

 Classification of VOC with Incremental SVMs and RBF Networks 327

classified by Ht are reduced and those that are misclassified are effectively increased.
This ensures that the ensemble focus on those regions of the feature space that are not
yet learned, performing the incremental learning [7].

3.2 SVM Classifiers and Its Ensemble

Support vector machines (SVMs) have been successfully employed in a number of
real world problems [12, 13]. They directly implement the principle of structural risk
minimization [12] and work by mapping the training points into a high dimensional
feature space, where a separating hyperplane (w, b) is found by maximizing the dis-
tance from the closest data points (boundary-optimization). Given a set of training
samples S={(xi,yi) ׀ i=1,…,m}, where xi∈Rn are input patterns, yi ∈ {+1, −1} are class
labels for a 2-class problem, SVMs attempt to find a classifier h(x), which minimizes
the expected misclassification rate. A linear classifier h(x) is a hyperplane, and can be
represented as h(x) = sign(wTx+b). The optimal SVM classifier can then be found by
solving a convex quadratic optimization problem:

∑
=

+
m

i
i

bw
Cw

1

2

, 2

1
max ξ subject to () iii bxwy ξ−≥+ 1, and 0≥iξ (2)

where b is the bias, w is weight vector, and C is the regularization parameter, used to
balance the classifier’s complexity and classification accuracy on the training set S.
Simply replacing the involved vector inner-product with a non-linear kernel function
converts linear SVM into a more flexible non-linear classifier, which is the essence of
the famous kernel trick. In this case, the quadratic problem is generally solved
through its dual formulation:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑∑

==

m

i
jijiji

m

i
i xxKyybwL

11
),(

2

1
),,(αααα subject to C ≥ αi ≥ 0 and ∑

=
=

m

i
ii y

1
0α (3)

where αi are the coefficients that are maximized by Lagrangian. For training samples
xi, for which the functional margin is one (and hence lie closest to the hyperplane),
αi > 0. Only these instances are involved in the weight vector, and hence are called the
support vectors [13]. The non-linear SVM classification function (optimum separat-
ing hyperplane) is then formulated in terms of these kernels as:

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −= ∑
=

m

i
jiii bxxKysignxh

1
),()(α . (4)

The final composite SVM classifier is obtained using the DWV algorithm for
Learn++.MT algorithm (Figure 4), as follows. Inputs of DWV are (i) the current train-
ing data and corresponding correct labels, (ii) classifiers ht (iii) βt, normalized error
for each ht, and (iv) a vector containing the classes on which ht has been trained. The
SVMs classifier weights, Wt =log(1/βt), are first initialized according to where each
single SVM classifier first receives a standard weight that is inversely proportional to
its normalized error βt so that those classifiers that performed well on their training
data are given higher voting weights. A normalization factor is then created as the
sum of the weights of all classifiers trained with class c=1,2,…,C. For each instance, a
per-class confidence factor 0<Pc<1 is generated. Pc is the sum of weights of all the

328 Z. Erdem et al.

classifiers that choose class c divided by the sum of the weights of all classifiers
trained with class c. Then, for each class, the weights are adjusted for classifiers that
have not been trained with that class, that is, the weights are lowered proportional to
the ensemble’s preliminary decision on that class. The final composite SVM classifier
is then calculated as the maximum sum of the weights that chose a particular class:

∑
=

=
cxht
t

c
ifinal

it

WxH
)(:

maxarg)(. (5)

 Inputs:

• Sequence of i=1,…,n training instances or test instance xi
• Classifiers ht.
• Hypothesis error values, βt.
• Classes, CTrt used in training ht.

 For t=1,2,…,T where T is the total number classifiers.

 1. Initialize classifier weights)1log(ttW β=

 2. Create normalization factor, Z, for each class ∑
∈

=
tCTrct
tc WZ

:
, for c=1,2,…,C classes

 3. Obtain preliminary decision
c

cxht
t

c Z

W

P it

∑
==)(: , for c=1,2,…,C classes

 4. Update voting weights)1(:: cCTrcttCTrct PWW
t

−= ∉∉ for c=1,2,…,C

 5. Compute final hypothesis ∑
=

=
cxht
t

c
ifinal

it

WxH
)(:

maxarg)(

Fig. 4. The Dynamic Weight Voting Algorithm

4 Experimental Results

A single hidden layer classical Radial Basis function (RBF) network and SVM with
RBF kernel were used as the base classifier in our experiments. SVM and RBF net-
work with Learn++.MT (SVMLearn++.MT and RBFLearn++.MT) have been tested on
VOC dataset.

RBF kernel : ⎟
⎠
⎞

⎜
⎝
⎛ −−= 22

2/exp),(σjiji xxxxK (6)

SVM classifier parameters are the regularization constant C, the spread σ of RBF
kernel. RBF classifier parameters are the mean squared error goal and the spread of
radial basis functions. The choice of classifier parameters is a form of model selec-
tion. Although the machine learning community has extensively considered model
selection with SVMs, optimal model parameters are generally domain-specific [14].
Therefore, we used the cross-validation technique with 5-folds to jointly select the
SVM and also RBF network parameters.

The VOC dataset consisted of 384 six dimensional signals, 220 of which were used
for training, and 164 of which were used for testing (TEST). Training dataset was
divided into three training subsets (DS1, DS2, DS3). DS1 had instances from ET, OC,
and TL, DS2 added instances mainly from TCE and very few from the previous three,

 Classification of VOC with Incremental SVMs and RBF Networks 329

Table 1. VOC data distribution

Class ETHANOL (C1) TCE (C2) OCTANE (C3) XYLENE (C4) TOLUENE (C5)
DS1 20 0 20 0 40
DS2 10 25 10 0 10
DS3 10 15 10 40 10
Test 24 24 24 40 52

Table 2. SVMLearn++.MT with RBF kernel (σ = 3, C = 100) results

 C1 C2 C3 C4 C5 Gen. Std
DS1 94% - 91% - 100% 59% 1.42%
DS2 98% 97% 83% - 93% 70% 1.24%
DS3 95% 95% 90% 100% 71% 88% 1.63%

Table 3. RBFLearn++.MT (σ = 0.45, goal = 0.5) results

 C1 C2 C3 C4 C5 Gen. Std.
DS1 93% - 82% - 98% 57% 1.18%
DS2 96% 96% 77% - 91% 68% 1.44%
DS3 90% 92% 80% 99% 69% 85% 3.83%

0 5 10 15
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of classifiers

P
er

fo
rm

an
ce

 o
n

te
st

 d
at

a

VOC Dataset

SVMLearn++.MT with RBF Kernel

RBFLearn++.MT

Fig. 5. Performance Results

and DS3 added instances from XL and very few from the previous four. TEST set
included instances from all classes. Only DSk was used during the kth training session.
Table 1 presents the distribution of the datasets where subsequent datasets are biased
toward the new class. Such a distribution results in challenge; since the algorithm will
no longer have the opportunity to see adequate number of instances from previously
introduced classes in the subsequent training sessions.

330 Z. Erdem et al.

SVMLearn++.MT and RBFLearn++.MT were incrementally trained with three sub-
sequent training datasets. They were permitted to generate as many classifiers as nec-
essary to obtain their maximum performance. The numbers of classifiers generated
were 6, 5, and 4 to achieve their best performance in three training sessions, respec-
tively. Results from tests are shown in Tables 2 and 3 based on averages of 30 trials.

As expected, the performances of the classifiers on their own training data were
very high. We note that the performance on the TEST dataset improves as incre-
mental learning progresses and the system learns new classes. This is also expected,
since TEST set had instances from all five classes, and instances from all classes were
not introduced to classifiers until the last session. The performance improvement on
the TEST data as new datasets are introduced demonstrates the incremental learning
capability of the algorithm.

Performance results from tests are shown in Figure 5 based on mean of 30 trials.
Generalization performance of SVMLearn++.MT and RBFLearn++.MT on the test
dataset progressively improved from 59-57% to 88-85%, respectively, as new data
was introduced, demonstrating its incremental learning capability even when in-
stances of new classes are introduced in subsequent training sessions.

5 Conclusions

In this contribution, we have shown that incremental SVM (SVMLearn++.MT) can
incrementally learn new classes, while retaining the previously acquired knowledge
and also reducing of the classifier proliferation. In other words, the ability of learning
new information provided by subsequent datasets, including new knowledge provided
by instances of previously unseen classes, has been presented. SVMLearn++.MT with
RBF kernel has also been compared against standard RBF network used as the base
classifier of Learn++.MT. The results demonstrate that SVMLearn++.MT produced
slightly better generalization performance, but also provided a significantly more
stable improvement as seen from the reduced standard deviation.

Acknowledgements

This work is supported in part by the National Science Foundation under Grant No.
ECS-0239090, “CAREER: An Ensemble of Classifiers Approach for Incremental
Learning.” Z.E. would like to thank Mr. Apostolos Topalis and Mr. Michael Muhl-
baier graduate students at Rowan University, NJ, for their invaluable suggestions and
assistance.

References

1. Distante, C., Ancona, N., Siciliano, P.: Support Vector Machines for Ofactory Signals
Recognition. Sensors and Actuators B Vol. 88 (2003), 30-39.

2. Erdem, Z., Gürgen, F., Yumuşak, N.: Electronic Nose Data Classification using Support
Vector Machines. Proceedings of IEEE 10th Turkish Signal Processing and Applications
Conference (SIU’2002), Vol, 2. (2002) 1174-1179.

 Classification of VOC with Incremental SVMs and RBF Networks 331

3. DeCoste, D., Burl, M. C., Hopkins, A., Lewis, N. S.: Support Vector Machines and Kernel
Fisher Discriminations: A Case Study using Electronic Nose Data. Fourth Workshop on
Mining Scientific Datasets, Seventh ACM SIGKDD International Conference on
Kwowlegde Discovery and Data Mining (KDD-2001), August 26, 2001.

4. Trihaas, J., Bothe, H.H.: An application of Support Vector Machines to E-nose data. In
Proceedings of ISOEN '2002 (International Symposium in Olfaction and Electronic
Noses), Eds: A. D'Amico and C. Di Natale, (2003) 170-174.

5. French, R.: Catastrophic forgetting in connectionist networks: Causes, Consequences and
Solutions. Trends in Cognitive Sciences, Vol. 3. No. 4. (1999)128-135.

6. Erdem, Z., Polikar, R., Gürgen, F., Yumuşak, N.: Reducing the Effect of Out-voting Prob-
lem in Ensemble Based Incremental Support Vector Machines. International Conference
on Artificial Neural Networks (ICANN 2005) 11-15 September 2005, Warsaw, Poland.

7. Muhlbaier, M., Topalis, A., Polikar, R.: Learn++.MT: A New Approach to Incremental
Learning. 5th Int. Workshop on Multiple Classifier Systems (MCS 2004), Springer LNCS
Vol. 3077, (2004) 52-61.

8. Gardner, J.W., Bartlett, P.N.: A brief history of electronic noses. Sensors and Actuators B
Vol. 18-19 (1994.), 211-220.

9. Polikar, R., Shinar, R., Honavar, V., Udpa, L., Porter, M. D.: Detection and Identification
of Odorants using An Electronic Nose. Proc. of IEEE 26th Int. Conf. on Acoustics, Speech
and Signal Proc., vol. 5. (2001) 3137-3140.

10. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An incremental learning algorithm
for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics.
Part C: Applications and Reviews, Vol. 31, No. (2001) 497-508.

11. Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an ap-
plication to boosting. Computer and System Sciences, vol. 57. no. 1. (1997) 119-139.

12. Vapnik, V., Statistical Learning Theory. New York: Wiley, (1998).
13. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge University Press (2000).
14. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for tuning

SVM hyperparameters. Neurocomputing, Vol. 51. (2003) 41-59.

	Introduction
	Gas Sensing System
	Incremental SVM
	Learn++.MT Algorithm
	SVM Classifiers and Its Ensemble

	Experimental Results
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

