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Abstract—In sensor systems, tracking gradual drift in a non-
stationary environment is a challenging problem. The problem,
a phenomenon also known as concept drift, is made even more
difficult if the streaming data only consists of unlabeled data after
initialization. This scenario is typically referred to as extreme
verification latency (EVL), and is common in many sensor appli-
cations. In our previous work, we introduced a framework called
COMPOSE (COMPacted Object Sample Extraction), which can
handle the extreme verification latency problem, provided that
the drift is limited. In this paper, we introduce a derivative of
COMPOSE called MASS (Modular Adaptive Sensor System) as a
solution to extreme verification latency in streaming sensor data,
regardless of the particular application. To analyze the perfor-
mance of MASS, the classification accuracy and execution time
were compared to several variations of COMPOSE on synthetic
benchmark datasets. The algorithm was then implemented on an
Arduino sumo robot, where the objective was to keep the robot
within a specific zone based on drifting data returned by the
reflectance sensor.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), sensors are
becoming more frequent in embedded systems and in many
applications from homes and offices to industrial facilities [1].
As sensors become more common and capable of operating in
a variety of situations, it is important that these sensor systems
are designed to be highly robust and affordable. Due to these
advancements, research efforts to increase sensor capabilities
have become increasingly important.

Many commonly used sensors exhibit a gradual drift in the
readings over time due to long term degradation or changes of
the sensor. Sensors are also subject to constantly changing am-
bient conditions, such as light levels as the day progresses and
temperature values as the seasons change. This phenomenon
is known as concept drift, and it refers to a scenario where
the statistical properties of a measured quantity are changing
due to either the conditional changes to the output (real drift),
changes to the distribution of input (virtual drift), or both [2].
As a result, sensors need to be recalibrated regularly, which
can be a costly and inefficient process. Furthermore, in cases
such as sensors on satellites and other extreme environments,
external regulation is impossible.

Concept drift is especially common in gas sensors as
they are exposed to chemicals which poison and degrade
the sensors over their lifetime, which affects the integrity
and reliability of the data. Several papers have examined the
effects of this drift on E-nose applications, a type of complex

gas sensor, and attempted to mitigate sensor drift through
compensation. This compensation often relies on complex
algorithms to compute predicted drift [3] [4]. Pressure sensors
also exhibit drift often dealt with using regular recalibration.
The issue of drift is exacerbated in low cost pressure sensors
as more as increasing the accuracy and stability of these parts
adds cost.

In many applications, after deployment of the sensor system,
the developer may have little to no ability to modify or even
monitor the performance. These sensors must then be able
to adapt to their environment without needing to be adjusted
manually. To solve this problem, it can be approached similarly
to a problem called extreme verification latency. In machine
learning literature, verification latency refers to a scenario
where labels for training data are not available until sometime
after a prediction has been made on the current state of the
environment [5]. The length of this delay may not be known
beforehand, and may also vary with time. In the case of ex-
treme verification latency, the delay is infinitely long, meaning
that no proper labels are available after initialization. Such
an environment is referred to as an initially labeled streaming
environment (ILSE), and it requires new classification methods
capable of adapting to potential changes over time without
external regulation.

In this paper, we propose Modular Adaptive Sensor System
(MASS), a general approach to extreme verification latency
which allows sensors to adapt to drifting concepts indepen-
dently of the particular sensor application. MASS follows two
steps to do so: 1) apply a batched, centroid based clustering
algorithm to initially classify the starting state; 2) update the
centroids continuously based an update rule. With modularity
in mind, MASS was designed such that any clustering algo-
rithm can be used for the initial stage, and any centroid-based
clustering algorithm can be used in the update stage. In this
way, it functions as not just an algorithm, but a framework
which can be modified to fit the needs of any particular sensor
application.

II. RELATED WORK

One approach to handle sensor drift was studied by applying
a similar algorithm to account for drift in chemical sensors [6].
A set of reference patterns, used to represent the current state
of each class, were initialized to the initial state before drift.
Every measurement afterwards was then classified by finding
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the reference pattern that is closest to the measurement a using
a geometric discriminant, such as Euclidean distance. These
reference patterns were then adjusted after every measurement
to become closer to the new measurement. It was shown that
this approach proved effective whenever there was an equal
representation of each class. When a particular class had not
appeared in the data for an extended period of time, it was
allowed to drift far enough to where the measurement and
the reference pattern were not similar enough for a correct
classification.

Compacted Object Sample Extraction, or COMPOSE, is
an algorithm designed to track a nonstationary environment
in an extreme verification latency setting [7], such as in a
sensor system. While the original research did not focus on a
specific application, tracking drift in sensor data is an example
of an initially labeled, nonstationary streaming environment.
The algorithm combines initially labeled data with incoming
unlabeled data to train a semi-supervised learning (SSL)
algorithm and classify the unlabeled data. Once all the data
has been classified, the instances which lie in the center
or core region, called core supports, are extracted using a
core support extraction (CSE) method such as alpha shape
compaction or Gaussian Mixture Models (GMM) [8]. The
core supports are then labeled based on the distribution they
were derived from. When new unlabeled data arrives, the
process is repeated, using the extracted core supports as the
labeled data for the SSL. A modification to COMPOSE, called
FAST COMPOSE, was implemented later which removed the
core support extraction step, and improved the speed of the
algorithm with little to no cost to the overall performance [9].

III. APPROACH

In the initial stage, a standard centroid based classification
algorithm is used to cluster an initial set of labeled training
data. The algorithm is initialized with a set of M labeled data,
L0, and corresponding labels, Y 0, of classes 1, . . . , C in step 1.
A batched clustering algorithm, CLUSTER, with relevant free
parameters is executed on the initial set of data to determine
initial clustering, I0, and corresponding k cluster centroids,
M in step 2. The clustering algorithm can be chosen to fit
the particular needs of an application. The resulting cluster
centroids, M , are then labeled according to the class that
appears most frequently in the cluster in 3. This stage can be
performed either directly on the embedded device or offline
using a set of training data. In the implementation tested in this
paper, the centroid based batched clustering algorithm chosen
was k-means clustering using a k-means++ initialization due
to the simplicity of implementation on an embedded platform.

In the update stage, the centroid of each cluster is adapted
based on the streaming input data. At each timestep, a single
data point, xt, is received in step 5. The data point is given
the label of the nearest cluster centroid in step 6. The cluster
centroid is then updated according to some update scheme in
step 7. Any centroid based clustering algorithm can be used to
update the centroids such as online kmeans clustering, inverse
weighted kmeans clustering, or k-harmonic means [10]. In this

Fig. 1. A diagram of MASS execution. Each colored circle represents a
labeled datapoint of a given class. Colored triangles represent the centroid of
a cluster of a given class. Black circles indicate new unlabeled data. Steps 3
through 5 are repeated for each new unlabeled datapoint.

implementation, online k-means clustering is used to update
the cluster parameters due to the simplicity of execution.
The algorithm updates the cluster by first classifying the
new datapoint based on the nearest centroid and subsequently
shifting the centroid towards the new datapoint based on a
learning rate, alpha, as in Equation 1. This simple update
scheme allows the algorithm to be efficiently run on any
embedded device. The algorithm pseudocode can be found
in Algorithm 1. A visual explanation of MASS is shown in
Figure 1.

µk,t+1 = µk,t + α (xi − µk,t) (1)

Algorithm 1 MASS
Input: Batched Centroid Clustering Algorithm with relevant

free parameters - CLUSTER; Online Clustering Algo-
rithm Update Rule - UPDATE; Learning Rate (α)

1: Receive labeled data
L0 = {xl ∈ X , l = 1,. . . ,M } ,
Y 0 = {yl ∈ Y = {1, . . . , C} , l = 1, . . . ,M}

2: Call CLUSTER with L0 and relevant
free parameters to obtain the initial clustering
I0 = {il ∈ K = {1, . . . , k} , l = 1, . . . ,M}
and cluster centroids M = {µi ∈ X , i = 1,. . . ,k }

3: Apply a label to each cluster centroid according to the
most frequent class

4: for t = 1, 2, .... do
5: Receive unlabeled data xt ∈ X
6: Classify data by nearest centroid
7: Apply UPDATE with α to update the nearest cluster

centroid
8: end for

The memory requirements of MASS are significantly re-
duced as compared to FAST COMPOSE or any batched
algorithm. Any algorithm that operates on batches of data must
have at least enough memory to store an entire batch whereas
MASS must only store the current data point and the cluster
centroids. Additionally, many batched algorithms require that
data from each class be present in every timestep or the class
will be forgotten, necessitating the need for larger batch sizes



with a larger memory footprint. As MASS operates in an
online fashion, this is not an issue. Also, in batched algorithms
the resulting hypothesis only becomes available after the entire
batch is processed, limiting its use in real time applications.

Although MASS provides a simple solution to adapting to
concept drift, it requires that certain conditions be met in to
perform well. Between any two time-steps or samples of the
sensor, the drift must be gradual with no abrupt shifts. If sensor
drift causes data to abruptly shift closer to the centroid of a
different class, the data will be perpetually mislabeled. All
algorithms operating under extreme verification latency have
the limitation that the drift must be gradual or limited as there
are no true labels to determine what class a given cluster
is after an abrupt shift. In situations with abrupt drift, the
sampling rate can be increased so that the drift becomes more
gradual.

As the only statistic used to identify a cluster is the centroid,
the result of a centroid based clustering algorithm must be
meaningful. Each combination of clustering algorithms and
update schemes will have different limitations and must be
chosen for a particular application. Using k-means and the
online k-means update scheme, the number of cluster centroids
must be known in advance, the variance of each cluster
must be approximately the same, and each cluster must be
approximately spherical. Using the online k-means update
scheme, the algorithm is also sensitive to outliers as they can
suddenly shift the cluster centroids.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The algorithm was tested with both a standard benchmark
run in an offline fashion and on a robotics platform. The
synthetic dataset was provided by the authors of [11] as bench-
mark for the incremental learning and extreme verification
latency community. The benchmark contains 17 datasets with
cardinality between 1,600 and 200,000 and number of features
between 2 and 10. The first 16 datasets are synthetically
generated containing a variety of cluster drifts such as two
distributions passing horizontally and two distributions gear
shaped rotating. The final dataset, keystroke, was created by
logging the time between keystrokes of four individuals as
they type a specific phrase. The individual’s typing dynamics
change as they become faster at typing the phrase, resulting
in drift in the dataset. A summary of each dataset is found in
Table I. The MASS algorithm was tested against COMPOSE
using Alpha Shapes and cluster and label (CNL), COMPOSE
using Gaussian Mixture Models (GMM) and CNL, and Fast
COMPOSE. All algorithms were executed 500 times on each
dataset on a server with 2 x Intel Xeon E5-2670v3 processors
and 64 GB DDR4 memory and the results averaged.

The MASS system was implemented on a sumo robot,
where the goal was to keep the robot inside of a particular
zone. Two different colors of construction paper were used
to differentiate the zones. Five different samples of the re-
flectance of each surface, with labels, were collected and used
by MASS as training data. As the sumo robot moved around

TABLE I
DATASETS DESCRIPTION

Datasets
Number
of
classes

Number
of
features

Cardinality Drift
interval

1CDT 2 2 16000 400
1CHT 2 2 16000 400
1CSurr 2 2 55283 600
2CDT 2 2 16000 400
2CHT 2 2 16000 400
4CE1CF 5 2 173250 750
4CR 4 2 144400 400
4CRE-V1 4 2 125000 1000
4CRE-V2 4 2 183000 1000
5CVT 5 2 40000 1000
FG 2C 2D 2 2 200000 2000
GEARS 2C 2D 2 2 200000 2000
MG 2C 2D 2 2 200000 2000
UG 2C 2D 2 2 100000 1000
UG 2C 3D 2 3 200000 2000
UG 2C 5D 2 5 200000 2000
keystroke 4 10 1600 200

the ring, each point was classified so that the robot would
know if it was approaching the boundary of the ring. Based
on this classification, the robot would decide whether or not
to turn around. During the classification process, the cluster
centroids were modified based on an alpha value of 0.025, as
seen in Equation 1. To test the adaptability of MASS, an array
of infrared LEDs was constructed. While the sumo robot was
running, the LED array intensity was varied. On each run the
test environment was reset by returning the LED array to its
initial intensity and taking a new set of initialization data.

A sensitivity analysis was performed in order to understand
the robustness of MASS to changes in learning rate and
number of clusters. The learning rate and number of clusters
was varied for the Sumo dataset and keystroke dataset and the
accuracy plotted.

B. Results

Table II shows the average accuracy and Table IV shows
the average execution time (in seconds) of the algorithms.
The ranking of each algorithm for each dataset is shown in
parenthesis. In order to determine the statistical significance
between each algorithm, the Friedman test was applied with
the corresponding Nemenyi post-hoc test. No statistically
significant difference (at α = 0.05) was found between the
accuracies of each algorithm. The results of the post-hoc test
comparing the statistical significance (at α = 0.05) of execu-
tion time is found in Table IV. Empty cells indicate that the
difference between the execution time of each algorithm was
not statistically significant. Either an up arrow (↑) or left arrow
(←) indicate that the difference between the two algorithms are
statistically significant and the direction of the arrow indicates
the faster algorithm. The MASS algorithm had no statistically
significant decrease in accuracy compared to COMPOSE
despite operating in an incremental fashion and only having
access to a single data point at a time. The MASS algorithm
was also competitive with COMPOSE with an execution time
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Fig. 2. Classification data from the Sumo robot where the red circles represent
a classification hypothesis of the center region and the blue crosses represent
the outer border.
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Fig. 3. Cluster mean data from the Sumo robot where each line indicates the
mean of the cluster at a given data index.

on similar hardware being statistically significantly faster than
COMPOSE alpha shapes and statistically significantly slower
than FAST COMPOSE. Although the execution time of MASS
was longer than FAST COMPOSE, by only operating on a
single data point at a time, the memory required to operate
the algorithm is greatly reduced, a necessity on an embedded
platform.

The classifier hypothesis of the Sumo dataset is shown in
Figure 2 where the red circles represent the center region and
the blue crosses represent the outer region. With the ambient
lighting changing, the Sumo robot stayed within the center
region and achieved a classifier accuracy of 99.62%. The
cluster means at each data index is shown in Figure 3.

In order to test the robustness of MASS, a sensitivity
analysis was performed varying the learning rate and number
of clusters on the keystroke and Sumo datasets. With the Sumo
dataset, MASS was insensitive to the choice of learning rate
as in Figure 4, but required a fairly precise number of clusters
to perform with high accuracy shown in Figure 5.

With the keystroke dataset, MASS was robust to the number
of clusters chosen as in Figure 7, but required a fairly precise
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Fig. 4. A sensitivity analysis of alpha on the Sumo dataset run with the
number of clusters set to 2. The accuracy of MASS is insensitive to the the
choice of alpha.
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Fig. 5. A sensitivity analysis of the number of clusters on the Sumo dataset
run with the learning rate set to 0.05. A small number of clusters is necessary
for accurate performance.

choice of learning rate as in Figure 6.

V. CONCLUSION & FUTURE WORK

In this effort, we introduced the online MASS algorithm
which allows classification to be performed in an extreme
verification latency setting. MASS is designed to be com-
putationally simple, use little memory, and capable of being
added into a sensor system with little effort from the system
designer. The algorithm can be used to implement adaptive
capabilities in low power IoT devices that would otherwise run
the risk of misreading data due to drifting concepts. Despite its
significantly reduced complexity compared to COMPOSE, the
MASS algorithm performed remarkably well, with statistical
tie to the performance of the better established COMPOSE
variations. We note that the overall goal of this effort was
not to design a classifier that can beat COMPOSE, but rather
a classifier that can replicate the COMPOSE performance
reasonably well, but has the added advantage of being able
to run on an embedded system.

Future work includes testing MASS on a more comprehen-
sive dataset to ensure that the algorithm performs accurately



TABLE II
AVERAGE ACCURACY

DATASETS COMPOSE (α shape) COMPOSE (GMM) FAST COMPOSE MASS
1CDT 99.9615 (3.5) 99.9615 (3.5) 99.9679 (2) 99.9744 (1)
2CDT 96.5769 (2) 96.609 (1) 95.1731 (4) 96.359 (3)
1CHT 99.6026 (2) 99.6154 (1) 99.5705 (3) 99.5513 (4)
2CHT 90.391 (2) 90.4423 (1) 89.4103 (4) 89.9167 (3)
4CR 99.9924 (2.5) 99.9924 (2.5) 99.9924 (2.5) 99.9924 (2.5)

4CRE-V1 80.7883 (4) 98.5887 (1) 97.7484 (3) 98.0871 (2)
4CRE-V2 92.5907 (1) 92.5857 (2) 92.4632 (3) 92.3978 (4)

5CVT 57.9676 (3) 49.9304 (4) 81.3348 (2) 89.9 (1)
1CSurr 90.9524 (2) 84.6515 (4) 95.641 (1) 90.6722 (3)

4CE1CF 93.9204 (2) 93.9012 (3) 93.9528 (1) 93.8104 (4)
UG-2C-2D 95.6347 (2) 95.6378 (1) 95.6112 (3) 95.4724 (4)
MG-2C-2D 93.1162 (1) 92.0298 (4) 93.0167 (2) 92.8303 (3)
FG-2C-2D 87.897 (4) 95.5454 (2) 95.5813 (1) 95.3919 (3)
UG-2C-3D timeout (4) 95.198 (1) 95.1202 (2) 94.9758 (3)
UG-2C-5D timeout (4) 82.9258 (3) 91.9889 (1) 91.4985 (2)

GEARS-2C-2D 90.9792 (3) 82.2135 (4) 91.2637 (2) 98.6111 (1)
Keystroke timeout (4) 87.4921 (1) 85.9204 (2) 85.6383 (3)

Average Rank (lower is better) 2.7059 2.2941 2.2647 2.7353

TABLE III
AVERAGE EXECUTION TIME (IN SECONDS)

DATASETS COMPOSE (α shape) COMPOSE (GMM) FAST COMPOSE MASS
1CDT 17.6604 (4) 0.609422 (3) 0.338512 (1) 0.421824 (2)
2CDT 17.7708 (4) 0.647412 (3) 0.382842 (1) 0.410426 (2)
1CHT 17.3164 (4) 0.614563 (3) 0.345122 (1) 0.458375 (2)
2CHT 18.6185 (4) 0.69017 (3) 0.407806 (1) 0.465429 (2)
4CR 153.289 (4) 7.98227 (3) 3.18295 (1) 3.43345 (2)

4CRE-V1 141.024 (4) 6.27852 (3) 1.61991 (1) 2.97164 (2)
4CRE-V2 195.801 (4) 5.2888 (3) 2.60481 (1) 4.27871 (2)

5CVT 26.5559 (4) 0.905739 (2) 0.572302 (1) 1.07329 (3)
1CSurr 59.3483 (4) 34.4966 (3) 1.69453 (1) 1.92582 (2)

4CE1CF 190.361 (4) 6.50829 (3) 2.74359 (1) 4.52267 (2)
UG-2C-2D 106.335 (4) 1.06045 (2) 0.745 (1) 1.9527 (3)
MG-2C-2D 214.771 (4) 11.4362 (3) 2.28884 (1) 4.92792 (2)
FG-2C-2D 213.067 (4) 25.1987 (3) 1.83148 (1) 5.0532 (2)
UG-2C-3D timeout (4) 2.23306 (2) 1.68046 (1) 3.82042 (3)
UG-2C-5D timeout (4) 2.22986 (2) 1.71864 (1) 3.87683 (3)

GEARS-2C-2D 211.246 (4) 85.2689 (3) 3.1497 (1) 9.1568 (2)
Keystroke timeout (4) 2.9876 (3) 1.44763 (1) 1.46271 (2)

Average Rank (lower is better) 4 2.7647 1 2.2353

TABLE IV
STATISTICAL SIGNIFICANCE AT α = 0.05 FOR CLASSIFIER EXECUTION TIME

COMPOSE (α shape) COMPOSE (GMM) FAST COMPOSE MASS
COMPOSE (α shape) n/a ↑ ↑ ↑
COMPOSE (GMM) ← n/a ↑
FAST COMPOSE ← ← n/a ←

MASS ← ↑ n/a

in a wider variety of scenarios. Additionally, alternate batch
and online clustering algorithms should be tested in the MASS
framework to better understand the implications of the choice
in clustering algorithms.
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Fig. 6. A sensitivity analysis of alpha on the keystroke dataset with the
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