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Abstract. We describe an ensemble of classifiers based algorithm for incre-
mental learning in nonstationary environments. In this formulation, we assume 
that the learner is presented with a series of training datasets, each of which is 
drawn from a different snapshot of a distribution that is drifting at an unknown 
rate. Furthermore, we assume that the algorithm must learn the new environ-
ment in an incremental manner, that is, without having access to previously 
available data. Instead of a time window over incoming instances, or an aged 
based forgetting – as used by most ensemble based nonstationary learning algo-
rithms – a strategic weighting mechanism is employed that tracks the classifi-
ers’ performances over drifting environments to determine appropriate voting 
weights. Specifically, the proposed approach generates a single classifier for 
each dataset that becomes available, and then combines them through a  
dynamically modified weighted majority voting, where the voting weights 
themselves are computed as weighted averages of classifiers’ individual per-
formances over all environments. We describe the implementation details of 
this approach, as well as its initial results on simulated non-stationary  
environments. 
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1   Introduction 

The problem of learning in nonstationary environments (NSE) has traditionally re-
ceived much less attention than its stationary counterpart. It is perhaps due to inherent 
difficulty of the problem: after all, machine learning algorithms require a formal and 
precise definition of the problem, and in this case, it is even difficult to define the 
problem: what exactly is a nonstationary environment? Informally, it refers to the 
variation of the underlying data distribution that defines the concept to be learned: the 
environment subsequently provides new data, for which the input/output mapping 
(decision boundary) is different than those of the previous datasets. Early work in 
NSE learning, also known as concept drift, have concentrated on formalizing exactly 
what kind of drift and/or how fast of a drift can be learned [1-4].  

Therein lies the difficulty with this problem; change can be slow or fast, abrupt or 
gradual, random or systematic, cyclical, expanding or contracting in the feature space. 
                                                           
* Corresponding author. 
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Several approaches have been proposed for various combinations of such changes, 
which typically include a mechanism to (i) detect the drift and/or its magnitude; (ii) 
learn the change in the environment; and/or (iii) forget what is no longer relevant.  

Many algorithms specifically designed for concept drift are generally based in part 
on the ideas used in FLORA [3]: use a timing window (fixed or variable) to choose a 
block of (new) instances as they come in, and then train a new classifier. The window 
size can be increased or decreased depending on how fast the environment is chang-
ing. Of course, such algorithms have a built-in forgetting mechanism with the implicit 
assumption that those instances that fall outside of the window are no longer relevant, 
and the information carried by them can be forgotten. Other approaches try to detect 
when a substantial change has occurred (novelty detection), and then update the clas-
sifier [5-8], or find the extreme examples that carry most relevant and novel informa-
tion to train a classifier (partial instance memory) [9]; still others detect and purge 
those instances that no longer carry relevant information, and train a new classifier 
with the remaining block of data [10]. A different group of approaches treat the non-
stationary learning as a prediction problem, and use appropriate classification (e.g., 
PNN) [11] or tracking algorithms (such as Kalman filters) [12]. 

More recently, ensemble based approaches have also been proposed. As reviewed 
by Kuncheva in [13], such algorithms typically fall into one of the following catego-
ries: (i) dynamic combiners where, for a previously trained fixed ensemble, the com-
bination rule is changed  to track the concept drift, e.g., weighted majority voting or 
Winnow based algorithms [14]; (ii) algorithms that use the new training to update an 
online learner or all members of an ensemble, e.g. online boosting [15]; and (iii) algo-
rithms that add new ensemble members [16] and/or replace the least contributing 
member of an ensemble with a classifier trained on new data [17,18]. 

In this paper we propose an alternative formulation, Learn++.NSE, built upon our 
previously introduced incremental learning algorithm Learn++ [19], by suitably modi-
fying it for nonstationary environments. Learn++.NSE does not completely fit into any 
of the above categories, but rather combines ideas from each. It does use new data to 
create new ensemble members, and it also adjusts the combination rule by dynami-
cally modifying voting weights. It does not use a timing window, or any of the previ-
ously seen data (hence an incremental learning approach), and it does not discard old 
classifiers, in case old classifiers become relevant again in the future. It simply re-
weighs them based on their predicted expertise on the current environment. 

It is reasonable to question whether there is need for yet another ensemble based 
algorithm for nonstationary learning, in particular considering that we make no claim 
on the superiority of Learn++.NSE over any of the other algorithms – ensemble based 
or otherwise. In the spirit of the no-free-lunch theorem, we believe that no single al-
gorithm can outperform all others on all applications, that the success depends much 
on the match of the characteristics of the algorithm with those of the problem, and 
therefore it is best to have access to a toolbox of algorithms each with its own particu-
lar strengths and weaknesses. Considering the differences of Learn++.NSE mentioned 
above, along with the promising initial results and outcomes discussed later in this 
paper, we believe that Learn++.NSE can be a beneficial alternative on a variety of 
nonstationary learning scenarios. The algorithm is described in detail in Section 2, 
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followed by a description of our simulation tests and results in Section 3. Specific 
nonstationary environment scenarios in which the algorithm is expected to be particu-
larly useful are discussed in Section 4. 

2   Learn++.NSE 

Learn++.NSE uses a similar structural framework as Learn++
: incrementally build an 

ensemble of classifiers from new data that are combined by weighted majority voting, 
and the existing ensemble decides on the contribution of each successive classifier. 
There are a number of differences, however, instituted for suitably modifying the al-
gorithm for nonstationary environments.  

In summary, we assume that each new dataset represents a new snapshot of the en-
vironment. The amount of change in the environment since the previous dataset may 
be minor or substantial, and is tracked by the performance of the existing ensemble on 
the current dataset. Learn++.NSE creates a single classifier for each dataset that be-
comes available from the new environment, and a weighted performance measure 
(based on its error) is computed for each classifier on each environment it has experi-
enced. Each performance measure represents the expertise of that classifier on a par-
ticular snapshot of the environment. These performance measures are then averaged 
using a nonlinear (sigmoidal) function, giving higher weights to the performances of 
the classifier on the more recent environments. At any time, the classifiers can be 
combined through weighted majority voting, using the most recent averaged weights, 
to obtain the final hypothesis. 

In Learn++.NSE, the change in the environment is tracked both by addition of new 
classifiers, as well as the voting weights of existing classifiers, and no classifier is 
ever discarded. If cyclical drift makes earlier classifiers once again relevant, the algo-
rithm recognizes this change, and assigns higher weights to earlier classifiers. The al-
gorithm is described in detail below, with its pseudocode given in Fig. 1. 

We assume that an oracle provides us with a training dataset at certain intervals, 
(not necessarily uniform). At each interval, the distribution from which the oracle 
draws the training data changes in some manner and rate, also unknown to us. The 
training dataset Dt of cardinality mt at time t provides us with a snapshot of the then 
current environment. Learn++.NSE generates one classifier for each such new dataset 
that becomes available. To do so, the algorithm first evaluates the classification accu-
racy of the currently available composite hypothesis Ht-1 on the newly available data 
Dt. Ht-1, obtained by the weighted majority voting of all classifiers generated during 
the previous t-1 iterations, represents the existing ensemble’s knowledge of the envi-
ronment. The error of the composite hypothesis Et is computed as a simple ratio of the 
correctly identified instances of the new dataset. We demand that this error be less 
that a threshold, say ½, to ensure that it has a meaningful classification capacity. For 
this selection of the threshold, we normalize the error so that the normalized error Bt 
remains between 0 and 1 (Step 1 inside the Do loop). We then update a set of weights 
for each instance, that is normally initialized to be uniform (1/mt ): the weights of the 
instances misclassified by the ensemble are reduced by a factor of Bt . The weights are 
then normalized to obtain a distribution Dt (step 2).  
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Input: For each dataset  Dt  t=1,2,…representing a new environment 

• Sequence of i=1,…,mt instances xi with labels yi ∈ Y = {1,…,c} 

• Supervised learning algorithm BaseClassifier. 
Do for t=1,2,… 
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6. Calculate classifier voting weights 

( )log 1 , for 1,...,t t
k kW k tβ= =  (10) 

7. Obtain the composite hypothesis as the current final hypothesis 
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i k k ikc

H x W h x c= ⋅ =∑  (11) 

 

Fig. 1. The pseudocode of the algorithm Learn++.NSE 

The algorithm then calls the BaseClassifier and asks it to create the tth classifier ht 
using data drawn from the current training dataset Dt provided by the oracle (step 3). All 
classifiers generated thus far hk, k=1,...,t are then evaluated on the current dataset, by 
computing their weighted error (Equation 6, step 4). Note that at current time step t, we 
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now have t error measures, one for each classifier generated thus far. Hence the error 
term εk

t represents the error of the kth classifier hk at the tth time step. 

The errors are again assumed to be less than ½. Here, we make a distinction: if the 
error of the most recent classifier (on its native training set) is greater than ½, then we 
discard that classifier and generate a new one. For any of the other (older) classifiers, 
if its error is greater than ½, it is set to ½. This effectively sets the normalized error of 
that classifier at that time step to 1, which in turn removes all of its voting power later 
during the weighted majority voting. Note that unlike AdaBoost and similar 
algorithms that use such an error threshold, Learn++.NSE does not abort, nor does it 
throw away (the previously generated) classifiers when their error exceeds ½. This is 
because, it is not unreasonable for a classifier to perform poorly if the environment 
has changed drastically since it was created, and furthermore, it does not mean that 
this classifier will never be useful again in the future. Should the environment goes 
through a cyclical change and becomes similar to the time when the classifier in 
question was generated, its error will then be less than ½ , and it will contribute to the 
current decision of the ensemble. 

In order to combine the classifiers, however, we need one weight for each, even 
though the algorithm maintains a set of t such error measures εk

t for each classifier 
k=1,…,t. The error measures are therefore combined through a weighted averaging 
(step 5). The weighting is done through a sigmoid function (Equation 8), which gives 
a large weight to errors on most recent environments, and less to errors on older envi-
ronments. We emphasize, however, that this process does not give less weight to old 
classifiers. It is their error on old environments that is weighted less. Therefore, a 
classifier generated long time ago can in fact receive a large voting weight, if its error 
on the recent environments is low.  

The errors so weighted as described above are then combined to obtain a weighted 
average error (Eq. 9). The logarithm of the inverse of this weighted error average then 
constitutes the final voting weight Wk

t for classifier k at time instant t (Step 6, Eq. 10). 
Finally all classifiers are combined through weighted majority voting (Step 7, Eq. 11).  

3   Experiments and Results 

Two experiments were designed to test the ability of the algorithm to track a nonsta-
tionary environment. In both experiments, data was drawn from Gaussian distribu-
tions so that the optimal Bayes error could be computed and compared – at each time 
step – against the Learn++.NSE ensemble as well as single classifier performances. 
Naive Bayes was used as the base classifier in all experiments.  

In the first experiment, conceptually illustrated in Fig. 2, the distributions for two 
of the three classes were moved in a concept drift scenario, where both the means and 
the variances of the distributions were changed. In fact, the distribution of one class 
has completely replaced the other. The entire change was completed in 50 time steps, 
however, in each case, we allowed the algorithm to see very little of the environment: 
a mere 20 samples per class. The distribution for the third class left unchanged.  

We then tracked the performance of the Learn++.NSE ensemble, a single classifier, 
and the Bayes classifier, at each time step. Figure 3 shows four independent trials of 
the percent classification performances on the entire feature space, calculated with  
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Fig. 2. Concept drift simulation – 3-class experiment. Classes 1 and 2 move and change variance. 
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Fig. 3. Comparative performances on four independent single trials 

respect to individual instances’ probability of occurrence (to prevent instances away 
from decision boundaries artificially increasing the performance). 

Several interesting observations can be made. First, all four performance trends in-
dicate that the Learn++.NSE tracks the Bayes classifier very closely, and as expected, 
it has smaller performance variance than the single classifier.  
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Second, the ensemble performance is, in general, better than the single classifier, and 
more closely follows the Bayes classifier. This is important since a single Naïve 
Bayes classifier tested on the most recent data on which it was trained would nor-
mally be expected to do very well. The ensemble is using its combined knowledge 
from all training sessions to correctly identify those areas that have changed due to 
concept drift as well as those that have not changed. Third, the performance gap be-
tween the ensemble and the single classifier appear to be widening in time, in favour 
of the ensemble. That is, the performances of single classifier and Learn++.NSE start 
similar, but in time the ensemble increasingly outperforms the single classifier despite 
occasional good single classifier performances. Since the large variance in the single 
classifier performance makes it difficult to determine the validity of such a claim, we 
looked at the average performance of 100 independent trials of the same experiment. 
Performance results in Figure 4 indicate that the Learn++.NSE ensemble increasingly 
and significantly outperforms the single classifier. 

Finally, note that what appears to look like an overall performance decline (from 
90% to 70%-80% range) in Fig.2 and Fig. 4 is irrelevant for our purposes. Such a de-
cline merely indicates that the underlying classification problem is getting increas-
ingly difficult in time (see Fig. 2), as evidenced by the declining optimal Bayes classi-
fier performance. We are primarily concerned with how well Learn++.NSE tracks 
Bayes classifier, as we cannot expect any algorithm to do any better.  
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Fig. 4. Comparative performances - average of 100 independent trials 

We have also designed a second, four-class experiment, the non-stationary envi-
ronment of which was substantially more challenging, including classes switching 
places, changing variances, drifting in and out of their original distributions in a cycli-
cal manner. Figure 5 provides snapshots of the distributions of four classes c1 ~ c4 at 
t=0, t=T/3, t=2T/3 and t=T, where T indicates the time of the last environment update. 
During t=0 to t=T/3, the variances of the class distributions were modified; then the 
means of the class distributions drifted until t=2T/3, and finally both the variances and 
means were changed during the last third section of the simulation. There were a total 
of 120 time steps from t=0 to t=T, during which the distributions briefly returned to 
the vicinity of their original neighbourhoods twice, before drifting again in other di-
rections. Hence, the design simulated a semi-cyclical non-stationary behaviour. 
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Fig. 5. The snapshots of the drifting distributions at four time steps 
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Fig. 6. Classification performance results on the second experiment 
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The classification performance results of Learn++.NSE, single classifier and the 
Bayes classifier are shown in Figure 6, where all performances are averages of 100 
independent trials. Once again, the ensemble was able to track the Bayes classifier 
much closer than the single classifier, despite the convoluted changes in the environ-
ment. The ensemble performance was also significantly better than the single Naïve 
Bayes classifier at the 95% level for all t>5 steps. 

4   Conclusions and Discussions 

We described an ensemble based algorithm for nonstationary environments. The algo-
rithm creates a single classifier for each dataset that becomes available, and keeps a 
record of the performance of each classifier on all environments throughout the  
training. The classifiers are then combined through a modified dynamically weighted  
majority voting, where the voting weights are determined as a measure of each classi-
fier’s performance on the current environment, weighted along with the performances 
on previous environments. All classifiers are retained, which allows the previously 
generated classifiers to make significant contributions to the ensemble decision, if 
such classifiers provide relevant information for the current environment.  

The algorithm has many characteristics that are deemed desirable for online learn-
ers [13]: (i) the algorithm learns from only single pass of each dataset, without revisit-
ing them. This property of the algorithm is inherited from its predecessor Learn++, as 
it was designed to learn incrementally without requiring access to previously seen 
data; (ii) the algorithm has a relatively small computational complexity that is linear 
in the number of datasets, or even possibly in the data size, depending on the base 
classifier (since it can be used with any supervised classifier); (iii) the algorithm pos-
sesses any-time-learning capability, i.e., if the algorithm is stopped at time t, the algo-
rithm provides the current best representation of the environment at that time. 

As mentioned earlier in our justification for another ensemble based nonstationary 
learning algorithm, the success of any algorithm depends much on how well its char-
acteristics match those of the problem. It is therefore appropriate, and in fact neces-
sary, to establish what such characteristics are for Learn++.NSE. Specifically, when 
would we expect this algorithm to do well? The structure of Learn++.NSE makes it 
particularly useful if the nonstationary environment provides a sequence of relatively 
small data, that by itself is not sufficient to adequately represent the current state of 
the environment. Then, a single classifier generated with such data would not be able 
to appropriately characterize the decision boundary. Only a subset of classes being 
represented in each dataset is another scenario of nonstationary learning, and the per-
formance of Learn++.NSE on such scenarios is part of our planned future work. 

The algorithm described here is certainly not fully developed yet, and much work 
needs to be done. The algorithm, while intuitive, is based on heuristic ideas, and there 
are no theoretical performance guarantees. This is in part because we have not placed 
any restrictions on the environment. However, a careful analysis of the algorithm is 
necessary to determine how it reacts to different scenarios of nonstationary environ-
ments, and specifically to different rates of change. Of particular interest is how well 
the algorithm would be able to track the nonstationary environment, if the environ-
ment changed faster, say for example, it made the same total change in T/2 or T/4 
time steps rather than in T steps? 
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While the algorithm is at its early stages of development, its initial performance 
has been promising, motivating us for further optimization and development. Future 
efforts will include the above mentioned analysis for tracking / estimating the envi-
ronment’s rate of change, and the algorithm’s response to such change. 

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. ECS-0239090. 
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