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Abstract

Several classification techniques have been developed with varying degrees of success for automated identification of VOCs, however, the
problem becomes considerably more challenging when more than one VOC is present. The reason is two-fold: first, the response of the sensors to
certain VOCs may be too strong and mask the response of the sensors to other VOCs in the environment; and second the responses of the sensors
t
t
t
d
©

K

1

e
a
M
c
p
p
a
f
a

o
t
t
e
u

0
d

o VOCs may not have enough separability information if the specificity of the sensors is not adequate. We propose the following procedures for
hese two issues in identification of binary mixtures of VOCs: a nonlinear cluster transformation technique or nonparametric discriminant analysis
o increase pattern separability, followed by a two-tier classification to aid in identification of dominant and secondary VOCs separately. Results
emonstrate the feasibility of the combined approach.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Volatile organic compounds (VOC) can be found in a vari-
ty of settings, including industrial (such as wastewater) as well
s residential (such as drinking water supplies, hospitals) sites.
ost VOCs find their way into the environment through human

auses such as industrial pollution or fuel spills. These com-
ounds can cause disastrous effects on the environment through
remature degradation of the surrounding area and health haz-
rds to people living around the contaminated areas. The need
or an accurate, cost-effective and objective system for detection
nd identification of VOCs is therefore undisputed.

Various laboratory based methods exist for the examination
f water or air samples and detection of these compounds, but
hey are often expensive and not located near the source of
he pollution, causing difficulties in continuous testing. Systems
mploying electronic noses (Enose) have recently become pop-
lar for on-field detection and classification, saving both time

∗ Corresponding author. Tel.: +1 8562565372; fax: +1 8562565241.

and money [1]. The data generated by the Enose can then be
analyzed by a pattern recognition system for automated identi-
fication of the VOC present in the environment. In fact, several
such techniques have been proposed over the last decade for
identification of (single) VOCs, each with varying degrees of
success [2–5]. However, the problem becomes considerably
more challenging, when the VOCs appear in a mixture, and
the individual components of this mixture need to be identified
[6–8]. This difficulty arises from primarily two factors: first,
in many cases the sensor(s) may have a very similar response
to two very different compounds, a direct result of inadequate
specificity of the sensor. Second, the sensor response to one
of the components in the mixture may be so strong that the
response to the other components may be completely masked.
In this study, we consider binary mixtures of such VOCs, where
the VOC generating the stronger response is referred to as
the dominant VOC, whereas the other is called the secondary
VOC.

We present a composite approach to the above mentioned
two issues. We propose a classification system that first applies
a preprocessing algorithm, nonlinear cluster transformation or
E-mail address: polikar@rowan.edu (R. Polikar). nonparametric discriminant analysis, in order to increase the
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separability of the data to aid in classification. We then use a
two-level classification system: first the separability algorithm
is applied to raw data followed by a neural network classifier
to determine the dominant VOC only. Then, a second level of
neural network – specifically tuned to the dominant VOC chosen
during the first step – is used to determine the secondary VOC
in the mixture.

To date, on a database that includes 24 binary combinations
of five dominant and seven secondary VOCs, we have obtained
performance figures mid-80% to mid-90% on identification of
both dominant and secondary VOCs, while the classifiers were
unable to converge if either of the pattern separability or two-tier
classification was not employed.

2. Experimental

2.1. Experimental setup

Piezoelectric acoustic wave sensors comprise a versatile class
of chemical sensors for the detection of VOCs. Addition or sub-
traction of molecular material from the surface or bulk of an
acoustic wave sensor results in a change in its resonant fre-
quency. The frequency change, �f, caused by a deposited mass
�m, can be described by the Sauerbrey equation [9,10]. For
quartz crystal microbalances (QCMs), this relationship is given
by
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at improving identification, which is hampered by the limited
selectivity and sensitivity of individual films.

The electronic nose system used to generate the data analyzed
in this study is an array of six 9 MHz quartz crystal microbal-
ances (QCM). Cr/Au contacts were first deposited onto the
quartz, to serve as electrodes, by means of a resistive heating
evaporator, and the sensors were subsequently coated with dif-
ferent polymer films, chosen to maximize the specificity of the
sensor array for the specific VOCs of interest.

An array of six crystals, coated with the following poly-
mers, was used to detect and identify twenty-four binary
mixtures of VOCs. The polymers were APZ: apiezon L,
PIB: poly(isobutelene), DEGA: poly[di(ethylene glycol) adi-
pate], SG: solgel, OV275: poly[bis(cyanoallyl)polysiloxane],
PDS: poly(dimethylsiloxane) and PDPP: poly(diphenoxypho-
sphazene). The films were dilute solutions of these polymers,
typically 20 �L of 0.3–3% (w/w), spinning at 2000–5000 rpm.
The sensors were then dried at 65 ◦C for 24 h. The coated QCMs
were subsequently mounted in a sealed test fixture, which could
house up to six sensors.

Fig. 1 depicts a schematic of the experimental setup. The
vapor generation system consisted of a carrier gas, typically
dry nitrogen flowing at 200 sccm, a gas stream module, and
a pair of three-way switchable valves. The three-way valves
were used to maintain constant flow of the reference gas and
the VOC. The final output was a constant gas flow rate with
p
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setup
f = −2.3 × 106 �m

A
f0 (1)

here f0 is the fundamental resonant frequency of the bare crys-
al, and A is the sensing surface area. For sensing applications,
sensitive polymer film is cast on the surface of the QCM. This
lm can bind the molecules of the VOC of interest, altering

he resonant frequency of the device in proportion to the added
ass. The QCM-based chemical sensor system typically con-

ists of an array of several crystals, each coated with a different
olymer film. The response pattern of such an array then serves
s the signature for a given VOC. This array design is aimed

Fig. 1. Experimental
eriodic exposure of the array to known levels of VOC. Flow
as maintained by using calibrated mass flow controllers (Tylan
eneral FC-280 AV) and conventional gas bubblers containing
he analytes. The bubblers were composed of two connected
ompartments. The gas carrier bubbled through the solution in
he first compartment, supplying the vapor, whereas the second
nalyte-containing compartment served as a headspace equili-
rator. The vapor was further diluted with nitrogen to obtain the
esired concentration levels. The sensors were exposed to the
apor stream by means of computer controlled three-way valves
nd a MKS multi-gas controller model 147B that electronically
ontrolled the mass flow controllers. Polyethylene and Teflon®

for VOC detection.
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Fig. 2. QCMs housed in a sensor cell.

tubings together with stainless steel or brass valves were used,
but only Teflon® and stainless steel were exposed to the analytes.
All experiments were performed at ambient temperature.

Repeated measurements indicated reproducibility of the col-
lected data with insignificant variations of 2–4%. The variability,
due to small temperature fluctuations, was within experimental
error. The frequency response was monitored using a HP8753C
network analyzer, interfaced to an IEEE 488 card installed in
a PC, running HP8516A resonator-measurement software. Real
time data were displayed and saved. The data were then analyzed
to obtain frequency shifts (relative to the baseline) versus VOC
concentration. Typical noise levels (standard deviations of the
baseline) for the QCMs were around 0.01 Hz. Fig. 1 depicts the
overall schematic of this setup, whereas Fig. 2 shows the QCMs
installed in the sensor cell.

2.2. Data collection and handling

The database generated in this study consisted of 24 binary
mixtures of the following nine VOCs: acetonitrile (ACN),
methyl ethyl ketone (MEK), ethanol (ET), 1,1,1-trichloroethane
(TCA), trichloroethylene (TCE), hexane (HX), octane (OC),
toluene (TL) and xylene (XL). Table 1 lists the binary mixtures
obtained from these VOCs.

Among the VOCs used in this study, ET, TCE, OC, and in
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for each of the 24 mixtures listed above (that is, 150 and 150,
150 and 300, 150 and 500, 150 and 700, 300 and 150, . . ., 700
and 500, 700 and 700 ppm). Twenty-four mixtures of 16 differ-
ent combinations of concentrations generated the 384-pattern
database used in this study.

As described next, even a careful selection of polymers did
not provide a well-separated feature space for the identification
of VOCs.

3. Increasing pattern separability

3.1. Pattern separability problem for identification of
mixtures of VOCs

In general, classification algorithms work well when the
classes are well separated in the feature space, which requires
that the underlying data distributions have adequately large inter-
cluster distances between patterns of different classes, and small
intracluster distances between patterns of the same class. For
most real-world problems, however, this is rarely the case as
overlapping class patterns in the feature space is usually the
norm rather then the exception.

For identification of binary mixtures of VOCs, there are two
problems that need to be addressed: first, the patterns generated
by the sensors overlap considerably in the feature space with
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articular, TL and XL, constitute the dominant VOCs. Each col-
mn represents mixtures of one of the five dominant VOCs, with
ne of other secondary VOCs. Sensors were exposed to these
ixtures at all combinations of 150, 300, 500 and 700 parts

er million (ppm), giving 16 combinations of concentrations

able 1
inary mixtures of VOCs analyzed in this study

ctane Xylene Toluene TCE Ethanol

C & ACN XL & ACN TL & ACN TCE & TCA ET & ACN
C & ET XL & ET TL & ET TCE & MEK ET & MEK
C & MEK XL & MEK TL & MEK TCE & TL ET & HX
C & TL XL & HX TL & HX TCE & ET ET & TCA
C & TCA XL & TCA TL & TCA TCE & HX
mall intercluster and large intracluster distances. Second, the
xistence of a dominant VOC in the mixture masks the response
o the secondary VOC. The following paragraphs illustrate these
roblems.

Table 2 summarizes the actual frequency shifts (in Hz) and the
orresponding normalized values for two mixtures: XL/MEK
ixture and TL/HX mixture. All responses were normalized
ith respect to amplitude through square root of the sum of

quares of sensor responses (prior to any processing) to remove
oncentration dependent information and ensure signature pat-
ern based identification. This is because, in real-world envi-
onments, the concentrations of the individual analytes are
nknown, and hence the identification cannot be based on the
oncentration information. Yet, this normalization makes the
dentification exceedingly difficult: despite the significantly dif-
erent actual frequency shifts between the two mixtures, the
ormalized responses are extremely close to each other.

Fig. 3 shows the bar graphs (patterns) corresponding XL &
EK and TL& HX mixtures. The vertical axis is the normal-

zed relative frequency change in response to VOC molecules

able 2
riginal and normalized frequency shift responses of two mixtures

XL&MEK
original (Hz)

TL&HX
original (Hz)

XL&MEK
normalized

TL&HX
normalized

PZ 290 95 0.30 0.29
IB 793 264 0.81 0.81
EGA 154 54 0.16 0.17
G 172 60 0.18 0.18
V 138 51 0.14 0.16
DPP 411 139 0.42 0.42
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Fig. 3. Sample QCM responses to different mixtures.

deposited on the sensor surface, averaged over all normalized
responses, along with the one-standard-deviation intervals of
the average values. Each bar represents the average normalized
response of a sensor coated with the specified polymer. The
six normalized numerical values corresponding to the sensor
responses for each mixture then constituted the six-dimensional
feature vectors used in classification. The similarity of response
patterns for different mixtures is quite striking, presenting a con-
siderable challenge to the classification algorithm. Also note that
the one-standard-deviation intervals are extremely small, indi-
cating very little variation in the normalized responses.

Fig. 4 shows typical patterns obtained from four different
mixtures of xylene. These patterns illustrate the second diffi-

culty associated with this particular application. Even if one of
the two components of the mixture is known, identifying the
second VOC is still a significant challenge. This is due to the
dominance of responses to xylene in comparison to others. When
a dominant VOC is present in the mixture, the responses of sen-
sors to other VOCs become partially, or sometimes completely,
masked by the response to the dominant VOC, resulting in highly
packed (and possibly overlapping) clusters in the pattern space.
This observation is further confirmed by Fig. 5 which shows
the average response patterns of xylene, toluene, methanol and
ethanol individually. We note that xylene response is very simi-
lar to those of xylene mixtures in Fig. 4, and furthermore is very
similar to the toluene response alone. This shows that xylene
Fig. 4. QCM responses: (a) XL&ACN, (b) XL
&MEK, (c) XL&ET and (d) XL&TCA.
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Fig. 5. QCM responses to XL, TL, ME and ET analytes only.

and toluene are very dominant VOCs with very similar response
patterns. This is not surprising, as both belong to the same fam-
ily of benzenes. The responses of the alcohols (ME and ET) do
look different than those of benzenes, but are still similar to each
other.

To address the problem of overlapping clusters, we discuss
two pattern separability algorithms used in tandem with a two-
tiered classification procedure, where the dominant VOC is
estimated first using an automated classifier, and the secondary
VOC is then estimated using a subsequent classifier based on
the identification of the dominant VOC.

3.2. Feature extraction and dimensionality reduction for
pattern separability

Poor separability problems are common among pattern
recognition applications. In general, feature extraction algo-
rithms are employed as a preprocessing step to classification,
whose fundamental objective is to obtain the least number of fea-
tures that carry the most discriminatory information. The general
problem of feature extraction can be formulated as one of deter-
mining a mapping of the form y = f(x), or y = WTx, that trans-
forms pattern vectors onto a lower dimensional space in which
the corresponding feature vectors are better separable. Several

well-established techniques have been used (and sometimes mis-
used) for this purpose. For example, the principal component
analysis (PCA) is one such popular technique, however, PCA
does not take the separability of the patterns into consideration
[11]. Therefore, it is strictly a dimensionality reduction tech-
nique, rather than a pattern separability based feature extraction
technique. The Fisher linear discriminant (FLD) also achieves
dimensionality reduction, but by taking a criterion function into
consideration: the ratio of intercluster to intracluster distances.
The FLD projects the data onto a lower dimensional space where
this criterion function is maximized. Consequently, FLD is a
feature reduction algorithm that ensures maximum separability
of patterns in the transformed space [11]. However, FLD has
its limitations. First, regardless of the dimension of the origi-
nal pattern, the FLD transforms a pattern vector onto a feature
vector, whose dimension can be at most C − 1, where C is the
number of classes. This restriction poses a problem in many
applications where the original data is of high dimensionality
(with many sensors), but few classes. In this case, the origi-
nally high dimensional space is forced into a very low C − 1
dimensional space, and the derived C − 1 features may just not
be sufficient to adequately model the originally high dimen-
sional data distribution. Second, the matrix inversion used in
FLD requires that N − C > d, where N is the number of training
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data and d is the dimension of the pattern vector. This restric-
tion is also a problem, as any application with a large number of
classes with respect to available data cannot be analyzed with
the FLD approach. However, a modification of FLD originally
described in [12], and known as nonparametric discriminant
analysis (NDA), removes the above mentioned restrictions by
redefining the intercluster distances.

Another technique that can be used for increasing pattern sep-
arability is the nonlinear cluster transformation (NCT) proposed
in this paper. NCT attempts to increase the intercluster distances
while preserving the dimensionality of the pattern vectors. NCT
has no limitations in terms of dimensionality, number of classes,
or the total number of patterns in the database.

We first describe these two techniques, NDA and NCT, as
preprocessing steps for analyzing binary mixture VOC data, fol-
lowed by a discussion on the two-tiered classification.

4. Methods

4.1. Nonparametric discriminant analysis (NDA)

Consider a multi-class classification problem and let C be
the number of classes. For the ith class, let {Xi} be the set of
patterns in this class, mi be the mean of vectors x ∈ {Xi}, ni be the
number of patterns in {Xi}. Let m be the mean of all patterns in
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where Ni is the number of data instances in class i. It is useful to
note that SB is the sum of C matrices each of which has a rank
of at most 1. These matrices calculate a measure of difference
between the overall mean m of all data and individual cluster
means mi, and hence SB represents the intercluster distances.
Since only C − 1 of these matrices are independent, SB is of
rank C − 1 or less, which is the source of the restriction men-
tioned above. The revised definition of SB in (4) removes this
restriction by forcing SB to be a full-rank matrix (of rank d for d-
dimensional data). The transformation, the projection from the
original feature space onto a lower dimensional feature space,
can then be expressed as

y = WT · x (5)

where the column vector y is the feature vector in the projected
space corresponding to pattern x. The optimum matrix W is
obtained by maximizing criterion function:

J(W) =
∣∣WTSBW

∣∣∣∣WTSWW
∣∣ (6)

The columns of W, denoted as wi, that maximize J(W) are
then the eigenvectors that correspond to the largest eigenvalues
in the generalized eigenvalue equation [11]:

SBwi = λiSWwi (7)
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ll C classes. The within scatter matrix SW, and between scatter
atrix SB are defined as follows:

W =
C∑

i=1

∑
x ∈ Xi

(x − mi) · (x − mi)
T,

B = 1

N

C∑
i=1

C∑
j=1

∑
x ∈ Xi

wijx(x − mijx) · (x − mijx)T (2)

here mijx represents the mean of xi’s k-nearest neighbors from
lass j, the wijx represents the weight of the feature vector x from
lass i to class j

ijx = min(dist(xi
KNN), dist(xj

KNN))

dist(xi
KNN) + dist(xj

KNN)
(3)

here dist(xi
KNN) is the Euclidean distance from x to its k-nearest

eighbors in class i. In general, if a point belonging to class i is
ar away in the feature space from the cluster of class j instances,
ijx is a small quantity. If, however, an instance of class i is close

o the boundary of class j instances, then wijx is a large quantity.
ence wijx is a measure of the proximity between pattern x of

lass i and class j patterns as a whole. We note that SW is a
easure of the intracluster distances, and SB is a measure of the

ntercluster distances. We should add that the main difference
etween FLD and the NDA is the definition of the SB. While the
efinition of SW remains the same in both approaches, in FLD
B is defined as

B =
C∑

i=1

Ni(m − mi) · (m − mi)
T (4)
For nonsingular SW, Eq. (7) can be written as

−1
W SBwi = λiwi (8)

From Eq. (8), we can directly compute the eigenvalues λi and
he eigenvectors wi, constituting the columns of the W matrix,
hich can then be used to obtain the transformed instances y in

he new feature space.

.2. Nonlinear cluster transformation (NCT)

NCT is a three step procedure: in the first step, reduction of
ntracluster distances is achieved by eliminating the outliers. In
he second step, the desired cluster separation is obtained by a
imple translation of each cluster along an optimal direction.
his step, in essence, generates training data pairs for determin-

ng the NCT function for the third step. In the last step, the data
enerated in step two is used to train a generalized regression
eural network (GRNN) to approximate the function mapping
etween original clusters and the translated clusters. The fea-
ure vectors are then input to a classifier of choice. The details
f these steps are explained below.

.2.1. Outlier removal
The patterns in each class i in the training database are first

ormalized according to

= x√∑d
k=1(xk)2

(9)

here xk is the kth element of the pattern x, and d is the dimen-
ionality of the patterns. Outlier removal is performed next,
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based on the Mahalanobis distances of patterns from the cluster
centers. For each cluster i, the Mahalanobis distance of pattern
x in class i is computed as

MD = (x − mi)
TC−1

i (x − mi) x ∈ {Xi} (10)

where Ci is the covariance matrix of instances of the ith class,
and mi is the mean of this population. MD can be used as a
measure of dispersion within the cluster. A suitable threshold is
chosen based on the data, and instances with an MD larger than
this threshold are removed.

4.2.2. Cluster translation
This step addresses the problem of closely packed and pos-

sibly overlapping clusters. The idea is to translate the clusters
appropriately in order to physically separate them. Conceptually,
all clusters are thought of as like charged particles: the magni-
tude and direction of the translation vector are then derived using
the concept of a repulsive force exerted by each cluster i on other
clusters.

Consider a two-class problem with (possibly) overlapping
clusters, whose centers are located at m1 and m2. The distance
between these two clusters can be increased if class I patterns are
translated along the vector S1 = −(m2 − m1), and class II pat-
terns are translated along S2 = −S1 = (m2 − m1). This idea can
be extended to multi-class problems of arbitrary dimensionality,
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Fig. 6. Nonlinear cluster transformation.

other classes, that is, it points away from all other clusters. The
procedure is conceptually illustrated in Fig. 6.

The cluster transformation described here can also be
expressed in a matrix form. Let i = 1, 2, . . ., C, where C is the
number of classes, n = 1, 2, . . ., Ni where Ni is the number of
patterns in class i, xi

n be the d-dimensional nth pattern of the ith
class, and yi

n be the corresponding d-dimensional pattern after
translation. Then:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

yi
1

yi
2
...
...

yi
Ni

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ni×d

= disti

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 1
...

...
...

1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ni×C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 − mi

m2 − mi

...

...

mC − mi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

C×d

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi
1

xi
2
...
...

xi
Ni

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ni×d

(14)

This equation can be implemented on the training data sets
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here patterns of class Ci can be translated along Si, where the
ptimal direction Si can be computed as

i = −
C∑

j �=i

(mj − mi) (11)

nd where mi and mj are the cluster centers of class i and class
, respectively, and C is the number of classes. The resultant
ranslation vector for class i is Si = −Mi, where

i =
∑
j �=i

(mj − mi) (12)

All patterns in class i are moved along the direction of −Mi,
nd the translated patterns can be obtained by

Si
= xi +

(
− Mi

‖Mi‖
)

disti (13)

here xi is a pattern from class i, disti = 1/|m − mi| is a nor-
alizing constant that controls the amount of translation, XSi

is
he new location of the pattern xi, mi is the mean of all class i
nstances, and m is the mean of all instances from all classes. If
he overlap in the data from different classes is high, disti should
e correspondingly high. For data with up to three dimensions,
his parameter can be determined simply by plotting the data
nd determining how much translation is necessary. For larger
imensional data, it can be determined by trial and error or prior
xperience. It is straightforward to show mathematically that
hese translation directions maximize intercluster distances [13].
ote that Si points in the opposite direction of the resultant vec-

or that combines the cluster center of class i to the centers of all
o generate a second dataset that can be used to train a neural
etwork to learn the overall transformation function.

.2.3. Function mapping
In order to translate each cluster away from each other, the

orrect class information is required, which obviously is not
vailable for a test pattern. We therefore need to learn how to
ranslate patterns without knowing the class information. This
roblem can be thought of as a function approximation prob-
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lem, where the function to be approximated is a function that
maps d-dimensional original patterns to their new locations.
A generalized regression neural network (GRNN) was used to
accomplish this function approximation. GRNNs can be thought
of as a special case of radial basis function neural networks
(RBFNN). GRNNs do not require iterative training, and they can
approximate any arbitrary multidimensional function defined
between a set of input and output vectors. GRNN is based on
the theory of nonlinear regression analysis, commonly used as
a statistical function estimation scheme. For brevity and due to
their widespread use, GRNN architecture is not reviewed here,
and interested readers are referred to [14].

4.3. Two-tier classification

While both of the above described techniques address the pat-
tern separability problem, the presence of a dominant VOC still
poses a considerable challenge, as the response of the secondary
VOC may be completely masked. In such cases, the pattern sep-
arability approaches work best, when they are assisted with a
two-tiered classification, where the dominant VOC is identified
first, and the secondary VOC is determined based on the informa-
tion obtained in the first step. A neural network based automated
classifier is first trained to identify one of the five dominant
VOCs present in the mixture. Once the dominant VOC is iden-
tified, one of five additional classifiers is used, each of which is
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of pattern recognition applications has made them a popular
choice.

5. Results

The gas-sensing data and known corresponding VOC mix-
tures – with no preprocessing for pattern separability – were
first used to train various architectures of multilayer perceptron
(MLP), as well as radial basis function (RBF) neural networks.
These networks failed to converge – let alone perform satisfac-
torily – for all reasonable architectures and learning parameters,
even for identification of the dominant VOC only. The networks
were unable to learn the decision boundaries separating the clus-
ters formed by different VOCs. This behavior was traced to the
problem of closely packed or possibly overlapping clusters in
the six-dimensional space, as mentioned above and illustrated
in Figs. 3–5.

Both NDA and NCT were first performed on the problem
of dominant VOC identification, a five-class (OC, ET, XL, TL
and TCE), six-feature classification problem. The 384-pattern
database (16 measurements for each of the 24 mixtures) was
partitioned into two equal parts of 192 instances, PS for train-
ing and evaluating pattern separability, and CL for training and
evaluation of the two-tiered final classification.

For NCT, the database PS was also partitioned for training
and evaluation of pattern separability. The training partition and
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ation
pecifically trained to recognize the secondary VOCs in a mix-
ure of the given dominant VOC. Fig. 7 illustrates the overall
chematic of this divide and conquer type approach.

The inputs to a particular secondary network are the same
reprocessed inputs for the dominant VOC networks. However,
nly those instances identified to belong to the dominant class c
re used as inputs to the secondary VOC network for class c. For
nstance, once a particular data instance is identified to include
oluene as its dominant VOC, the same data instance (prepro-
essed either by NDA or NCT) is the input to the secondary
OC network for toluene.

The networks shown in Fig. 7 were all multilayer perceptron
ype neural networks, whose widely reported success on a variety

Fig. 7. Two step approach for identific
ts translated target vectors were used to train the GRNN to learn
he functional mapping required to obtain the desired transfor-

ation. The GRNN had 6 input nodes, 192 hidden layer nodes
receptive fields), and 5 output nodes. Various σ values (spread
onstant) were used and the best separation was obtained for σ

n the 0.06–0.1 range. The trained GRNN was then evaluated on
he validation partition of the dataset PS. We note that this is not
he validation of the final classification performance, but rather
figure of merit for the ability of the algorithm to separate the
atterns.

For training and testing the classification capability of a neu-
al network using the NDA or NCT processed data, the dataset
L, consisting of the remaining 192 six-dimensional measure-

of individual VOCs within a mixture.
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ments, was further partitioned into two: TRCL consisting of 48
patterns (2 measurements per mixture—for training) and ECL
consisting of 144 patterns (6 measurements per mixture—for
final evaluation of classification performance). A two hidden
layer MLP with 6 × 40 × 20 × 5 architecture was trained using
the TRCL data, which easily converged to a mean square error
minimum of 0.01. Repeating with σ values between 0.06 and
0.1, a correct classification performance of 98% was achieved
on the ECL for identification of dominant VOCs using NCT, and
86.4% using NDA. This is in comparison to complete failure of
convergence with unprocessed data.

Once the dominant VOC was identified, a separate MLP was
trained for each of the five secondary VOCs, creating the two-
tier classification system. A similar procedure was repeated for
the identification of secondary VOCs, training 6 × 20 × 5 MLP
networks with preprocessed patterns for each dominant VOC.
The overall performance of the secondary VOC networks was
97% with NCT and 82% with NDA.

6. Conclusions and discussion

Two pattern separability techniques, NDA and NCT, have
been applied to mixture VOC data. NDA aims to maximize the
intercluster to intracluster distance ratios, whereas NCT tries to
increase the intercluster distances while keeping intracluster dis-
tances constant. Preprocessing allowed improved performances
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For identification of binary mixtures of VOCs, where the
esponse to a secondary VOC may be masked by that of a domi-
ant VOC, we propose a two-tiered classification procedure. The
ominant VOC is identified first, and based on this information
second level of classifiers are used – one for each dominant
OC – to identify the secondary VOCs. Attempting to identify
oth components at once had earlier proven to be impractical.

Both NDA and NCT had satisfactory performances for the
dentification of dominant VOCs, but NCT performed better for
he identification of secondary VOCs. The advantage of NDA is
hat it can provide dimensionality reduction, if such an operation
s necessary for the particular application. However, NDA is also
omputationally more expensive than NCT, which is designed
o preserve the dimensionality of the problem.
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