

Abstract—Using a machine learning algorithm for a given
application often requires tuning design parameters of the
classifier to obtain optimal classification performance without
overfitting. In this contribution, we present an evolutionary
algorithm based approach for multi-objective optimization of
the sensitivity and specificity of a ࣇ-SVM. The ࣇ-SVM is often
preferred over the standard C-SVM due to smaller dynamic
range of the ࣇ parameter compared to the unlimited dynamic
range of the C parameter. Instead of looking for a single
optimization result, we look for a set of optimal solutions that
lie along the Pareto optimality front. The traditional advantage
of using the Pareto optimality is of course the flexibility to
choose any of the solutions that lies on the Pareto optimality
front. However, we show that simply maximizing sensitivity
and specificity over the Pareto front leads to parameters that
appear to be mathematically optimal yet still cause overfitting.
We propose a multiple objective optimization approach with
three objective functions to find additional parameter values
that do not cause overfitting.
 Index Terms—multi-objective optimization, ࣇ-SVM,
evolutionary algorithms

I. INTRODUCTION
ARAMETER optimization is often a time consuming task
and generally requires a fair amount of prior knowledge

about the data, and/or large repetitions of cross validation to
appropriately select the parameters for a given classification
algorithm (such as the number of hidden layer nodes of an
MLP, the C parameter in ܥ-SVM, the ߥ parameter in ߥ-SVM
or the number of nearest neighbors in ݇-NN). The goal is to
be able to optimally choose a set of parameters and be able
to verify that the parameters will not cause the classifier to
overfit to the training data. A classifier such as the ݇-NN
only has one parameter, the number of nearest neighbors, to
adjust/optimize, whereas the MLP has the number of hidden
layers, number of hidden nodes, error goal and any
parameters used in the backpropagation algorithms (perhaps
the momentum term), to name a few. The selection of these
parameters has a profound effect on the classification
accuracy of the classifier, therefore it is critical for the
designer to select these parameters through proper
optimization techniques rather than applying ad hoc heuristic
methods. To do so, two questions need to be answered: what
objective function(s) should be optimized; and which

Manuscript received January 31, 2010 and revised on May 2, 2010. This
work was supported by the National Science Foundation under Grant No:
ECCS-0926159.

The authors are with the Dept. of Electrical and Computer Engineering
at Rowan University and are a part of the Signal Processing & Pattern
Recognition Laboratory, Glassboro, NJ, 08028, USA (e-mail: {ethrid60,
ditzle53}@students.rowan.edu; polikar@rowan.edu).

optimization technique should be applied? Generally we
must find at least two suitable objective functions to
optimize [1]. Suitable objective functions could be
complexity vs. accuracy or sensitivity vs. specificity [2]. A
grid search can be utilized to optimize the parameters,
however this approach is extremely time consuming and
may not even always give optimal results when the grid is
not densely sampled [3]. Evolutionary Algorithms (EA)
have recently become popular and have been widely used in
parameter optimization for several classifiers, such as the ܥ-
SVM. Not only are EA used for parameter optimization but
feature selection as well for very high dimensional datasets
[4]. It is important to note that, as shown by several previous
efforts, the optimization of a single objective function, such
as the validation error, may not yield an optimal classifier
model [5]. As an alternative, the application of Multi-
Objective Optimization (MOO) techniques using
Evolutionary Algorithms (EA) has been explored in several
works [1,6]. In the multi-objective case, the sensitivity and
specificity of the classifier are frequently chosen as the
objective functions for optimization. MOO-EAs have
already been proposed in [1,2,5,7] for the selection of
optimal SVM parameters. For example, the approach in
maximizes the sensitivity and specificity for the ܥ-SVM for
a text classification problem [5]. These works have
demonstrated that MOO-EA techniques are options for
optimizing ܥ-SVM parameters, however, very little has been
done to properly check whether the classifier with these
“optimal” parameter values is actually overfitting the
training data.

The primary contribution of this work is the application of
an EA, the Non-dominated Sorting Genetic Algorithm II
(NSGA-II), for multi-objective optimization of the ߥ-SVM.
This is presented as an alternative to previous research in
which a set of optimal regularization and kernel parameters
for the C-SVM algorithm are determined using an EA. The
primary goal is to limit the bounds on the optimization
parameter space in order to eliminate the heuristic selection
of the upper and lower bounds on said parameters. We
present the optimization of the ߥ-SVM using the standard
Gaussian kernel function with a single spread parameter. A
brief analysis of overfitting is also presented with the
optimized parameters determined by the MOO-EA. The
paper is organized as follows: Section II provides a
background to the problem and previous work, Section III
highlights the basic theory involved with the classifier and
EA, Section IV highlights the results obtained with several

Optimal ࣇ-SVM Parameter Estimation using
Multi Objective Evolutionary Algorithms

James Ethridge, Gregory Ditzler and Robi Polikar

P

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

publicly available databases, and Section V provides our
discussion of the results and some concluding remarks.

II. BACKGROUND
 A considerable amount of prior work by many

researchers has focused on the optimization of the
parameters for C-SVM in the context of a MOO problem,
applying EA to optimize the sensitivity and specificity of the
C-SVM with respect to the C parameter [5]. The primary
drawback of using the C-SVM in this context is that the C
parameter has an infinitely wide dynamic range, bounded
between ሾ0, ∞ሻ. Therefore, in most optimization approaches,
one must select a somewhat arbitrary upper bound for C. For
instance, in [5], the regularization parameter was selected
with a range of 0-500 and then 0-5000 before the
optimization algorithm could be applied. However, if
enough information is not available to properly gauge the
range of the regularization parameter, an arbitrarily selected
range for the search can result in suboptimal solutions. In the
absence of any prior knowledge, one might consider making
the search range very large, but this will inherently increase
the size of the parameter space which must be searched by
the EA. In order to avoid the large range of the C parameter,
we first propose replacing the C-SVM with the ߥ-SVM
model originally presented by Schölkopf et al[8], as the ߥ
parameter of the algorithms has an inherently finite range of
[0 1]. Schölkopf et al [9] also showed that the parameter ߥ is
a decreasing function of C. Therefore, a large C corresponds
to a small ߥ (small margin) and a small C corresponds to a
large ߥ (large margin). Thus, the ߥ parameter space
eliminates the necessity to heuristically select an upper
bound on the regularization parameter.

However, finding the optimal value that maximizes the
classifier performance, without showing any care to avoid
overfitting, also leads to a suboptimal solution. While the
main objective function(s) may be maximized, there is little
to no precaution taken in much of the previous work to
prevent or test for overfitting.

III. THEORY

A. ߥ-SVM
The ߥ-SVM is an alternate formulation of the traditional

SVM, sometimes denoted as ܥ-SVM. The ߥ-SVM and C-
SVM are both maximum margin classifiers and use
quadratic programming to solve for the support vectors, but
regularization parameter (C), is replaced by ߥ, to control the
margin in ߥ-SVM. The other difference between the two
formulations is that the ߥ term allows for control of the
fraction of support vectors and has a relationship to the
fraction of training errors. It has been shown that this
alternate formulation provides a more intuitive
representation than the regularization parameter in C-SVM
[10].

Eq. 1 shows the primal formulation of the C-SVM
objective function, optimized subject to the constraints in

Eq. 2 & 3, where w and b control the optimal hyperplane
that maximizes the margin between the convex hulls of the
two classes, C is the regularization parameter, ܠ௡ is the nth
data instance, ߦ௡ is the corresponding slack parameter, ݐ௡ is
the true label (-1 or 1), ߶ሺܠ௡ሻ is the kernel function (if used)
applied to the instance ܠ௡, and N is the total number of
samples in the training data. This primal formulation of the
C-SVM can be converted to its dual, and optimized using
quadratic programming. The result of this optimization is a
set of positive Lagrange multipliers that can be used to solve
for ܟ and ܾ. The implementation of the ܥ-SVM is done
using the linear equation, ݕሺܠ௠ሻ ൌ ௠ሻܠ௧߶ሺܟ ൅ ܾ. The
primary free parameters here are the choice of C (and the
kernel option, if the SVM is to be used to implement a
nonlinear decision boundary). Recall that C is the tradeoff
between the slack variables penalty and the size of the
margin. It also happens to be the upper bound on the
Lagrange multipliers (ߙ) in the dual formulation. If C is
large, then a large penalty is assigned to the instances that
cross or fall into the margin of the SVM and vice versa.

 min
௕,૆,ܟ

1
2

ԡܟԡଶ ൅ ܥ ෍ ௡ߦ

ே

௡ୀଵ

 (1)

௡ሻܠ௧߶ሺܟ௡ሺݐ ൅ ܾሻ െ 1 ൅ ௡ߦ ൒ 0 (2)

௡ߦ ൒ 0 (3)

In ߥ-SVM, the regularization parameter is replaced with

ߥ א ሾ0,1ሿ, where ߥ is an upper bound on the fraction of
margin errors. The margin errors come from all instances
with ߦ௜ ൐ 0 which are either training errors or examples that
lie within the margin on the correct side of the decision
boundary. The primal problem for the ߥ-SVM is shown in
Eq. 4 subject to constraints in Eq. 5, 6 & 7. Note that C has
been replaced with ߥ and ߩ in this formulation, where
ߩ א ሾ0,1ሿ controls the width of the margin, which is equal to
ߩ2 ԡܟԡ⁄ .

 min
૆,ఘ,௕,ܟ

߬ሺܟ, ,ࣈ ሻߩ ൌ
1
2

ԡܟԡଶ െ ߩߥ ൅
1
ܰ ෍ ௡ߦ

ே

௡ୀଵ

 (4)

௡ሻܠ௧߶ሺܟ௡ሺݐ ൅ ܾሻ െ ߩ ൅ ௡ߦ ൒ 0 (5)

௡ߦ ൒ 0 (6)

 0 ൑ ߩ ൑ 1 (7)

The minimization problem in Eq. 4 can be converted to its
dual and can be solved via quadratic programming by
maximizing Eq. 8, subject to constraints in Eq. 9, 10 and 11,
where ߙ௡ are the Lagrange multipliers, ݐ௡ א ሼേ1ሽ are the
class labels and ݇ሺܠ௠, ௡ሻ is the kernel function (if used forܠ
nonlinear problems).

ሻߙ෨ሺܮ ൌ െ
1
2 ෍ ෍ ,௠ܠ௡݇ሺݐ௠ݐ௡ߙ௠ߙ ௡ሻܠ

ே

௡ୀଵ

ே

௠ୀଵ

 (8)

 0 ൑ ௡ߙ ൑
1
ܰ

 (9)

෍ ௡ݐ௡ߙ

ே

௡ୀଵ

ൌ 0

 (10)

෍ ௡ߙ

ே

௡ୀଵ

൒ ߥ

 (11)

It can be shown that the lower bound of the fraction of the

support vectors also happens to be ߥ. The clear advantage to
using the ߥ-SVM formulation is that this free parameter is
now bounded ߥ א ሾ0,1ሿ rather than ܥ א ሾ0, ∞ሻ. Furthermore,
by considering the optimal set of Lagrange multipliers, ࢻ, as
a function of parameters, the relationship between ߥ and C
can be shown to be [9]:

lim
஼՜ஶ

∑ ௡ߙ
ே
௡ୀଵ

ܰܥ ൌ ௠௜௡ߥ ൒ 0

ܽ݊݀

lim
஼՜଴

∑ ௡ߙ
ே
௡ୀଵ

ܰܥ ൌ ௠௔௫ߥ ൑ 1

 (12)

which implies that on any given problem with any given
kernel, there exists an interval ሾߥ௠௜௡, ௠௔௫ሿ, where 0ߥ ൑
௠௜௡ߥ ൑ ௠௔௫ߥ ൑ 1, which maps to C א ሾ0, ∞ሻ.

Thus, the ߥ parameter space has a tighter dynamic range
and therefore a narrower search space than that of the C-
SVM. Also, it has been shown in [9] that some interval of
values in the C parameter space often map to a single value
of ߥ. Thus, the ߥ-SVM eliminates the possibility of
redundant parameters in the initial population of the EA,
which could negatively impact the performance of the
optimization algorithm.

Clearly, for nonlinearly separable problems, we also need
to choose a kernel function and its associated free
parameters. For the purposes of this paper, we focus on the
commonly used radial basis function.

,ሻܠሺ߶ۃ ߶ሺܠᇱሻۄ ൌ ݇ሺܠ, ᇱሻܠ

ൌ exp ቆെ
ԡܠ െ ᇱԡଶܠ

ଶߪ ቇ (13)

 The free parameter of this kernel is the choice of ߪ,

which controls the spread of the radial basis function.
Clearly, varying the spread can have a drastic effect on the
function’s reach: if the ߪ is very small then the kernel
becomes very focused at a particular point. On the other
hand, if ߪ is very large, the kernel becomes too broad.
Therefore, we would like to use an EA to optimize ߪ and ߥ
by generating a Pareto optimality set that will give the user a
series of feasible solutions that can be used for their
classification problem.

B. Multi-Objective Optimization
The goal in multi-objective optimization (MOO) is to

simultaneously optimize two or more (possibly) conflicting

objective functions subject to a set of predefined constraints.
For a set of ݉ objective functions, to be optimized with
respect to a set ݊ variables ܠ ൌ ሾݔଵ, ,ଶݔ … , ௡ሿ, theݔ
formulation is given as follows:

 min
ܠ

ሺ ଵ݂ሺܠሻ, ଶ݂ሺܠሻ, ଷ݂ሺܠሻ, … , ௠݂ሺܠሻሻ

 (14)

 ݋ݐ ݐ݆ܾܿ݁ݑݏ
 ݃௜ሺܠሻ ൑ 0 (15)

 ௝݄ሺܠሻ ൌ 0 (16)

௟௢௪௘௥ܠ ൑ ܠ ൑ ௨௣௣௘௥ (17)ܠ

where ݃௜ሺܠሻ and ௝݄ሺܠሻ are the ith and jth inequality and
equality constraints, respectively. Each parameter may also
be constrained between some lower and upper bound.

 A set of optimality conditions for the multi-objective
case, known as Pareto optimality conditions, define a set of
feasible, non-dominated solutions in the objective space. A
solution, ݂ሺܠሻ, is said to be non-dominated if for any other
feasible objective vector, ݂ሺכܠሻ:

 ௜݂ሺܠሻ ൑ ௜݂ሺכܠሻ; ݅׊ ൌ 1, 2, 3 … ݉

 (18)

and there exists at least one objective such that:

 ௝݂ሺܠሻ ൏ ௝݂ሺכܠሻ; ݆ א 1, 2, 3 … ݉

 (19)

This is formally written as ݂ሺܠሻ ط ݂ሺכܠሻ. The Pareto front
is then defined as the set of all such non-dominated points.

C. Application for NSGA-II Parameter Selection
In cases where the dimensionality of the MOO problem is

high, or where the solution is non-convex, an analytical
solution that produces the entire Pareto front may become
intractable. In such cases, it is desirable to approach the
MOO problem in a manner that generates a representative
subset of the Pareto front. The application of evolutionary
algorithms has become a popular approach to the
aforementioned problem due to their ability to search for
multiple Pareto optimal solutions concurrently as a result of
the inherent parallelism in the algorithm [5].

 The NSGA-II algorithm is an elitist EA that was
developed to solve MOO problems with an emphasis on
reduced computational complexity and diversity
preservation [11]. The use of elitism in EAs applied to MOO
problems has been shown to improve performance by
allowing non-dominated solutions to persist across
generations [12]. Diversity preservation ensures that the EA
maintains a good spread of solutions along the generated
Pareto front. Diversity preservation is implemented in
NSGA-II using the crowded comparison operation; a
crowding metric which is free of user defined parameters
present in other algorithms [11]. Finally, the worst case
computational complexity of the NSGA-II algorithm is

ܱሺܰܯଶሻ, where M is the number of objectives and N is the
population size. Thus the algorithm boasts a lower
complexity than other MOO-EAs, such as Strength Pareto
Evolutionary Approch-2 (SPEA-2) [13].

 When applying the NSGA-II algorithm to the
optimization of ν-SVM parameters, we need to determine
the parameter space and the fitness function to be optimized.
The parameter space defined for the ν-SVM is given by the ν
parameter and the parameters associated with the chosen
kernel, the spread parameter, ߪ, for the Gaussian kernel. The
fitness function to be optimized by the NSGA-II algorithm is
then the sensitivity and specificity for the generated
classifier.

The formulation for this MOO problem is given by:

 min
஝,஢

ሺെ ଵ݂ሺߥ, ,ሻߪ െ ଶ݂ሺߥ, ሻሻߪ

 (20)

.ݏ .ݐ
 0 ൑ ߥ ൑ 1 (21)

 0 ൏ ߪ ൏ ∞ (22)

where, ଵ݂ሺν, σሻ is the sensitivity and ଶ݂ሺν, σሻ is the
specificity of the classifier on a given data set.

IV. RESULTS
The results presented in this section use 5-fold cross-

validation on each dataset to independently evaluate the
generalization of the sensitivity and specificity on each
database. The Pareto optimality fronts are presented along
with an interpretation of the curves. All databases were
preprocessed to normalize all features to ሾെ1,1ሿ range,
which allows us to limit the search region of the spread
parameter. A random label test was also performed to check
whether the classifier is overfitting to the data with the
parameters determined by the EA. This technique works
well when the data is uniformly distributed in feature space.

Fig. 1. Checkerboard dataset feature space.

Four datasets were used, whose names and cardinalities

can be found in Table I. All databases, with the exception of
the checkerboard dataset (which can be easily generated),
are publically available from the UCI Machine Learning

Repository [14]. The breast cancer database contains 10
features that come from a digitized image of a fine needle
aspirate (FNA) of a breast mass which is used to classify
malignant and benign diagnosis. The ionosphere database
contains 34 continuous features and diagnoses of a feature
that shows “good” or “poor” evidence of structure in the
ionosphere. The Parkinson’s dataset contains biomedical
voice measurements with 23 features used to diagnose
Parkinson’s patients. The checkerboard dataset is a synthetic
binary classification problem with zero rotation and four
squares (see Figure 1). This problem reduces down to the
classical non-linear XOR separation problem. The
checkerboard training data was varied between 100 and 200
random samples and the testing dataset is 5000 random
samples. All datasets described above are relatively balanced
datasets, but it should be noted that not all of the databases
have an equal number of examples from each class.

TABLE I. DATASETS USED

Dataset # of instances
ionosphere 351

checkerboard 100/200
breast cancer 569
Parkinson’s 197

A. Optimality Search Results
The resulting Pareto optimality curves for the Parkinson’s,

ionosphere, breast cancer, and checkerboard database can
been seen in Figure 2, 3, 4, and 5, respectively. A variation
of the checkerboard dataset is also shown in Figure 6. This
second checkerboard test uses 200 examples in the training
set rather than 100. The bold points in the figures –
corresponding to the optimal values that actually cause
overfitting – will be discussed later in the next section in
more detail.

Fig. 2. Parkinson’s Pareto optimal set.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

sensitivity

sp
ec

ifi
ci

ty

Pareto front

The maximization of the sensitivity and specificity returns
a set of optimal values for ߥ and ߪ known as the Pareto
optimality set. Each of these parameters was optimized such
that no other point could maximize one of the objective
functions without decreasing another. Each set provides a
range of parameters that can be used to obtain a good
balance between the sensitivity and specificity metrics on
each dataset. However, there may be points along each curve
that are better choices than others (i.e. some parameters may
cause overfitting), as we discuss later in this section.

Table II, Table III, Table IV and Table V display some of
the optimal parameters chosen from the Pareto set for the
Parkinson’s, ionosphere, breast cancer, and checkerboard
datasets, respectively. Several interesting observations can
be made from these tables. For example, there is very little
variation in the selection of ߥ for the ionosphere database,
which appears to indicate that this is the only possible
solution, however this was not observed in other databases.
The breast cancer and checkerboard datasets provided a
wider spread of SVM parameters (both ߥ and ߪ) that can be
used to maximize sensitivity and specificity, as shown in
Table IV and V. Recall, that a large value of ߥ corresponds

to a small value C. This means that the margin is wide and a
small penalty is applied to the slack variables in the original
SVM formulation.

The results also show that the evolutionary algorithms are
able to find sets of parameters that can maximize the
sensitivity and specificity of the ߥ-SVM classifier on a
dataset. However, these algorithm parameters (ߪ/ߥ) do not
tell us whether the classifiers trained with these “optimal”
values will cause overfitting. Once we have a set of
parameters, we need to determine which set(s) of parameters
are best for the given dataset. Clearly, we would like a set of
parameters that provides a good balance between sensitivity
and specificity, but it is also important that the classifier is
not overfitting. Therefore, generalization accuracy on
previously unseen data is also an important quality sought
from the classifier. We would like to determine a method or
set of methods that can be used to analyze which set of
parameters are overfitting and to what extent.

Fig. 3. Pareto optimal set for the Ionosphere dataset. Fig. 4. Pareto optimal set for the breast cancer dataset.

Fig. 5. Checkerboard (m=100) Pareto optimal set. Fig. 6. Checkerboard (m=200) Pareto optimal set.

0.7 0.75 0.8 0.85 0.9 0.95 1

0.4

0.5

0.6

0.7

0.8

0.9

1

sensitivity

sp
ec

ifi
ci

ty
Pareto front

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.94

0.95

0.96

0.97

0.98

0.99

1

sensitivity

sp
ec

ifi
ci

ty

Pareto front

0.9 0.92 0.94 0.96 0.98 1
0.9

0.92

0.94

0.96

0.98

1
Pareto Front

sensitivity

sp
ec

ifi
ci

ty

0.9 0.92 0.94 0.96 0.98 1
0.85

0.9

0.95

1

sensitivity

sp
ec

ifi
ci

ty

Pareto front

TABLE II. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO

OPTIMAL SET FOR THE PARKINSON’ DATASET

 sensitivity specificity ߪ ߥ
0.2407 0.0061 0.7787 0.9813
0.2150 0.0081 0.9667 0.9333
0.1401 0.3689 0.8825 0.9517
0.1072 0.5229 0.9867 0.9201

TABLE III. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO

OPTIMAL SET FOR THE IONOSPHERE DATABASE

 sensitivity specificity ߪ ߥ
0.6270 0.1214 0.9929 0.4915
0.6676 0.2301 0.9534 0.8827
0.6363 0.4643 0.9359 0.9103
0.6811 0.3387 0.8504 0.9826

TABLE IV. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO

OPTIMAL SET FOR THE BREAST CANCER DATABASE

 sensitivity specificity ߪ ߥ
0.6988 0.0038 0.6677 0.9825
0.3333 0.0073 0.8183 0.9795
0.0859 0.1843 0.9978 0.9631
0.0521 0.0832 0.9778 0.9713

TABLE V. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO

OPTIMAL SET FOR THE CHECKERBOARD DATASET

 sensitivity specificity ߪ ߥ
0.1595 0.3909 0.9569 0.9742
0.0972 0.5432 0.9820 0.9451
0.0604 0.3006 0.9763 0.9648
0.0444 0.3684 0.9610 0.9725

B. Overfitting Analysis
The commonly used k-fold cross-validation procedure

allows us a better estimate of the generalization error, but
does not conclusively determine if a classifier is overfitting.
In order to determine whether optimal parameters may cause
overfitting, we devised a random label test. In the random
label test we assign labels to the data completely at random,
and then train a classifier using the (optimal) parameters
determined by the EA, on this data whose labels are
randomly assigned. The classifier is then evaluated with the
test data, whose labels are also randomly assigned. Under
this experiment, we would expect the classifier to perform
close to random guess. If the classifier performs particularly
well on the randomly labeled data, then this outcome shows
that the classifier is clearly overfitting. We decided to let
േ15% (45 െ 65%) of a random guess to indicate if a
classifier was overfitting with an optimal set of parameters
from the MOO task. The large range was selected because
we are interested in determining what sets of parameters
were causing the classifier to blatantly overfit to the data.

TABLE VI. RANDOM LABEL TESTING
PERFORMED ON THE CHECKERBOARD

DATASET

 error ߪ ߥ
0.1411 0.5920 0.4900
0.0537 0.3450 0.5200
0.0537 0.3451 0.4650
0.0566 0.3623 0.4850
0.0550 0.3776 0.5300
0.0568 0.3717 0.5300
0.0736 0.3971 0.4750

Table VI and VII provides the results of the random label

test for the checkerboard and Parkinson’s dataset,
respectively. In Table VI, the error after applying random
labels to the data and training a classifier using different
values of ߥ and ߪ are very close to random chance for this
two class checkerboard problem. This is an indication that
the classifiers trained with the checkerboard dataset – using
the parameters selected from the Pareto optimality front - are
not overfitting. In fact all of the random label assignment
tests for the checkerboard dataset displayed results that were
approximately within േ5% of the random guess. On the
other hand, as we discuss next, checkerboard was the only
database presented in this paper for which the optimally
determined parameters did not cause the classifier overfit.
We believe this is due to the relative simplicity of the
problem and the data being uniformly sampled from feature
space.

TABLE VII. RANDOM LABEL TESTING
PERFORMED ON THE PARKINSON’S DATASET

ߥ error ߪ
0.1072 0.5229 0.5983
0.1254 0.4173 0.5726
0.1401 0.3689 0.5128
0.1914 0.0058 0.9972
0.2520 0.9603 0.5185
0.1072 0.5229 0.5983

The spread parameter of the RBF kernel provides another

indicative measure of overfitting of the ߥ-SVM. A classifier
that is overfitting the data will typically have a very small
spread parameter, thus becoming very focused at a particular
point. For example, the spread parameters for the first two
entries in Table IV in the breast cancer database are very
small. The fourth entry in Table VII also has very small
spread parameter compared to the others and the overall
error after applying the random label test is 99.7% (which,
with the flip of labels, effectively represents a 99.7%
accuracy). This is a clear indication that the parameters in
the fourth entry of Table VII are causing overfitting. Other
optimal sets shown in Table VII do not have nearly as small
 and correspondingly, as extreme error rate. In fact most , ߪ
of them are just around random chance, as we would
normally expect from the a properly trained classifier on a

random label test. Yet, with the exception of the
checkerboard dataset, all other datasets resulted in optimal
parameters that overfit the data. For instance, the first two
examples in Table II and IV have very small spread
parameters, whose random label errors were between 0.96-
1.0, a clear indication of overfitting. The breast cancer
database was by far the worst by having nearly all the
optimal parameters achieve a very high classification rate
with the randomly assigned labels.

The bold points in the Pareto front curves indicate
examples that appear to yield a classifier that has a high/low
classification rate on a randomly labeled dataset. The
threshold was set such that the overfitting examples were
above 65% after a random label test was applied. Therefore,
we argue that each Pareto optimal point should be evaluated
for overfitting either by performing this test on the classifier
or by some other means of the designer’s choice.

C. Modified Multi Objective Function
In this section, we present the preliminary results of

adding an additional objective function to be minimized in
the optimization problem. The first and second objective
functions are still sensitivity and specificity, respectively.
The third objective function is the absolute value of the
difference between the random label error and a random
guess for a two class problem. Specifically, ଷ݂ሺߥ, ሻߪ ൌ
|0.5 െ ߳| where ߳ is the generalization error produced by the
 parameters selected by the EA after ߪ and ߥ SVM with the-ߥ
cross validation.

 min
஝,஢

ሺെ ଵ݂ሺߥ, ,ሻߪ െ ଶ݂ሺߥ, ,ሻߪ ଷ݂ሺߥ, ሻሻߪ

 (23)

.ݏ .ݐ
 0 ൑ ߥ ൑ 1 (24)

 0 ൏ ߪ ൏ ∞ (25)

Table VIII and Figure 8 show the test results using ߥ-
SVM parameters determined with the third objective
function optimization, on the worst case breast cancer
dataset. Unlike the previous case, where most optimal
solutions caused overfitting, the new optimization provides
several solutions that do not cause overfitting. The algorithm
also makes it trivial to detect overfitting – when it happens –
with a zero error on random label test. As expected, these
cases also correspond to very small spread values. All other
sets of parameters result in a random label test error close to
0.5, indicating that the classifier is not overfitting.

V. CONCLUSION
We have described an application of EA for the

maximization of sensitivity and specificity of the ߥ–SVM,
using a multi-objective optimization approach. The obvious
benefit of using this approach is that optimization techniques
can be applied to determine parameters rather than heuristics
thus providing a sound justification for using the set of
parameters for a specific dataset.

TABLE VIII. RANDOM LABEL TESTING
PERFORMED ON THE BREAST CANCER DATASET

 error ߪ ߥ
0.1106 0.5598 0.4938
0.1368 0.7809 0.4903
0.1438 0.1968 0.5131
0.1637 0.6205 0.4938
0.1676 0.6047 0.4815
0.1919 0.0069 0
0.3049 0.0023 0
0.5437 0.0015 0
0.0411 0.0528 0.4534

Fig. 7. Pareto optimal set for the breast cancer dataset with the modified
optimization problem.

The ߥ–SVM was chosen in this work because the ߥ

parameter in the optimization of the classifier is bound
between [0,1] unlike the more commonly used ܥ-SVM
which does not have this bound. The initial results show that
there is a diverse set of parameters that can be used to
maximize sensitivity and specificity. However, it may be
more advantageous for a designer to choose one set of
parameter over another as some sets of parameters may
cause the classifier to overfit the training data.

We have then described a simple procedure that can be
applied to determine if the classifier is overfitting, by
assigning random labels to the data. One would expect the
error of a classifier trained/tested with randomly labeled data
to be near random guess. The initial results have shown that
several of the solutions in the Pareto optimal set do in fact
cause overfitting. This was especially evident in the breast
cancer dataset. Nearly all the solutions suggested by the
Pareto set caused overfitting, whereas the checkerboard
dataset had few indications of overfitting. This leads us to
the conclusion that the optimal parameter sets should be
checked for overfitting regardless of the optimization
approach used, but certainly for the commonly used EA
approaches. Adding a third objective function, as the
absolute value of the difference between the random label
error and a random guess for a two class problem appeared

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.88

0.9

0.92

0.94

0.96

0.98

1

sensitivity

sp
ec

ifi
ci

ty

Pareto front

to provide several parameters that did not cause overfitting.
Our future efforts will focus in additional experiments to
determine the theoretical and experimental behaviors of this
approach.

REFERENCES

[1] C. Igel, "Multiobjective Model Selection for Support Vector
Machines," in Proc. of the 3rd Int. Conf. on Evolutionary Muilt
Criterion Optimzation, 2005, pp. 534-546.

[2] T. Suttorp and C. Igel, "Multi-Objective Optimization of Support
Vector Machines," Multi-Objective Machine Learning, pp. 199-220,
2006.

[3] S. Lavalle and M. Branicky, "On the relationship between classical
grid search and probabilistic roadmaps," International Journal of
Robotics research, vol. 23, pp. 673-692, 2002.

[4] H. Frohlich, O. Chapelle, and B. Scholkopf, "Feature selection for
support vector machines using genetic algorithms," International
Journal on Artifical Intelligence Tools, vol. 13, no. 4, pp. 791-800,
2004.

[5] C. Chatelain, S. Adam, Y. Lecourtier, L. Heutte, and T. Paquet,
"Multi-Objective Optimization for SVM Model Selection," in 9th
International Conference on Document Analysis and Recognition
(ICDAR), Curitiba, Parana, Brazil, 2007, pp. 427-431.

[6] Y. Jin and B. Sendhoff, "Pareto-Based Multi-Objective Machine
Learning : An Overview and Case Studies," IEEE Transactions on
Systems, Man and Cybernetics: Part C, vol. 38, no. 3, pp. 397-415,
2008.

[7] C. H. Wu, G. H. Tzeng, Y. J. Goo, and W. C. Fang, "A real-valued
genetic algorithm to optimize the parameters of the support vector
machine for predicting bankruptcy," Expert Systems with Applications,
vol. 32, no. 2, pp. 397-408, 2007.

[8] B. Scholkopf, A. Smola, R. Williamson, and P. Bartlett, "New Support
Vector Machine Algorithms," Neural Computation, vol. 12, pp. 1207-
1245, 2000.

[9] C. C. B. Scholkopf and C. Lin, "Training [nu]-Support Vector
Classifiers: Theory and Algorithms," Neural Computation, vol. 13, no.
4, pp. 2119-2147, Apr. 2001.

[10] R. Bergman, M. Griss, and C. Staelin, "A personal email assistant," HP
Laboratories, Palo Alto, CA, Technical Report HPL-2002-236, 2002.

[11] D. Klayanmoy, S. Pratap, and T. Meyarivan, "A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II," IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, Apr. 2002.

[12] E. Zitzler, D. Kalyanmoy, and L. Thiele, "Comparison of
multiobjective evolutionary algorithms: Empirical results",
Evolutionary Computation, vol. 8, no. 2, pp. 173-195, Jun. 2000.

[13] A. Konak, D. Coit, and A. Sith, "Multi-optimization using genetic
algorithms: A tutorial," Reliability Engineering and System Safety, vol.
91, pp. 992-1007, Jan. 2006.

[14] A. Asuncion. and D. J. Newman. (2007, Jan.) UCI Machine Learning
Repository. [Online]. http://archive.ics.uci.edu/ml/

[15] J. Arora, Introduction to Optimum Design, 2nd ed. Elsevier Inc, 2004.
[16] C. L. B. S. P. Chen, "A tutorial on [nu]-support vector machines,"

Appl. Stochastic Models Bus. Ind., vol. 21, no. 2, pp. 111-136, Apr.
2005.

[17] H. Zhao, "A multi-objective genetic programming approach to Pareto
optimal decision trees," Decision Support Systems, vol. 43, no. 3, pp.
809-826, Dec. 2006.

