
M. Haindl, J. Kittler, and F. Roli (Eds.): MCS 2007, LNCS 4472, pp. 490–500, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Ensemble Approach for Incremental Learning in
Nonstationary Environments

Michael D. Muhlbaier and Robi Polikar*

Signal Processing and Pattern Recognition laboratory
Electrical and Computer Engineering, Rowan University, Glassboro, NJ 08028 USA

muhlbaier@ieee.org, polikar@rowan.edu

Abstract. We describe an ensemble of classifiers based algorithm for incre-
mental learning in nonstationary environments. In this formulation, we assume
that the learner is presented with a series of training datasets, each of which is
drawn from a different snapshot of a distribution that is drifting at an unknown
rate. Furthermore, we assume that the algorithm must learn the new environ-
ment in an incremental manner, that is, without having access to previously
available data. Instead of a time window over incoming instances, or an aged
based forgetting – as used by most ensemble based nonstationary learning algo-
rithms – a strategic weighting mechanism is employed that tracks the classifi-
ers’ performances over drifting environments to determine appropriate voting
weights. Specifically, the proposed approach generates a single classifier for
each dataset that becomes available, and then combines them through a
dynamically modified weighted majority voting, where the voting weights
themselves are computed as weighted averages of classifiers’ individual per-
formances over all environments. We describe the implementation details of
this approach, as well as its initial results on simulated non-stationary
environments.

Keywords: Nonstationary environment, concept drift, Learn++.NSE.

1 Introduction

The problem of learning in nonstationary environments (NSE) has traditionally re-
ceived much less attention than its stationary counterpart. It is perhaps due to inherent
difficulty of the problem: after all, machine learning algorithms require a formal and
precise definition of the problem, and in this case, it is even difficult to define the
problem: what exactly is a nonstationary environment? Informally, it refers to the
variation of the underlying data distribution that defines the concept to be learned: the
environment subsequently provides new data, for which the input/output mapping
(decision boundary) is different than those of the previous datasets. Early work in
NSE learning, also known as concept drift, have concentrated on formalizing exactly
what kind of drift and/or how fast of a drift can be learned [1-4].

Therein lies the difficulty with this problem; change can be slow or fast, abrupt or
gradual, random or systematic, cyclical, expanding or contracting in the feature space.

* Corresponding author.

 An Ensemble Approach for Incremental Learning in Nonstationary Environments 491

Several approaches have been proposed for various combinations of such changes,
which typically include a mechanism to (i) detect the drift and/or its magnitude; (ii)
learn the change in the environment; and/or (iii) forget what is no longer relevant.

Many algorithms specifically designed for concept drift are generally based in part
on the ideas used in FLORA [3]: use a timing window (fixed or variable) to choose a
block of (new) instances as they come in, and then train a new classifier. The window
size can be increased or decreased depending on how fast the environment is chang-
ing. Of course, such algorithms have a built-in forgetting mechanism with the implicit
assumption that those instances that fall outside of the window are no longer relevant,
and the information carried by them can be forgotten. Other approaches try to detect
when a substantial change has occurred (novelty detection), and then update the clas-
sifier [5-8], or find the extreme examples that carry most relevant and novel informa-
tion to train a classifier (partial instance memory) [9]; still others detect and purge
those instances that no longer carry relevant information, and train a new classifier
with the remaining block of data [10]. A different group of approaches treat the non-
stationary learning as a prediction problem, and use appropriate classification (e.g.,
PNN) [11] or tracking algorithms (such as Kalman filters) [12].

More recently, ensemble based approaches have also been proposed. As reviewed
by Kuncheva in [13], such algorithms typically fall into one of the following catego-
ries: (i) dynamic combiners where, for a previously trained fixed ensemble, the com-
bination rule is changed to track the concept drift, e.g., weighted majority voting or
Winnow based algorithms [14]; (ii) algorithms that use the new training to update an
online learner or all members of an ensemble, e.g. online boosting [15]; and (iii) algo-
rithms that add new ensemble members [16] and/or replace the least contributing
member of an ensemble with a classifier trained on new data [17,18].

In this paper we propose an alternative formulation, Learn++.NSE, built upon our
previously introduced incremental learning algorithm Learn++ [19], by suitably modi-
fying it for nonstationary environments. Learn++.NSE does not completely fit into any
of the above categories, but rather combines ideas from each. It does use new data to
create new ensemble members, and it also adjusts the combination rule by dynami-
cally modifying voting weights. It does not use a timing window, or any of the previ-
ously seen data (hence an incremental learning approach), and it does not discard old
classifiers, in case old classifiers become relevant again in the future. It simply re-
weighs them based on their predicted expertise on the current environment.

It is reasonable to question whether there is need for yet another ensemble based
algorithm for nonstationary learning, in particular considering that we make no claim
on the superiority of Learn++.NSE over any of the other algorithms – ensemble based
or otherwise. In the spirit of the no-free-lunch theorem, we believe that no single al-
gorithm can outperform all others on all applications, that the success depends much
on the match of the characteristics of the algorithm with those of the problem, and
therefore it is best to have access to a toolbox of algorithms each with its own particu-
lar strengths and weaknesses. Considering the differences of Learn++.NSE mentioned
above, along with the promising initial results and outcomes discussed later in this
paper, we believe that Learn++.NSE can be a beneficial alternative on a variety of
nonstationary learning scenarios. The algorithm is described in detail in Section 2,

492 M.D. Muhlbaier and R. Polikar

followed by a description of our simulation tests and results in Section 3. Specific
nonstationary environment scenarios in which the algorithm is expected to be particu-
larly useful are discussed in Section 4.

2 Learn++.NSE

Learn++.NSE uses a similar structural framework as Learn++
: incrementally build an

ensemble of classifiers from new data that are combined by weighted majority voting,
and the existing ensemble decides on the contribution of each successive classifier.
There are a number of differences, however, instituted for suitably modifying the al-
gorithm for nonstationary environments.

In summary, we assume that each new dataset represents a new snapshot of the en-
vironment. The amount of change in the environment since the previous dataset may
be minor or substantial, and is tracked by the performance of the existing ensemble on
the current dataset. Learn++.NSE creates a single classifier for each dataset that be-
comes available from the new environment, and a weighted performance measure
(based on its error) is computed for each classifier on each environment it has experi-
enced. Each performance measure represents the expertise of that classifier on a par-
ticular snapshot of the environment. These performance measures are then averaged
using a nonlinear (sigmoidal) function, giving higher weights to the performances of
the classifier on the more recent environments. At any time, the classifiers can be
combined through weighted majority voting, using the most recent averaged weights,
to obtain the final hypothesis.

In Learn++.NSE, the change in the environment is tracked both by addition of new
classifiers, as well as the voting weights of existing classifiers, and no classifier is
ever discarded. If cyclical drift makes earlier classifiers once again relevant, the algo-
rithm recognizes this change, and assigns higher weights to earlier classifiers. The al-
gorithm is described in detail below, with its pseudocode given in Fig. 1.

We assume that an oracle provides us with a training dataset at certain intervals,
(not necessarily uniform). At each interval, the distribution from which the oracle
draws the training data changes in some manner and rate, also unknown to us. The
training dataset Dt of cardinality mt at time t provides us with a snapshot of the then
current environment. Learn++.NSE generates one classifier for each such new dataset
that becomes available. To do so, the algorithm first evaluates the classification accu-
racy of the currently available composite hypothesis Ht-1 on the newly available data
Dt. Ht-1, obtained by the weighted majority voting of all classifiers generated during
the previous t-1 iterations, represents the existing ensemble’s knowledge of the envi-
ronment. The error of the composite hypothesis Et is computed as a simple ratio of the
correctly identified instances of the new dataset. We demand that this error be less
that a threshold, say ½, to ensure that it has a meaningful classification capacity. For
this selection of the threshold, we normalize the error so that the normalized error Bt
remains between 0 and 1 (Step 1 inside the Do loop). We then update a set of weights
for each instance, that is normally initialized to be uniform (1/mt): the weights of the
instances misclassified by the ensemble are reduced by a factor of Bt . The weights are
then normalized to obtain a distribution Dt (step 2).

 An Ensemble Approach for Incremental Learning in Nonstationary Environments 493

Input: For each dataset Dt t=1,2,…representing a new environment

• Sequence of i=1,…,mt instances xi with labels yi ∈ Y = {1,…,c}

• Supervised learning algorithm BaseClassifier.
Do for t=1,2,…

If t=1 Initialize () ()1 1 11/D i w i m= = , ∀i, skip to step 3. (1)

1. Compute error of existing ensemble on new data

() ()1

1
1

tmt t t
i ii

E m H x y−
=

= ⋅ ≠∑ (2)

Normalize error ()1t t tB E E= − (3)

2. Update instance weights

()1,1

1,

t t
i it

i t

B H x y
w

m otherwise

−⎧ =⎪= ×⎨
⎪⎩

 (4)

Set
1

tm
t t t

i
i

D w w
=

= ∑ so that Dk is a distribution. (5)

3. Call BaseClassifier with Dt, obtain ht : X Y
4. Evaluate all existing classifiers on new dataset Dt

() ()
1

, 1,...,
tmt t

k k i ii
D i h x y for k tε

=
= ⋅ ≠ =∑ (6)

If 1 2t
k tε = > , generate a new ht. If 1 2t

k tε < > , set 1 2t
kε =

()1 , 1,...,t t t
k k k for k tβ ε ε= − = (7)

5. Compute a weighted sum of all normalized errors for kth classifier hk

()()1 1 a t k bt
k eω − − −= + ,

0

t kt t t j
k k kj

ω ω ω− −
=

= ∑ (8)

0

, for 1,...,
t k

t t j t j
k k k

j

k tβ ω β
−

− −

=

= =∑ (9)

6. Calculate classifier voting weights

()log 1 , for 1,...,t t
k kW k tβ= = (10)

7. Obtain the composite hypothesis as the current final hypothesis

() ()arg maxt t
i k k ikc

H x W h x c= ⋅ =∑ (11)

Fig. 1. The pseudocode of the algorithm Learn++.NSE

The algorithm then calls the BaseClassifier and asks it to create the tth classifier ht
using data drawn from the current training dataset Dt provided by the oracle (step 3). All
classifiers generated thus far hk, k=1,...,t are then evaluated on the current dataset, by
computing their weighted error (Equation 6, step 4). Note that at current time step t, we

494 M.D. Muhlbaier and R. Polikar

now have t error measures, one for each classifier generated thus far. Hence the error
term εk

t represents the error of the kth classifier hk at the tth time step.

The errors are again assumed to be less than ½. Here, we make a distinction: if the
error of the most recent classifier (on its native training set) is greater than ½, then we
discard that classifier and generate a new one. For any of the other (older) classifiers,
if its error is greater than ½, it is set to ½. This effectively sets the normalized error of
that classifier at that time step to 1, which in turn removes all of its voting power later
during the weighted majority voting. Note that unlike AdaBoost and similar
algorithms that use such an error threshold, Learn++.NSE does not abort, nor does it
throw away (the previously generated) classifiers when their error exceeds ½. This is
because, it is not unreasonable for a classifier to perform poorly if the environment
has changed drastically since it was created, and furthermore, it does not mean that
this classifier will never be useful again in the future. Should the environment goes
through a cyclical change and becomes similar to the time when the classifier in
question was generated, its error will then be less than ½ , and it will contribute to the
current decision of the ensemble.

In order to combine the classifiers, however, we need one weight for each, even
though the algorithm maintains a set of t such error measures εk

t for each classifier
k=1,…,t. The error measures are therefore combined through a weighted averaging
(step 5). The weighting is done through a sigmoid function (Equation 8), which gives
a large weight to errors on most recent environments, and less to errors on older envi-
ronments. We emphasize, however, that this process does not give less weight to old
classifiers. It is their error on old environments that is weighted less. Therefore, a
classifier generated long time ago can in fact receive a large voting weight, if its error
on the recent environments is low.

The errors so weighted as described above are then combined to obtain a weighted
average error (Eq. 9). The logarithm of the inverse of this weighted error average then
constitutes the final voting weight Wk

t for classifier k at time instant t (Step 6, Eq. 10).
Finally all classifiers are combined through weighted majority voting (Step 7, Eq. 11).

3 Experiments and Results

Two experiments were designed to test the ability of the algorithm to track a nonsta-
tionary environment. In both experiments, data was drawn from Gaussian distribu-
tions so that the optimal Bayes error could be computed and compared – at each time
step – against the Learn++.NSE ensemble as well as single classifier performances.
Naive Bayes was used as the base classifier in all experiments.

In the first experiment, conceptually illustrated in Fig. 2, the distributions for two
of the three classes were moved in a concept drift scenario, where both the means and
the variances of the distributions were changed. In fact, the distribution of one class
has completely replaced the other. The entire change was completed in 50 time steps,
however, in each case, we allowed the algorithm to see very little of the environment:
a mere 20 samples per class. The distribution for the third class left unchanged.

We then tracked the performance of the Learn++.NSE ensemble, a single classifier,
and the Bayes classifier, at each time step. Figure 3 shows four independent trials of
the percent classification performances on the entire feature space, calculated with

 An Ensemble Approach for Incremental Learning in Nonstationary Environments 495

Class 2

[μx μy σx σy]

[5 8 3 0.5]
8

5

Class 1

Class 1 new

[8 5 1 1]

8

5
Class 3 (no change)

[5 5 1 1]

Class 2 new
[8 5 2 2]

[8 4 1 1]

x

y

2

Path of drift

Fig. 2. Concept drift simulation – 3-class experiment. Classes 1 and 2 move and change variance.

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time step

%
 p

er
fo

rm
an

ce
 o

n
 t

h
e

en
ti

re
 f

ea
tu

re
 s

p
ac

e

0 10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Learn++.NSE Single Classifier Bayes Classifier

Fig. 3. Comparative performances on four independent single trials

respect to individual instances’ probability of occurrence (to prevent instances away
from decision boundaries artificially increasing the performance).

Several interesting observations can be made. First, all four performance trends in-
dicate that the Learn++.NSE tracks the Bayes classifier very closely, and as expected,
it has smaller performance variance than the single classifier.

496 M.D. Muhlbaier and R. Polikar

Second, the ensemble performance is, in general, better than the single classifier, and
more closely follows the Bayes classifier. This is important since a single Naïve
Bayes classifier tested on the most recent data on which it was trained would nor-
mally be expected to do very well. The ensemble is using its combined knowledge
from all training sessions to correctly identify those areas that have changed due to
concept drift as well as those that have not changed. Third, the performance gap be-
tween the ensemble and the single classifier appear to be widening in time, in favour
of the ensemble. That is, the performances of single classifier and Learn++.NSE start
similar, but in time the ensemble increasingly outperforms the single classifier despite
occasional good single classifier performances. Since the large variance in the single
classifier performance makes it difficult to determine the validity of such a claim, we
looked at the average performance of 100 independent trials of the same experiment.
Performance results in Figure 4 indicate that the Learn++.NSE ensemble increasingly
and significantly outperforms the single classifier.

Finally, note that what appears to look like an overall performance decline (from
90% to 70%-80% range) in Fig.2 and Fig. 4 is irrelevant for our purposes. Such a de-
cline merely indicates that the underlying classification problem is getting increas-
ingly difficult in time (see Fig. 2), as evidenced by the declining optimal Bayes classi-
fier performance. We are primarily concerned with how well Learn++.NSE tracks
Bayes classifier, as we cannot expect any algorithm to do any better.

0 5 10 15 20 25 30 35 40 45 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Time step

%
 p

er
fo

rm
an

ce
 o

n
 t

h
e

en
ti

re
 f

ea
tu

re
 s

pa
ce

Learn++.NSE
Singe Classifier
Bayes Classifier

Fig. 4. Comparative performances - average of 100 independent trials

We have also designed a second, four-class experiment, the non-stationary envi-
ronment of which was substantially more challenging, including classes switching
places, changing variances, drifting in and out of their original distributions in a cycli-
cal manner. Figure 5 provides snapshots of the distributions of four classes c1 ~ c4 at
t=0, t=T/3, t=2T/3 and t=T, where T indicates the time of the last environment update.
During t=0 to t=T/3, the variances of the class distributions were modified; then the
means of the class distributions drifted until t=2T/3, and finally both the variances and
means were changed during the last third section of the simulation. There were a total
of 120 time steps from t=0 to t=T, during which the distributions briefly returned to
the vicinity of their original neighbourhoods twice, before drifting again in other di-
rections. Hence, the design simulated a semi-cyclical non-stationary behaviour.

 An Ensemble Approach for Incremental Learning in Nonstationary Environments 497

0

5

10 0

5

10

0

0.2

0.4

0

5

10 0

5

10

0

0.2

0.4

0

5

10 0

5

10

0

0.2

0.4

0

5

10 0

5

10

0

0.2

0.4

C
1

C
2

C
1

C
1

C
1

C
2

C
2

C
2

C
3

C
3

C
3

C
3

C
4

C
4

C
4

C
4

time = 0
time = T/3

time = 2T/3 time = T

Fig. 5. The snapshots of the drifting distributions at four time steps

0 20 40 60 80 100 120
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time step each indicating a different environment

%
 C

la
ss

ifi
ca

tio
n

pe
rfo

rm
an

ce
 o

n
th

e
 e

nt
ire

 fe
at

ur
e

sp
ac

e

Learn++.NS
Single Classifier
Bayes ClassifierVariances of the class

distributions drift

Class distributions
drift from one location

to another

Both class location
drift and variance drift

Fig. 6. Classification performance results on the second experiment

498 M.D. Muhlbaier and R. Polikar

The classification performance results of Learn++.NSE, single classifier and the
Bayes classifier are shown in Figure 6, where all performances are averages of 100
independent trials. Once again, the ensemble was able to track the Bayes classifier
much closer than the single classifier, despite the convoluted changes in the environ-
ment. The ensemble performance was also significantly better than the single Naïve
Bayes classifier at the 95% level for all t>5 steps.

4 Conclusions and Discussions

We described an ensemble based algorithm for nonstationary environments. The algo-
rithm creates a single classifier for each dataset that becomes available, and keeps a
record of the performance of each classifier on all environments throughout the
training. The classifiers are then combined through a modified dynamically weighted
majority voting, where the voting weights are determined as a measure of each classi-
fier’s performance on the current environment, weighted along with the performances
on previous environments. All classifiers are retained, which allows the previously
generated classifiers to make significant contributions to the ensemble decision, if
such classifiers provide relevant information for the current environment.

The algorithm has many characteristics that are deemed desirable for online learn-
ers [13]: (i) the algorithm learns from only single pass of each dataset, without revisit-
ing them. This property of the algorithm is inherited from its predecessor Learn++, as
it was designed to learn incrementally without requiring access to previously seen
data; (ii) the algorithm has a relatively small computational complexity that is linear
in the number of datasets, or even possibly in the data size, depending on the base
classifier (since it can be used with any supervised classifier); (iii) the algorithm pos-
sesses any-time-learning capability, i.e., if the algorithm is stopped at time t, the algo-
rithm provides the current best representation of the environment at that time.

As mentioned earlier in our justification for another ensemble based nonstationary
learning algorithm, the success of any algorithm depends much on how well its char-
acteristics match those of the problem. It is therefore appropriate, and in fact neces-
sary, to establish what such characteristics are for Learn++.NSE. Specifically, when
would we expect this algorithm to do well? The structure of Learn++.NSE makes it
particularly useful if the nonstationary environment provides a sequence of relatively
small data, that by itself is not sufficient to adequately represent the current state of
the environment. Then, a single classifier generated with such data would not be able
to appropriately characterize the decision boundary. Only a subset of classes being
represented in each dataset is another scenario of nonstationary learning, and the per-
formance of Learn++.NSE on such scenarios is part of our planned future work.

The algorithm described here is certainly not fully developed yet, and much work
needs to be done. The algorithm, while intuitive, is based on heuristic ideas, and there
are no theoretical performance guarantees. This is in part because we have not placed
any restrictions on the environment. However, a careful analysis of the algorithm is
necessary to determine how it reacts to different scenarios of nonstationary environ-
ments, and specifically to different rates of change. Of particular interest is how well
the algorithm would be able to track the nonstationary environment, if the environ-
ment changed faster, say for example, it made the same total change in T/2 or T/4
time steps rather than in T steps?

 An Ensemble Approach for Incremental Learning in Nonstationary Environments 499

While the algorithm is at its early stages of development, its initial performance
has been promising, motivating us for further optimization and development. Future
efforts will include the above mentioned analysis for tracking / estimating the envi-
ronment’s rate of change, and the algorithm’s response to such change.

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. ECS-0239090.

References

[1] Schlimmer, J. C. and Granger, R. H.; Incremental Learning from Noisy Data. Machine
Learning 1 (1986) 317-354.

[2] Helmbold, D. P. and Long, P. M.; Tracking drifting concepts by minimizing disagree-
ments. Machine Learning 14 (1994) 27-45.

[3] Widmer, G. and Kubat, M.; Learning in the presence of concept drift and hidden contexts.
Machine Learning 23 (1996) 69-101.

[4] Case, J., Jain, S., Kaufmann, S., Sharma, A., and Stephan, F.; Predictive learning models
for concept drift. Theoretical Computer Science 268 (2001) 323-349.

[5] Liao, Y., Vemuri, V. R., and Pasos, A.; Adaptive anomaly detection with evolving con-
nectionist systems. Journal of Network and Computer Applications 30 (2007) 60-80.

[6] Castillo, G., Gama, J., and Medas, P.; Adaptation to Drifting Concepts. Progress in Arti-
ficial Intelligence, Lecture Notes in Computer Science 2902 (2003) 279-293.

[7] Gama, J., Medas, P., Castillo, G., and Rodrigues, P.; Learning with Drift Detection. Ad-
vances in Artificial Intelligence - SBIA 2004, Lecture Notes in Computer Science 3171
(2004) 286-295.

[8] Cohen, L., Avrahami-Bakish, G., Last, M., Kandel, A., and Kipersztok, O.; Real-time data
mining of non-stationary data streams from sensor networks. Information Fusion In Press,
(2007).

[9] Maloof, M. A. and Michalski, R. S.; Incremental learning with partial instance memory.
Artificial Intelligence 154 (2004) 95-126.

[10] Black, M. and Hickey, R.; Learning classification rules for telecom customer call data
under concept drift. Soft Computing - A Fusion of Foundations, Methodologies and Ap-
plications 8 (2003) 102-108.

[11] Rutkowski, L.; Adaptive probabilistic neural networks for pattern classification in time-
varying environment. IEEE Transactions on Neural Networks 15 (2004) 811-827.

[12] Cheng-Kui, G., Zheng-Ou, W., and Ya-Ming, S.; Encoding a priori information in neural
networks to improve its modeling performance under non-stationary environment. Interna-
tional Conference on Machine Learning and Cybernetics (ICMLC 2004) 5 (2004) 3068-
3072.

[13] Kuncheva, L. I.; Classifier Ensembles for Changing Environments. Multiple Classifier
Systems (MCS 2004), Lecture Notes in Computer Science 3077 (2004) 1-15.

[14] Blum, A.; Empirical Support for Winnow and Weighted-Majority Algorithms: Results on
a Calendar Scheduling Domain. Machine Learning 26 (1997) 5-23.

[15] Oza, N.; Online Ensemble Learning, Ph.D. Dissertation, (2001) University of California,
Berkeley.

[16] Kyosuke, N., Koichiro, Y., and Takashi, O.; ACE: Adaptive Classifiers-Ensemble System
for Concept-Drifting Environments. Multiple Classifier Systems (MCS 2005), Lecture
Notes in Computer Science 3541 (2005) 176-185.

500 M.D. Muhlbaier and R. Polikar

[17] Street, W. N. and Kim, Y.; A streaming ensemble algorithm (SEA) for large-scale classi-
fication. Seventh ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD-01), (2001) 377-382.

[18] Chu, F. and Zaniolo, C.; Fast and Light Boosting for Adaptive Mining of Data Streams.
Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer Science
3056 (2004) 282-292.

[19] Polikar, R., Upda, L., Upda, S. S., and Honavar, V.; Learn++: an incremental learning al-
gorithm for supervised neural networks. Systems, Man and Cybernetics, Part C, IEEE
Transactions on 31 (2001) 497-508.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

