
    
     

A Two-Tiered Classification Algorithm for Identification of Binary Mixtures of VOCs 
 

Robi Polikar and Bryan Healy 
Rowan University 

136 Rowan Hall, 201 Mullica Hill Road, Glassboro, NJ 08028, USA 
polikar@rowan.edu 

 

Abstract 
Several classification techniques have been developed 

with varying degrees of success for automated identifica-
tion of VOCs, however, the problem becomes considera-
bly more challenging when more then one VOC is pre-
sent. This is because not only the response of the sensors 
to certain VOCs may be too strong to mask the response 
of the sensors to other VOCs in the environment, but also 
the responses of the sensors to VOCs may not have 
enough separability information if the specificity of the 
sensors is not adequate. We propose the following proce-
dures for these two isssues in identification of binary mix-
tures of VOCs: a nonlinear cluster transformation tech-
nique is employed to increase pattern separability and a 
two-step classification is used to identify dominant and 
secondary VOCs separately. Results demonstrate the fea-
sibility of the combined approach. 

1. Introduction   
Volatile organic compounds (VOC) can be found in a 

variety of settings, including industrial (such as wastewa-
ter) as well as residential (such as drinking water supplies, 
hospitals) sites. Most VOCs find their way into the envi-
ronment through human causes such as pollution in indus-
trial areas or fuel spills. These compounds can have a dis-
astrous effect on the environment through premature deg-
radation of the surrounding area and health hazards to 
people in the area that use the contaminated resources. 
The need for an accurate, cost–effective and objective 
system for detection and identification of VOCs is there-
fore undisputed.  

Various laboratory based methods exist for the exami-
nation of water or air samples and detection of these com-
pounds, but they are often expensive and not located near 
the source of the pollution causing difficulties in continu-
ous testing. A system employing an electronic nose 
(Enose) can be used for on-field detection and classifica-
tion saving both time and money [1]. The data generated 
by the Enose can then be analyzed by a pattern recogni-
tion system for automated identification of the VOC pre-
sent in the environment. In fact, several such techniques 
have been proposed over the last decade for identification 
of (single) VOCs, each with varying degrees of success 
[2-5]. However, the problem becomes considerably more 
challenging, when the VOCs appear in a mixture, and the 
individual components of this mixture needs to be identi-
fied [6;7]. This difficulty arises from primarily two fac-
tors: First, in many cases the sensor(s) may have a very 
similar response to two very different compounds, a direct 
result of inadequate specificity of the sensor. Second, the 
sensor response to one of the components in the mixture 

may be so strong that the response to the other compo-
nents may be completely masked. In this study, we con-
sider binary mixtures of such VOCs, where we refer to 
them as dominant and secondary VOCs, respectively. 

We present a composite approach to the above men-
tioned two issues. We propose a classification system that 
first applies a preprocessing algorithm, nonlinear cluster 
transformation or nonparametric discriminant analysis, in 
order to increase the separability of the data to aid in clas-
sification. We then use a two-level classification system: 
first the separability algorithm is applied to the raw data 
followed by a neural network classifier to determine the 
dominant VOC only. Then, a second level of neural net-
work is used, based on the dominant VOC classification, 
to determine the secondary VOC in the mixture.  

The electronic nose system used to generate the data 
analyzed in this study is an array of six quartz crystal 
microbalances (QCM), a well known chemical sensor 
commonly used in practice for VOC detection. Each 
QCM was coated with a different polymer, chosen to 
maximize the specificity of the sensor array for the spe-
cific VOCs of interest. As shown next, even a careful se-
lection of polymers did not provide a well-separated fea-
ture space for the identification of VOCs. 

To date, on a database that includes 24 binary combi-
nations of five dominant and seven secondary VOCs, we 
have obtained performance figures as high as 87% on the 
dominant VOC and 81% on the secondary VOC. 

2. Increasing Pattern Separability 
In general, classification algorithms work well when 

the underlying data distributions have adequately large in-
tercluster distances between patterns of different classes, 
and small intracluster distances between patterns of the 
same class. For most real-world problems, however, this 
is rarely the case as patterns corresponding to different 
classes overlapping in the feature space are usually the 
norm then the exception. Therefore, feature extraction al-
gorithms are typically used as a preprocessing step to 
classification, whose fundamental objective is to reduce 
the dimensionality of pattern vectors without loosing dis-
criminatory information. The general problem of feature 
extraction can be formulated as one of determining a 
mapping of the form y = f(x), or y = WTx, that transforms 
pattern vectors onto a lower dimensional  space in which 
the corresponding feature vectors are better separable. 
Several well-established techniques have been used (and 
sometimes misused) for this purpose. For example, the 
principal component analysis (PCA) is one such popular 
technique, however, PCA does not take the separability of 
the patters into consideration [8]. The Fisher Linear Dis-
criminant (FLD) also achieves dimensionality reduction, 



 

but by taking a criterion function into consideration: the 
ratio of intercluster to intracluster distances. The FLD 
projects the data onto a lower dimensional space where 
this criterion function is maximized. Consequently, FLD 
is a feature reduction algorithm that ensures maximum 
separability of patterns in the transformed space [8]. 
However, FLD has its limitations. First, regardless of the 
dimension of the original pattern, the FLD transforms a 
pattern vector onto a feature vector, whose dimension can 
be at most C-1, where C is the number of classes. Second, 
a matrix inversion used in FLD requires that N-C > d, 
where N is the number of training data and d is the di-
mension of the pattern vector. These limitations can 
sometimes be quite restrictive depending on the dimen-
sionality, the number of classes and the number of train-
ing data available. However, a modification of FLD 
originally described in [9], and known as nonparametric 
discriminant analysis (NDA), removes the above men-
tioned restrictions by redefining the intercluster distances.  

Another technique that can be used for increasing pat-
tern separability is the nonlinear cluster transformation 
(NCT) described in this paper. NCT attempts to increase 
the intercluster distances while preserving the dimension-
ality of the pattern vectors. NCT has no limitations in 
terms of dimensionality, number of classes, or the total 
number of patterns in the database. 

We describe these two techniques, NDA and NCT, as 
preprocessing steps for analyzing binary mixture VOC 
data. 

3. Nonparametric Discriminant Analysis (NDA) 
Consider a multi-class classification problem and let C 

be the number of classes. For the ith class, let { }iX be the 
set of patterns in this class, mi be the mean of vectors 

{ }iXx∈ , ni be the number of patterns in { }iX . Let m be 
the mean of all patterns in all C classes. Then the within 
scatter matrix SW, and between scatter matrix SB are de-
fined as follows: 
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where mijx represents the mean of xi’s k-nearest neighbors 
from class j and the wijx represents the weight of the fea-
ture vector x from class i to class j defined as  
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with dist(xi
KNN) being the Euclidean distance from x to its 

k-nearest neighbors in class i. In general, if a point be-
longing to class i is far away in the feature space from the 
cluster of class j instances, wijx is a small quantity. If, 
however, an instance of class i  is close to the boundary of 
class j instances, then wijx is a large quantity. We note that 
SW is a measure of the intracluster distances, and SB is a 

measure of the intercluster distances. The transformation, 
the projection from the original feature space onto a lower 
dimensional feature space, can be expressed as 

xWy ⋅= T   (3) 
where the column vector y is the feature vector in the pro-
jected space corresponding to pattern x. The optimum ma-
trix W is obtained by maximizing criterion function     
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The columns of W that maximizes J(W) are then the ei-
genvectors that correspond to the largest eigenvalues in 
the generalized eigenvalue equation [8] 

iWiiB wSwS λ=  (5) 
For nonsingular SW, Equation 5 can be written as 

iiBW wwSS λ=−1  (6) 
From Equation 6, we can directly compute the eigenval-
ues λi and the eigenvectors wi, constituting the columns of 
the W matrix, which can then be used to obtain the trans-
formed instances y in the new feature space. 

4. Nonlinear Cluster Transformation (NCT) 
NCT is a three step procedure: in the first step, reduc-

tion of intracluster distances is achieved by eliminating 
the outliers. In the second step, the desired cluster separa-
tion is obtained by a simple translation of each cluster 
along an optimal direction. This step, in essence, gener-
ates training data pairs for determining the NCT function 
for the third step. In this last step, the data generated in 
step two is used to train a generalized regression neural 
network (GRNN) to approximate the function mapping 
between original clusters and the translated clusters. The 
feature vectors are then input to a classifier of choice. The 
details of these steps are explained below 

4.1 Outlier Removal 
The patterns in each class i in the training database are 

first normalized according to  
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where xk
  is the kth  element of the pattern x, and d is the 

dimensionality of the patterns. Outlier removal is per-
formed next, based on the Mahalanobis distances of pat-
terns from the cluster centers. For each cluster i, the Ma-
halanobis distance of pattern x in class i is computed as   

{ }i1              )()( XxmxCmx ∈−−= −
ii

T
iDM  (8) 

where Ci is the covariance matrix of instances of the ith  
class, and mi is the mean of this population. MD can be 
used as a measure of dispersion within the cluster. A suit-
able threshold is chosen based on the data, and instances 
with an MD larger then this threshold are removed. 

4.2 Cluster Translation 
This step addresses the problem of closely packed and 

possibly overlapping clusters. The idea is to translate the 
clusters appropriately in order to physically separate 



 

them. Conceptually, all clusters are thought of as like 
charged particles, and the magnitude and direction of the 
translation vector are then derived using the concept of a 
repulsive force exerted by each cluster i on other clusters.  

Consider a two-class problem with (possibly) over-
lapping clusters, whose centers are located at m1 and m2.  
The distance between these two clusters can be increased 
if class I patterns are translated along the vector 

( )1 2 1= − −S m m , and class II patterns are translated 

along ( )2 1 2 1= − = −S S m m . This idea can be extended 
to multi-class problems of arbitrary dimensionality, where 
patterns of class Ci can be translated along Si, where the 
optimal direction Si can be computed as  

( )∑
≠
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C

ij
ij mmSi  (9) 

and where mi and mj are the cluster centers of cluster i 
and cluster j, respectively, and C  is the number of clus-
ters. The resultant translation vector for cluster i is 

ii MS −= , where 
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All patterns in cluster i are moved along the direction of -
Mi, and the translated patterns can be obtained by 

( ) iiSi dist⋅−+= ii MMxx  (11) 

where xi is a pattern from cluster i, iidist mm −= 1  is a 
normalizing constant that controls the amount of transla-
tion, and xSi is the new location of the pattern xi. It is 
straightforward to show mathematically that these transla-
tion directions maximize intercluster distances [10]. Note 
that Si points in the opposite direction of the resultant vec-
tor that combines the cluster center of cluster i to the cen-
ters of all other clusters, that is, it points away from all 
other clusters. The procedure is illustrated in Figure 1. 
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Figure 1. Nonlinear cluster transformation. 

The cluster transformation described here can also be 
expressed in a matrix form. Let i=1,2,…,C, where C is the 
number of classes,  n=1,2,…,Ni where Ni is the number of 
patterns in class i, Xn

i be the nth pattern of the ith class, and 
Yn

i be the corresponding pattern after translation. Then, 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

⋅

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅−=

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

i
Ni

i

i

iC

i

i

i

i
Ni

i

i

X

X
X

dist

Y

Y
Y

1

1

1

2

1

2

1

.

.
.
.

11

11

.

.

mm

mm
mm

  (12) 

This equation can be implemented on the training data 
sets to generate a second dataset that can be used to train 
a GRNN to learn the overall transformation function.  

4.3 Function Mapping 
In order to translate each cluster away from each 

other, the cluster information is required, which obviously 
is not available for a test pattern. We therefore need to 
learn how to translate patterns without knowing the class 
information. This problem can be thought of as a function 
approximation problem, where the function to be ap-
proximated is a function that maps d dimensional original 
patterns to their new locations. A generalized regression 
neural network (GRNN) was used to accomplish this 
function approximation. GRNNs can be though of as a 
special case of radial basis function neural networks 
(RBFNN). GRNNs do not require iterative training, and 
they can approximate any arbitrary multidimensional 
function defined between a set of input and output vec-
tors. GRNN is based on the theory of nonlinear regression 
analysis, commonly used as a statistical function estima-
tion scheme. For brevity and due to their widespread use, 
GRNN architecture is not reviewed here and interested 
readers are referred to [11]. 

5 Results 
We have evaluated NDA and NCT in the binary mix-

ture VOC identification problem, a real world example, 
which proved to be intractable for neural network classi-
fier without the preprocessing. The database used in this 
study contained 24 binary mixtures of VOCs. Each mix-
ture contained two of the following VOCs: Octane (OC), 
acetonitrile (ACN) xylene (XL), ethanol (ET), toluene 
(TL), trichloroethane (TCA), trichloroethylene (TCE), 
methylethylketone (MEK), and hexane (HX). Six sensors, 
each coated with a different polymer, were exposed to 
these mixtures at all combinations of 150, 300, 500 and 
700 parts per million (ppm), giving 16 combinations of 
concentrations for each mixture. The polymers were 
Apiezon (APZ), Polyisobutelene  (PIB), Poly (diethyle-
neglycoladipate)(DEGA),Solgel (SG), Siloxane (OV275), 
and Poly (diphenoxylphoshate) (PDPP). Figure 2 shows 
typical patterns obtained from four mixtures of XL, where 
the vertical axis shows relative frequency change of the 
QCM sensor. We note the similarity of the patterns for 
different mixtures. The main reasons of this similarity are 
the dominance of XL compared to others, as well as the 
overlapping nature of instances in the feature space. 



 

Figure 2. Responses of four mixtures of XL. 
When a dominant VOC is present in the mixture, the 

responses of sensors to other VOCs become partially, or 
completely, masked by the response to the dominant 
VOC. XL, TL, ET, TCE and OC are known to be domi-
nant and hence the main goal was to identify these VOCs 
first. We were unable to find any NN architecture to dis-
tinguish these signals according to their dominant VOCs. 
Though once the dominant VOC was identified, an MLP 
was able to identify the secondary VOCs).  

The sample patterns shown in Figure 2 were not nec-
essarily the worst, but rather typical patterns, illustrating 
the difficulty of this database. The entire database con-
sisted of 384 six-dimensional patterns. For dominant 
VOC identification, there were five classes, namely, OC, 
ET, XL, TL and TCE. The database was partitioned into 
two parts, TVOC for training and EVOC for evaluation, each 
with 192 instances. The training database TVOC and its 
preprocessed version (with NDA or NCT) were used to 
train the GRNN to learn the function mapping. GRNN 
was then evaluated on EVOC, which was not seen during 
training. Due to functional similarities between GRNN 
and RBF networks, an RBF network was also tried in 
place of a GRNN. While unable to converge with unproc-
essed data, an MLP type NN was easily trained with the 
preprocessed data. Once the dominant VOC was identi-
fied, a separate MLP was trained for each of the five sec-
ondary VOCs, creating a two-tier classification system. 
The generalization performances on the test data for each 
technique are provided in Table 1. 

 
Algorithm Dominant Secondary 
NDA 86.84% 81.58% 
NCT-GRNN 86.40% 73.24% 
NCT-RBF 83.55% 69.89% 

Table 1. Generalization performances 

6. Conclusions and Discussion 
Two pattern separability techniques, NDA and NCT, 

have been applied to mixture VOC data. NDA aims to 
maximize the intercluster to intracluster distance ratios, 

whereas NCT tries to increase the intercluster distances 
while keeping intracluster distances constant. Preprocess-
ing allowed improved performances of subsequent classi-
fication algorithms, and in fact, made training possible for 
the VOC database.  

For identification of binary mixtures of VOCs, where 
the response to a secondary VOC is masked by the re-
sponse to a dominant VOC, we proposed a two-tiered 
classification procedure. The dominant VOC is identified 
first, and based on this information a second level of clas-
sifiers are used – one for each dominant VOC – to iden-
tify the secondary VOCs. Attempting to identify both 
components at once had earlier proven to be impossible. 

Both NDA and NCT had similar performances for the 
identification of dominant VOCs, but NDA performed 
better for the identification of secondary VOCs. Further-
more, using GRNN with NCT performed significantly 
better then using RBF networks 
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