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Abstract. We report on our recent progress in developing an ensemble of clas-
sifiers based algorithm for addressing the missing feature problem. Inspired in 
part by the random subspace method, and in part by an AdaBoost type distribu-
tion update rule for creating a sequence of classifiers, the proposed algorithm 
generates an ensemble of classifiers, each trained on a different subset of the 
available features. Then, an instance with missing features is classified using 
only those classifiers whose training dataset did not include the currently miss-
ing features. Within this framework, we experiment with several bootstrap 
sampling strategies each using a slightly different distribution update rule. We 
also analyze the effect of the algorithm’s primary free parameter (the number of 
features used to train each classifier) on its performance. We show that the al-
gorithm is able to accommodate data with up to 30% missing features, with lit-
tle or no significant performance drop.  

1   Introduction 

One of the most frustrating problems encountered in field implementation of an 
automated decision making system is to get caught unprepared for partial loss of data. 
Unless it was designed to be robust against such a potential loss, there is nothing a 
classifier can do when faced with processing a data instance with missing compo-
nents. The partial loss of field data need not even be catastrophic: e.g. if a single sen-
sor malfunctions (loss of one feature) during data collection, the entire data cannot be 
processed by such classifiers. This problem is hardly rare: bad sensors, failed pixels, 
malfunctioning equipment, signal saturation, data corruption, etc. are all familiar sce-
narios in practical applications.  

 The missing feature problem has been well researched. The oldest, and perhaps 
most commonly used solution is to substitute a meaningful estimate of the missing 
value, such as the k-nearest neighbors of the missing value [1]. However, such data 
imputation techniques require that the training data be sufficiently dense for the esti-
mate to be a faithful representative of the missing value. Such a requirement, how-
ever, is rarely met in practice, even for datasets with modest number of features. 
Other approaches with sound theoretical underpinnings are also available that provide 
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precise performance guarantees under certain conditions. These are typically  
probabilistic approaches, based on density estimation. Therefore, they require that 
certain a priori knowledge regarding the underlying data distributions be known or es-
timated, which also requires a sufficiently dense database. Such knowledge is often 
vague or non-existent, and inaccurate choices may lead to inferior performance, par-
ticularly for large datasets. Classical Bayesian estimation and expectation maximiza-
tion based techniques fall into this category [2].  

Other approaches use neuro-fuzzy algorithms, which provide, perhaps, a more 
natural setting for dealing with the missing data. In such approaches, unknown values 
of the data are either estimated, or a classification is made using the existing features, 
by calculating the fuzzy membership of the data point to its nearest neighbors, clus-
ters, or hyperboxes. The parameters of the clusters and hyperboxes are determined 
from the existing data points. Algorithms based on general fuzzy min-max neural 
networks [3], or ARTMAP and fuzzy c-means clustering [4] are examples of this  
approach. 

More recently, ensemble based approaches have been proposed to address the 
missing feature problem. For example, Melville et al. show that the algorithm DECO-
RATE, which generates artificial data (with no missing values) from existing data 
(with missing values) is quite robust to missing data [5]. On the other hand, Juszczak 
and Duin [6] propose combining an ensemble of one-class classifiers trained on a sin-
gle feature. This approach is capable of handling any combination of missing features, 
with the fewest number of classifiers possible. The approach can be very effective so 
long as single features can reasonably estimate the underlying decision boundaries, 
which is not always plausible.  

We have previously proposed an alternative approach, Learn++.MF, that trains 
multi-class classifiers using a random subset of the feature space, where the number 
of features is a free parameter of the algorithm. Any instance missing a feature is then 
classified as the majority vote of those classifiers whose training data did not include 
the missing features. This approach essentially combines the random feature selection 
in random subspace methods [7], with the distribution update rule of AdaBoost in-
spired Learn++ [8]. The original algorithm built on this premise was crude, but could 
handle up to 10% missing data using a specific feature distribution update rule [9]. In 
this contribution, we formalize the algorithm, and extend our work by i) analyzing the 
effect of different update rules; ii) analyzing the effect of the algorithm’s primary free 
parameter, the number of features used in each subset; and iii) evaluating the algo-
rithm with up to 30% missing features. These analyses provide us with informative 
clues on how such parameters should be selected, and under which conditions the al-
gorithm can be expected to perform well. 

2   Learn++.MF 

Ensemble of classifies hints at a trivially intuitive approach for the missing feature 
problem that can guarantee a reasonable performance for any number and any combi-
nation of missing features: simply create one (or more) classifier(s) with every possi-
ble combination of the available features, and use those classifiers whose training  
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features did not include the missing ones. This exhaustive approach is of course be-
comes practically impossible even for a modest number of features, as the number of  
classifiers grows exponentially with the number of features. However, the probability 
of a particular feature combination being missing also diminishes exponentially as the 
number of features increase. Therefore, trying to account for every possible combina-
tion is hardly an effective use of computing resources. On the other hand, Juszczak 
and Duin’s approach, training one class-classifiers trained with each feature sepa-
rately, sits on the other end of the spectrum, and offers the fewest number of classifi-
ers that can handle any feature combination (at a cost of potential performance drop 
due to single feature training). 

 Learn++.MF, recognizing the inefficiency of trying to accommodate every feature 
combination as well as the difficulty of obtaining a good classifier using a single fea-
ture, offers a compromise: it trains an ensemble of classifiers with a random subset of 
the features, where the number of features is a free parameter of the algorithm. It also 
uses an iterative distribution update rule so that feature combinations not previously 
accounted for are more likely to be selected next (see, however, the effect of using 
different update rules in Section 3).Doing so, Learn++.MF can achieve classification 
performances with little or no loss (compared to a fully intact data) even when large 
portions of data are missing.  

 The pseudocode of the algorithm is given in Figure 1. The inputs to the algorithm 
are the training data, a supervised classification algorithm, a sentinel value sen to rep-
resent missing values, the number of classifiers to be generated, T , and the number of 
features (nof) to be used to train each classifier. The algorithm maintains a distribu-
tion D over the features to determine which features should be more likely to be se-
lected next. This distribution is initialized to be uniform so that each feature has equal 
probability of being selected to train the first classifier. During the tth iteration, the al-
gorithm draws a random bootstrap sample of nof features according to then current 
feature distribution Dt. The indices of these features are then placed in a list, called 
Fselection(t). This list allows the algorithm to keep track of which features have been 
used for each classifier, so that appropriate classifiers can be called during testing de-
pending on the then available set of features. Classifier Ct, is trained using the features 
in Fselection(t).  

The distribution Dt is then updated by reducing the weights of those features that 
have just been used. This gives other features a better chance to be selected into the 
next feature subset. T such classifiers are iteratively generated, each using a different 
subset of nof features. In this current version, we do not check the performance of 
each classifier, since the distribution update rule is applied to features, and not to ac-
tual training data instances (as in AdaBoost). Interleaving two distribution update 
rules, one on features and one on training data, is however being considered as future 
work. 

During testing, a given instance zi is first checked for its missing features M(i), 
which were previously flagged with a sentinel. The algorithm then cross-checks the 
features in M(i) against those available in Fselection(t) for each classifier Ct. Classifiers 
whose feature lists do not include any of those in M(i) are then combined using  
majority voting. 
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Inputs: 
Sentinel value sen.      BaseClassifier and the number of classifiers, T.
Training data set S={(xi, yi) | i=1,…,N} with N instances with f features, each. 
Number of features used to train each classifier, nof.

Initialize 1( ) 1/ , , 1, ,D j f j j f (1)

Do for t = 1, 2,..., T:
1. Normalize Dt so that it is a proper distribution.
2. Draw a bootstrap sample of nof features from Dt to be placed in Fselection(t)
3. Call BaseClassifier to generate classifier Ct using features in Fselection(t)
4. Update the distribution Dt  using a suitable update rule 

Validation / Testing
Given test data Z={zi}, i=1,…,M     

  Do for i = 1,2,...,M:
arg ( )ii j senzM , fjj ,,1, . (2) 

: ( )

arg max
t i

i selection
y Y t C y

i t
z

z M FE  (3) 

 

Fig. 1. Pseudocode of the Learn++.MF algorithm 

The original distribution update rule we had previously used simply reduced the 
distribuion weight of each feature by a factor f , where f is the total number of 
features. While such a distribution update rule certainly makes intuitive sense, it is 
possible to devise other rules as well. For example, is 1/f the correct scaling factor 
to reduce the feature weights? How about 1/nof, since the actual number of features 
used by each classifier is nof? Or f/nof, as the ratio of the two? Or does it really 
matter to have a database specific update rule? How about using a strict bootstrap 
sampling from a uniform distribution? The different distribution update rules can all 
be represented as in Equation (4), where the parameter β is one of 1/f, 1/nof or  
n/nof. 

( )( ) ( )( )1 *t selection t selectionD F t D F tβ+ =  (4)

 The algorithm was implemented with the above mentioned update rules, which was 
also compared to uniform sampling. Furthermore, note that the primary free 
parameter of Learn++.MF is the number of features nof used to train each classifier 
(and to a lesser extend, the number of classifiers T to be generated). In order to 
determine the effect of nof on algorithm behavior, several values of nof were also 
evaluated for each database tested. 

3   Experiemental Results  

We present the implementation results on three datasets: Wisconsin Breast Cancer  
and Wine databases from UCI [10], and the real-world volatile organic compound  
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(VOC) identification database. The wine database was selected for its similarity to the 
VOC database in terms of its feature size. This allows to check for repeatability on 
datasets of similar size. Missing features were simulated by removing a certain 
percetange (% missing features – PMF) of values from the entire dataset and replace 
them with a sentinel. PMF was varied from 0 to 30%. All results are averages of 10 
indepent trials, each randomly splitting the training and test data into two equal 
partitions.  

Table 1 shows the total number of features f, the different values of nof, and the to-
tal number of classifiers generated (T) for each database. Note that for each chosen 
value of nof, the ensemble can accommodate up to f-nof features missing at a time. 
Hence a classifier trained with, say 3 of 12 features, can accommodate any and all of 
1 through 9-way combination of the remaining 9 features being missing. This is how 
Learn++.MF avoids using prohibitively large number of classifiers.  

Table 1.  Number of features (nof) and classifiers (T) used for each dataset 

Dataset f nof1 nof2 nof3 nof4 Nof4 T 
VOC  12 3 4 5 6 --- 200 
WBC  30 10 12 14 16 --- 1000 
WINE 13 3 4 5 6 7 200 

3.1   VOC Database 

The VOC database consists of the responses of 12 quartz crystal microbalances type 
chemical sensors to 12 volatile organic compounds (VOC), including toluene, xylene, 
hexane, octane, methanol, tricholoroethylene (TCE), among others. Figure 2 illus-
trates the performance of the algorithm in four rows, one for each distribution update 
rule of nof/f, 1/nof, 1/f, and uniform selection respectively. For each update rule, we 
provide two plots, classifier performance with respect to percent missing features 
(PMF), and the percent instances processed (PIP – explained below) with respect to 
PMF. Performances for different values of nof are indicated using different line styles 
on each plot.  

From the ensemble performance plots (on the left of Fig. 2), we make the following 
observations. First and foremost, as expected, there is a general decline in the ensem-
ble classification performance as the percentage of missing features increase. How-
ever, this decline is very mild, the worst case being from 96% to 93%. In most cases, 
the differences are not even statistically significant. Hence, the algorithm can easily 
handle as much as 30% (perhaps even higher, but not tested yet) of missing data with 
little or no performance drop. Second, algorithm seems to do better with the first two 
distribution update rules, however, the differences were only significant for certain 
nof values. 

The performance plots tell only half of the story, however. We also need to con-
sider the amount of data that can be processed by the algorithm, on which nof has a  
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Fig. 2. Learn++.MF performance on VOC database 

dramatic impact, which is even more pronounced on higher dimensional data. As pre-
viously mentioned, Learn++.MF does not guarantee that all possible combinations of 
features can be accommodated as missing data. Since features are selected at random, 
there may be certain feature combinations not represented by any of the classifiers 
trained in the ensemble. Instances with those exact feature combinations cannot be 
processed by any of the classifiers in the ensemble, and hence cannot be processed. 
Learn++.MF attempts to minimize the number of such instances. The plots on the right 
side of Figure 2 provide a graphical representation of this issue, as it plots percentage 
of instances that can be processed, for different PMF values. Note that two sets of 
plots are given: the group of curves showing an exponentially decaying characteristic 
on the lower side of the plot represent the average PIP if we were to use a single clas-
sifier, averaged over 10 trials. The group of curves on the upper side of the plot show 
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the PIP when the Learn++.MF ensemble is used. Notice that a substantially larger per-
centage of instances can be processed by the ensemble.  

More interesting to notice, however, is the impact of the nof parameter on PIP. The 
figure indicates that the smaller the nof, the larger the PIP. In fact, for nof=3 and 
nof=4, PIP was 100% even for with 30% of the data missing. For nof=6, PIP was 
100% for up to 20% missing data, but dropped to 85% - 87% for 30% missing data. 
This observation makes sense: when a large number of features are used for training, 
then so many features are required at the time of testing, and hence fewer missing fea-
tures can be accommodated.  

3.2   Wine Database 

The wine database consists of 13 features of various chemical analysis results to pre-
dict three types of wine origins. This database was used due to its similarity in size to 
the VOC database (both in terms of number of features, and total data size), and 
same number of classifiers (200) was generated. This allows us to test for the repeat-
ability of the algorithm’s performance behaviors and trends over different datasets of 
similar size. The results, formatted similar to that of VOC dataset are illustrated in 
Figure 3. 

Tested using five different values of nof, the algorithm shows very similar per-
formance and behavior trends on this database, as it did for the VOC database. Spe-
cifically, we note that the ensemble performance is far more resistant to missing fea-
tures when fewer nof values are used. For example, when only 3 or 4 features are 
used, there is no statistically significant performance drop even when 30% of data are 
missing, particularly for the first two distribution update rules of f/nof and 1/nof. 
There is some performance drop when larger values of nof are used, however, these 
are very modest. We also see similar behavior with the percentage of data that can be 
processed. The ensemble can process 100% of the data for nof=3 and nof=4, even 
when 30% of the data are missing. For nof=7, PIP drops to about 80% when 30% of 
the data are missing. In all cases, however, the algorithm – on average – is capable of 
processing substantially larger portion of the data than a single classifier can process 
alone. Finally, we do observe that the algorithm performs marginally better using the 
f/nof and 1/nof update rules than the original 1/f and the uniform distribution; how-
ever, the differences are rarely statistically significant.  

3.3   WBC Database 

The WBC database includes 30 features used as a diagnostic biomarker for distin-
guishing between benign and malignant tumors. Many of the trends observed for the 
VOC and Wine data can also be seen on this database, which has a larger feature size. 
Specifically, we observe in Figure 4 that the algorithm can accommodate up to 30% 
missing features with practically no loss of performance for nof=10, and only about 
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Fig. 3. Learn++.MF performance on WINE database 

7% loss for nof=16. Hence the selection of nof once again shows its impact: there is 
less of a performance drop for larger PMF values, when fewer features are used for 
training. 

In other words, using fewer features during training, if adequate to model the data, 
generates an ensemble that is more resistant to missing data. 

The PIP plots also display a now familiar trend: using fewer features in training not 
only gives better performance (as seen on performance plots), but also allows the en-
semble to classify a larger percentage of instances as amount of missing data in-
creases. Furthermore, while the drop in PIP is negligible up to 15% missing data for 
all values of nof, the differences becomes more substantial at higher PMF values, due 
to larger feature size of this database. In fact, with nof=16 features, the PIP displays a 
steep drop from 100% for a PMF of 15% to about 35% for a PMF of 30%. On the 
other hand, when fewer features are used for training, for example nof=10, PIP barely 
drops a couple percentage points even for 30% missing data. 
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Fig. 4. Learn++.MF performance on Wisconsin breast cancer database 

4   Conclusions 

In this paper, we described an ensemble based algorithm to address the missing fea-
ture problem in classification applications. The approach consists of generating a 
large number of classifiers using different subsets of the features, and then using only 
those classifiers whose training features did not include the missing features in the test 
instance. We observe that the algorithm works rather well with as much as 30% of the 
data missing. 

The newer distribution update rules f/nof and 1/nof do add some performance gain 
to the algorithm, though the impact of the update rule was at best modest. The impact 
of the number of features used to train the classifiers, however, is quite dramatic: us-
ing fewer features to train the individual classifiers provides a better performance and 
can process a higher portion of the data, particularly when larger percentage of data is 
missing. PIP can be increased by increasing classifier count, T, if computational re-
sources allow to do so. Of course, larger feature sets also require larger number of 
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classifiers to be generated, however reduced dimensionality in using feature sub-
spaces allow faster training of each classifier, and offsets some of the computational 
burden of the algorithm. Based on our empirical observations, the number of classifi-
ers required for good performance is typically on the order of 20-30 per dimensional-
ity (feature) of the original data.  

Notice that we have only considered the case of test data having missing features; 
however, the very nature of the algorithm also allows training with missing data. The 
random feature subsets would then be drawn from the available features only. Finally, 
we should add that the algorithm makes an implicit assumption: there is redundancy 
in the features that is distributed randomly. Of course, the identity of the redundant 
features are unknown to us, since otherwise, they would not have been part of the 
data. This is not an overly restricting assumption, as it is met by many real-world ap-
plications. It is those applications for which this algorithm is expected to perform 
well.  
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