
INCREMENTAL LEARNING OF
ULTRASONIC WELD INSPECTION SIGNALS

R. Polikar, L. Udpa, S.S. Udpa

Materials Assessment Research Group, Dept. Of Electrical and Computer Engineering
Iowa State University, Ames, IA 50011, USA

Abstract. In this paper, we present LEARN++, a new algorithm that allows existing classifiers to
learn incrementally from new data without forgetting previously acquired knowledge. LEARN++
is based on generating multiple classifiers, each trained with a different subset of the training data
and then combining them to form an ensemble of classifiers using weighted majority voting. The
fundamental contribution of the algorithm lies in the manner in which the training data is
partitioned. The results demonstrate the feasibility and effectiveness of the approach in learning
from new data.

INTRODUCTION

Automated signal classification (ASC) schemes for characterization of nondestructive
evaluation (NDE) signals are becoming increasingly popular due to large volumes of data
that need to be analyzed in an accurate, efficient and systematic manner. Applications of
such systems include identifying defects in aircraft engines and wheels [1], in tubings and
pipings of nuclear power plants [2,3], in artificial heart valves, etc. Currently used ASC
schemes, however, do not allow incremental learning of additional data particularly when
the new data introduces additional classes. When new data become available, most
existing ASC schemes are reinitialized and retrained using a combination of previously
used data and the new data. This results in all previous learning to be lost, a phenomenon
known as catastrophic for getting,

Various real world scenarios in NDE applications warrant incremental learning
algorithms. For example, in nuclear power plants, data are collected from various tubings
or pipings during different outage periods, and new types of defect and geometry
indications can be discovered in aging components. Classification algorithms developed
using previously collected databases may then become inadequate in successfully
identifying new types of indications.

In this paper, we present a new algorithm, called LEARN++, which allows common
supervised neural network classifiers to learn incrementally from new data. The
algorithm has been applied to a large number of databases, including synthetic
benchmark datasets, as well as real world datasets. In this paper we present the
classification performance of the algorithm on ultrasonic signals obtained from nuclear
submarine hulls. Applications to other databases can be found in [4].

CP557, Review of Progress in Quantitative Nondestructive Evaluation Vol. 20, ed. by D. O. Thompson and D. E. Chimenti
©2001 American Institute of Physics l-56396-988-2/01/$18.00

603

INCREMENTAL LEARNING

Ensemble of Classifiers

Incremental learning has recently been a topic of active research interest in machine
learning and artificial intelligence, and therefore, several variations of this problem have
been addressed in the literature [4]. For example, in one extreme case, incremental
learning from new data is trivialized by allowing retraining using a combination of
original training data and the new data, with no additional classes introduced. On the
other extreme end, incremental learning algorithm is required to learn in an on-line
setting, where the learning is carried out on an instance-by-instance basis with some
instances introducing new classes. In this paper, we define an incremental learning
algorithm as one that is capable of learning additional information from new data, which
may include new classes, without forgetting prior knowledge and without requiring
access to previously used data. LEARN++, proposed in this paper is an algorithm for
supervised neural networks (NN), satisfying these criteria.

LEARN++ is inspired by Schapire's adaptive boosting (AdaBoost) algorithm [5],
which was originally proposed for improving the accuracy of weak learning algorithms.
Boosting is based on a majority voting of hypotheses (classification rules) which are
generated by a weak learner using different distributions of the training data. Littlestone
et al. have shown that the weighted majority algorithm, which assigns weights to
different hypotheses based on an error criterion to construct a compound hypothesis,
performs better than any of the individual hypotheses [6]. They also showed that the error
of the compound hypothesis is closely linked to the error bound of the best hypothesis. In
essence, both AdaBoost and LEARN++ employ a weighted combination of a group of
classifiers, rather than using just one classifier as conventional classification algorithms
do. The weights of each classifier are determined based on the individual performance of
the classifier on its own training dataset.

The idea of generating an ensemble of classifiers is not new, as it has been explored
by a number of researchers. Wolpert first introduced the idea of combining hierarchical
levels of classifiers, using a procedure called stacked generalization [7]. Kitler et al
analyzed error sensitivities of various voting and combination mechanisms [8], and
Rangarajan et al. investigated the capacity of voting systems [9]. Ji and Ma proposed an
alternative approach of combining classifiers by generating simple perceptrons of random
parameters and then combining the perceptron outputs using majority voting [10]. The
motivation behind this approach was to obtain time and space efficiency, as well as good
performance, since AdaBoost is computationally quite expensive. An excellent overview
of ensemble of classifiers can be found in [11], whereas a review of comparing ensemble
of classifiers with other types of learners can be found in [12].

The steady increase in research efforts on combining classifiers has been mostly
limited to improving the performance of classifiers, leaving the viability of using such an
approach for incremental learning unexplored. LEARN++ has emerged as a result of
investigating the feasibility of ensemble of classifiers for incremental learning.

Learn++: An Incremental Learning Algorithm for Neural Networks

Figure 1 illustrates the algorithm LEARN++, which runs iteratively for each new
dataset J2)k that becomes available to the classifier. The inputs to LEARN++ include a
sequence of m training instances, S=[(x1,yj),(x2,y2\...7(xm,ym)], a weak learning algorithm,
WeakLearn, and an integer T^ specifying the number of iterations.

604

Algorithm LEARN++
Input: For each dataset ̂ kk=1,2, ...,K that becomes available

• Sequence of m examples S=[(xi,yi\ (x2, y2\... ,(xm,ym)].

• Weak learning algorithm WeakLearn (MLP).

• Integer 7>, specifying the number of iterations.

Do for k=l,2, ...,K:

Initialize Di(i) = l/m> v/.

Do for t = l,2,...,Tk:
1. Randomly choose training TRt and testing TEt subsets from Dt.

2. Call WeakLearn, providing it with TRt from distribution Dt.

3. Get back hypothesis ht : X ' Y, and calculate its error ^t ~ / . A (0 on

TRt + TEt. If % > yz, set T = f - 7, discard fc and go to step 1. Otherwise,

compute scaled error asA=^/ (7-^)-

4. Call weighted majority, obtain the overall hypothesis

Ht = argmax ^ log — ? and compute the overall error Et = Z^Dt (0
•^e t:h,(x)=y Pt i:Ht(Xj}^yi

5. Set 7?' = Et/(l-Et), and update distribution 7>:

£> (i) = MlJB" V H<(^ = y> Z =TD(i)
t+l Zt [I , otherwise where ' ^ A) 1S a

normalization constant such that Dt+i will be a distribution

Call weighted majority and Output the final hypothesis:

Figure 1. Algorithm LEARN++

For each dataset ^k that becomes available, LEARN++ starts by initializing a
distribution function Di(i)=l/m, i=0,l,...,m on current dataset, such that the training
instances which will be drawn according to this distribution will have equal likelihood to
be selected into the first training set. LEARN++ then enters into an iterative loop, where
at each iteration t, a new hypothesis is generated. During the t^ iteration, LEARN++
selects a training dataset TRt and a test dataset TEt according to the current distribution Dt
in step 1. In step 2, the weak learning algorithm WeakLearn is trained using the training
dataset TRt. A classification rule, ht, is obtained as the tih hypothesis in step 3. Also in this
step, ^, the error of ht is obtained by evaluating the hypothesis on all instances in TRt and
TEt. If this error is greater than half, current h is discarded, and the algorithm returns to
step 1 to select a different training dataset. Otherwise, a normalized error term Pt is

605

computed. Note that, since a is between 0 and !/2, yftwill be between 0 and 1. In the fourth
step, LEARN++ calls the weighted majority algorithm to compute the composite
hypothesis, Ht. The weighted majority computes the total vote each class receives, from
all previous t hypotheses. Each vote is weighted by the inverse log of normalized error of
that hypothesis. This ensures that hypotheses that did well on their own training data are
weighted more heavily than those that did not do very well. The class that receives the
highest total vote becomes the classification rule of the tth composite hypothesis Ht. The
error Et and the normalized error Bt of the composite hypothesis are also computed.
Finally, in step 5, LEARN++ updates the distribution Dt according to the performance of
Ht. The distribution update rule decreases the weight of all instances that are correctly
classified by Ht, such that they are less likely to be selected into the next training dataset.
Therefore, as the algorithm proceeds, increasingly difficult examples are selected into the
training dataset. This procedure allows rapid learning of new data, since only those
instances of the new dataset that are misclassified by the classifier are used for further
training the classifier.

After a pre-specified number of hypotheses are generated, LEARN++ computes the
final hypothesis, using a weighted majority voting on all hypotheses generated up to that
point. This algorithm was implemented and tested using a large database of ultrasonic
weld inspection signals obtained from nuclear submarine hull weldings. The procedure
for obtaining this dataset is briefly discussed next, followed by the results.

ULTRASONIC INSPECTION OF SUBMARINE HULL WELDINGS

Welding regions are often susceptible to various kinds of defects due to imperfections
introduced into the material during the welding process. In submarine hulls, such defects
manifest themselves in the forms of crack, porosity, slag, lack of fusion (LOF), and
incomplete penetration. Among these, cracks and LOFs cause the most serious threat,
since they can eventually cause structural damages if remedial actions are not taken.

Non-destructive techniques used commonly to inspect these welds are ultrasonic
testing and radiographic testing. Each technique has its own advantages and
disadvantages; however, ultrasonic testing is known to be more sensitive to planar
defects, which are the more dangerous ones. Ultrasonic testing is conducted by using a
piezoelectric transducer, which launches an ultrasonic wave of 1 ~ 5 MHz, into the
material. Discontinuities along the path of the ultrasonic wave produce a reflected signal
to be received by the transducer, which can then be recorded and analyzed. Figure 2
conceptually illustrates the ultrasonic testing procedure.

Figure 2. Ultrasonic testing of submarine hull welds

606

RESULTS AND DISCUSSIONS

The goal of the classification algorithm in this application is the identification of four
different types of defects, namely, crack, porosity, slag and LOF, from the discrete
wavelet transform coefficients of the ultrasonic A-scans. A total of 156 C-scans were
obtained by examining 78 hull plates from both sides of the weld. 106 C-scans were
randomly selected to be used for training, and 50 were selected to be used for validation.
From the C-scans reserved for training, 2200 A-scans, each of 512-point length, were
randomly selected for training and 800 were selected for testing (different than the
validation database). 149-point DWT coefficients were computed for each A-scan to be
used as feature vectors. The training instances were further divided into three subsets to
simulate three different databases that become available at different times. Furthermore,
additional classes were added to the later datasets, to test the incremental learning ability
of the algorithm. Table 1 shows the distribution of the instances in various datasets,
whereas Figure 3 illustrates typical signals from these four classes.
Table 1. Distribution of weld inspection signals

SI
S2

S3
TEST

CRACK

300

150

200

200

LOF

300

300

250

300

SLAG

0

150

250

200

POROSITY

0

0

300

100

Figure 3. Typical A-scans (a) crack, (b) LOF, (c) slag, (d) porosity

607

Note from Table 1 that the first training dataset SI had instances only from crack and
LOF, whereas S2 and S3 added instances from slag and porosities, respectively.
LEARN++ was trained starting with SI. After generating 8 hypotheses using SI,
LEARN++ was presented with instances from S2, removing all instances from SI. 27
hypotheses were generated using S2, after which LEARN++ was presented with
instances only from S3 to generate 43 additional hypotheses. The 800 test signals were
never shown to the algorithm. The weak learner used to generate individual hypotheses
was a single hidden layer MLP with 50 hidden layer nodes. The mean square error goals
of all MLPs were preset to a value of 0.02 to prevent over fitting and to ensure a weak
learning algorithm. Table 2 presents the classification results obtained by the algorithm.

As seen from Table 2, LEARN++ was able to correctly classify 99.2% of training
instances in 57, but only 57% of the test instances, by combining 8 hypotheses. This is
expected, since the 57 had instances only from two classes, whereas TEST had instances
from all classes. After the next training session, using instances only from 52, the
algorithm was able to correctly classify 89.2 % of instances in 57, and 86.5% of instances
in 52. The performance on TEST dataset improved to 70.5%. Finally, after the final
training session using instances from S3, the algorithm correctly classified 88.2%, 88.1%
and 91.2% of instances in 57, 52, and 55, respectively. The classification performance on
TEST dataset increased to 83.8%, demonstrating the incremental learning capability of
the LEARN++ algorithm.

As a performance comparison, the same database was also used to train and test a
single strong learner, a 149x40x12x4 two hidden layer MLP with an error goal of 0.001.
The best test data classification performance of the strong learner has been around 75%,
despite the fact that the strong learner was trained with the entire dataset at once.

Finally, LEARN++ was tested on the entire C-scan images, which consisted of tens of
thousands of A-scans. On each C-scan, a previously identified rectangular region was
selected and classified by LEARN++, creating a classification image of the selected
rectangular region. Median filtering was then applied to the classification image to
remove isolated pixels, producing the final classification image. Figures 4-6 illustrate
examples of raw C-scans along with the rectangular region of interest, and their
respective classification images. Table 3 presents the classification performance of
LEARN ++ compared to that of the strong learner which was trained in one iteration
using the entire dataset.
Table 2. Classification performance of Learn++ on ultrasonic weld inspection signals

Inc. Train-^
^ Dataset

Si
S2

SB
TEST

Training 1
(8)

99.2%
-
-

57.0%

Training 2
(27)

89.2%
86.5%

-
70.5%

Training3
(43)

88.2%
88.1%
96.4%
83.8%

Table 3. Comparison of Learn++ and strong learner on C-scans of weld inspection data

Strong
Learner
Learn++

Number of
C-scans

(Training)

106

106

of C-scans
Missed

(Training)

8

1

Classification
Performance

92.4 %

99.1%

of C-scans
(Validation)

50

50

of C-scans
Missed

(Validation)

13

11

Classification
Performance

74.0%

78.0%

608

Figure 4. Original C-scan and Learn— classification, correct class: Crack

Figure 5. Original C-scan and Learn++ classification, correct class: LOF

Figure 6. Original C-scan and Learn++ classification, correct class: Porosity

609

CONCLUSIONS AND FUTURE WORK

We have introduced LEARN++, an incremental learning algorithm for supervised
neural networks, which employs an ensemble of networks for learning new data. The
feasibility of the approach has been validated on an inherently difficult database of
ultrasonic weld inspection signals. Note that LEARN++ was implemented using MLPs as
weak learners, however, the algorithm itself is not dependent on the choice of a particular
classification algorithm, and it should be able to work well on all supervised classifiers.
Current work includes evaluating LEARN++ using other learning algorithms.

LEARN++ has two key components. The first one is the selection of the subsequent
training dataset (the distribution update rule). This scheme can be improved to allow
faster learning and reduced computational complexity. The second key component is the
procedure by which hypotheses are combined. LEARN++ uses weighted majority voting,
however, various other schemes can also be used. For example, the weight of a
hypothesis can be learned using a subsequent learner, rather than estimating it from the
performance of that hypothesis. Work is currently underway to address these issues.

The only drawback of LEARN++ is the computational burden due to the overhead
added by computing multiple hypotheses, and saving all classifier parameters for these
hypotheses. Since each classifier is a weak learner, it has fewer parameters than its strong
counterpart, and therefore it can be trained much faster. Although total training time for
LEARN++ is similar to or less than that of a strong learner, its space complexity is
significantly higher. However, due to increased storage capacities that have recently
become available, this drawback is considered to be insignificant.

REFERENCES

1. Nawapak, E.A., Udpa, L., Chao, J., "Morphological Processing for Crack Detection in
Eddy Current Images of Jet Engine Disks," in Review of Progress in Quantitative
Nondestructive Evaluation, edited by Thompson, D. O., and Chimenti, D.E., Plenum
Press, New York, 1999, pp. 751-758.

2. Polikar, R., Udpa, L., Udpa, S.S., and Taylor, T., IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control 45, 614-625, (1998).

3. Ramuhalli, P., Udpa, L., Udpa, S.S., Materials Evaluation 58, 65-69, (2000).
4. Polikar, R., Algorithms for enhancing pattern separability, optimum feature selection

and incremental learning with applications to gas sensing electronic nose systems,
Ph.D. dissertation, Iowa State University, 2000, Chapter 6.

5. Freund, Y., and Schapire, R., Computer and System Sciences 57, 119-139 (1997).
6. Littlestone, N., and Warmuth, M., Information and Computation 108, 212-261, (1994).
7. Wolpert, D.H., Neural Networks 5, 241-259, (1992).
8. Kittler, J., Hatef, M., Duin, R.P., and Matas, J., IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20, 226-239, (1998).
9. Rangarajan, S., Jalote, P., and Tripathi, S., IEEE Trans. Software Engineering,. 19,

698-706, (1993).
10. Ji, C., and Ma, S., IEEE Transactions on Neural Networks, 8, 32-42, (1997).
11. Ji, C., and Ma, S.JEEE Proceedings, 87, 1519-1535, (1999).
12. Dietterich, T.G., AIMagazine, 18, 97-136, (19^7).

610

	Table of Contents
	Exit

