
 
 

 

  

Abstract—Using a machine learning algorithm for a given 
application often requires tuning design parameters of the 
classifier to obtain optimal classification performance without 
overfitting. In this contribution, we present an evolutionary 
algorithm based approach for multi-objective optimization of 
the sensitivity and specificity of a ࣇ-SVM. The ࣇ-SVM is often 
preferred over the standard C-SVM due to smaller dynamic 
range of the ࣇ parameter compared to the unlimited dynamic 
range of the C parameter. Instead of looking for a single 
optimization result, we look for a set of optimal solutions that 
lie along the Pareto optimality front. The traditional advantage 
of using the Pareto optimality is of course the flexibility to 
choose any of the solutions that lies on the Pareto optimality 
front. However, we show that simply maximizing sensitivity 
and specificity over the Pareto front leads to parameters that 
appear to be mathematically optimal yet still cause overfitting. 
We propose a multiple objective optimization approach with 
three objective functions to find additional parameter values 
that do not cause overfitting. 
 Index Terms—multi-objective optimization, ࣇ-SVM, 
evolutionary algorithms 

I. INTRODUCTION 
ARAMETER optimization is often a time consuming task 
and generally requires a fair amount of prior knowledge 

about the data, and/or large repetitions of cross validation to 
appropriately select the parameters for a given classification 
algorithm (such as the number of hidden layer nodes of an 
MLP, the C parameter in ܥ-SVM, the ߥ parameter in ߥ-SVM 
or the number of nearest neighbors in ݇-NN). The goal is to 
be able to optimally choose a set of parameters and be able 
to verify that the parameters will not cause the classifier to 
overfit to the training data. A classifier such as the ݇-NN 
only has one parameter, the number of nearest neighbors, to 
adjust/optimize, whereas the MLP has the number of hidden 
layers, number of hidden nodes, error goal and any 
parameters used in the backpropagation algorithms (perhaps 
the momentum term), to name a few. The selection of these 
parameters has a profound effect on the classification 
accuracy of the classifier, therefore it is critical for the 
designer to select these parameters through proper 
optimization techniques rather than applying ad hoc heuristic 
methods. To do so, two questions need to be answered: what 
objective function(s) should be optimized; and which 
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optimization technique should be applied? Generally we 
must find at least two suitable objective functions to 
optimize [1]. Suitable objective functions could be 
complexity vs. accuracy or sensitivity vs. specificity [2]. A 
grid search can be utilized to optimize the parameters, 
however this approach is extremely time consuming and 
may not even always give optimal results when the grid is 
not densely sampled [3]. Evolutionary Algorithms (EA) 
have recently become popular and have been widely used in 
parameter optimization for several classifiers, such as the ܥ-
SVM. Not only are EA used for parameter optimization but 
feature selection as well for very high dimensional datasets 
[4]. It is important to note that, as shown by several previous 
efforts, the optimization of a single objective function, such 
as the validation error, may not yield an optimal classifier 
model [5]. As an alternative, the application of Multi-
Objective Optimization (MOO) techniques using 
Evolutionary Algorithms (EA) has been explored in several 
works [1,6]. In the multi-objective case, the sensitivity and 
specificity of the classifier are frequently chosen as the 
objective functions for optimization. MOO-EAs have 
already been proposed in [1,2,5,7] for the selection of 
optimal SVM parameters. For example, the approach in 
maximizes the sensitivity and specificity for the ܥ-SVM for 
a text classification problem [5]. These works have 
demonstrated that MOO-EA techniques are options for 
optimizing ܥ-SVM parameters, however, very little has been 
done to properly check whether the classifier with these 
“optimal” parameter values is actually overfitting the 
training data.  

The primary contribution of this work is the application of 
an EA, the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II), for multi-objective optimization of the ߥ-SVM. 
This is presented as an alternative to previous research in 
which a set of optimal regularization and kernel parameters 
for the C-SVM algorithm are determined using an EA. The 
primary goal is to limit the bounds on the optimization 
parameter space in order to eliminate the heuristic selection 
of the upper and lower bounds on said parameters. We 
present the optimization of the ߥ-SVM using the standard 
Gaussian kernel function with a single spread parameter. A 
brief analysis of overfitting is also presented with the 
optimized parameters determined by the MOO-EA. The 
paper is organized as follows: Section II  provides a 
background to the problem and previous work, Section III 
highlights the basic theory involved with the classifier and 
EA, Section IV highlights the results obtained with several 
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publicly available databases, and Section V  provides our 
discussion of the results and some concluding remarks. 

II. BACKGROUND 
 A considerable amount of prior work by many 

researchers has focused on the optimization of the 
parameters for C-SVM in the context of a MOO problem, 
applying EA to optimize the sensitivity and specificity of the 
C-SVM with respect to the C parameter [5]. The primary 
drawback of using the C-SVM in this context is that the C 
parameter has an infinitely wide dynamic range, bounded 
between ሾ0, ∞ሻ. Therefore, in most optimization approaches, 
one must select a somewhat arbitrary upper bound for C. For 
instance, in [5], the regularization parameter was selected 
with a range of 0-500 and then 0-5000 before the 
optimization algorithm could be applied. However, if 
enough information is not available to properly gauge the 
range of the regularization parameter, an arbitrarily selected 
range for the search can result in suboptimal solutions. In the 
absence of any prior knowledge, one might consider making 
the search range very large, but this will inherently increase 
the size of the parameter space which must be searched by 
the EA. In order to avoid the large range of the C parameter, 
we first propose replacing the C-SVM with the ߥ-SVM 
model originally presented by Schölkopf et al[8], as the ߥ 
parameter of the algorithms has an inherently finite range of 
[0 1]. Schölkopf et al [9] also showed that the parameter ߥ is 
a decreasing function of C. Therefore, a large C corresponds 
to a small ߥ (small margin) and a small C corresponds to a 
large ߥ (large margin). Thus, the ߥ parameter space 
eliminates the necessity to heuristically select an upper 
bound on the regularization parameter.  

However, finding the optimal value that maximizes the 
classifier performance, without showing any care to avoid 
overfitting, also leads to a suboptimal solution. While the 
main objective function(s) may be maximized, there is little 
to no precaution taken in much of the previous work to 
prevent or test for overfitting.  

III. THEORY 

A. ߥ-SVM 
The ߥ-SVM is an alternate formulation of the traditional 

SVM, sometimes denoted as ܥ-SVM. The ߥ-SVM and C-
SVM are both maximum margin classifiers and use 
quadratic programming to solve for the support vectors, but 
regularization parameter (C), is replaced by ߥ, to control the 
margin in ߥ-SVM. The other difference between the two 
formulations is that the ߥ term allows for control of the 
fraction of support vectors and has a relationship to the 
fraction of training errors. It has been shown that this 
alternate formulation provides a more intuitive 
representation than the regularization parameter in C-SVM 
[10]. 

Eq. 1 shows the primal formulation of the C-SVM 
objective function, optimized subject to the constraints in 

Eq. 2 & 3, where w and b control the optimal hyperplane 
that maximizes the margin between the convex hulls of the 
two classes, C is the regularization parameter, ܠ௡ is the nth 
data instance, ߦ௡ is the corresponding slack parameter, ݐ௡ is 
the true label (-1 or 1), ߶ሺܠ௡ሻ is the kernel function (if used) 
applied to the instance  ܠ௡, and N is the total number of 
samples in the training data. This primal formulation of the 
C-SVM can be converted to its dual, and optimized using 
quadratic programming. The result of this optimization is a 
set of positive Lagrange multipliers that can be used to solve 
for ܟ and ܾ. The implementation of the ܥ-SVM is done 
using the linear equation, ݕሺܠ௠ሻ ൌ ௠ሻܠ௧߶ሺܟ ൅ ܾ. The 
primary free parameters here are the choice of C (and the 
kernel option, if the SVM is to be used to implement a 
nonlinear decision boundary). Recall that C is the tradeoff 
between the slack variables penalty and the size of the 
margin. It also happens to be the upper bound on the 
Lagrange multipliers (ߙ) in the dual formulation. If C is 
large, then a large penalty is assigned to the instances that 
cross or fall into the margin of the SVM and vice versa.  
 

 min
௕,૆,ܟ

1
2

ԡܟԡଶ ൅ ܥ ෍ ௡ߦ

ே

௡ୀଵ

         (1) 
 

௡ሻܠ௧߶ሺܟ௡ሺݐ  ൅ ܾሻ െ 1 ൅ ௡ߦ ൒ 0         (2) 

௡ߦ  ൒ 0         (3) 

 
In ߥ-SVM, the regularization parameter is replaced with 

ߥ א ሾ0,1ሿ, where ߥ is an upper bound on the fraction of 
margin errors. The margin errors come from all instances 
with ߦ௜ ൐ 0 which are either training errors or examples that 
lie within the margin on the correct side of the decision 
boundary. The primal problem for the ߥ-SVM is shown in 
Eq. 4 subject to constraints in Eq. 5, 6 & 7. Note that C has 
been replaced with ߥ and ߩ in this formulation, where 
ߩ א ሾ0,1ሿ controls the width of the margin, which is equal to 
ߩ2 ԡܟԡ⁄ .  

 min
૆,ఘ,௕,ܟ

߬ሺܟ, ,ࣈ ሻߩ ൌ
1
2

ԡܟԡଶ െ ߩߥ ൅
1
ܰ ෍ ௡ߦ

ே

௡ୀଵ

         (4) 
 

௡ሻܠ௧߶ሺܟ௡ሺݐ  ൅ ܾሻ െ ߩ ൅ ௡ߦ ൒ 0         (5) 

௡ߦ  ൒ 0         (6) 

 0 ൑ ߩ ൑ 1         (7) 

The minimization problem in Eq. 4 can be converted to its 
dual and can be solved via quadratic programming by 
maximizing Eq. 8, subject to constraints in Eq. 9, 10 and 11, 
where ߙ௡ are the Lagrange multipliers, ݐ௡ א ሼേ1ሽ are the 
class labels and ݇ሺܠ௠,  ௡ሻ is the kernel function (if used forܠ
nonlinear problems).  
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It can be shown that the lower bound of the fraction of the 

support vectors also happens to be ߥ. The clear advantage to 
using the ߥ-SVM formulation is that this free parameter is 
now bounded ߥ א ሾ0,1ሿ rather than ܥ א ሾ0, ∞ሻ. Furthermore, 
by considering the optimal set of Lagrange multipliers, ࢻ, as 
a function of parameters, the relationship between ߥ and C 
can be shown to be [9]: 

lim
஼՜ஶ

∑ ௡ߙ
ே
௡ୀଵ

ܰܥ ൌ ௠௜௡ߥ ൒ 0  

ܽ݊݀ 

lim
஼՜଴

∑ ௡ߙ
ே
௡ୀଵ

ܰܥ ൌ ௠௔௫ߥ ൑ 1 

      (12) 
 

which implies that on any given problem with any given 
kernel, there exists an interval ሾߥ௠௜௡, ௠௔௫ሿ, where 0ߥ ൑
௠௜௡ߥ ൑ ௠௔௫ߥ ൑ 1, which maps to C א ሾ0, ∞ሻ. 

Thus, the ߥ parameter space has a tighter dynamic range 
and therefore a narrower search space than that of the C-
SVM. Also, it has been shown in [9] that some interval of 
values in the C parameter space often map to a single value 
of ߥ. Thus, the ߥ-SVM eliminates the possibility of 
redundant parameters in the initial population of the EA, 
which could negatively impact the performance of the 
optimization algorithm.  

Clearly, for nonlinearly separable problems, we also need 
to choose a kernel function and its associated free 
parameters. For the purposes of this paper, we focus on the 
commonly used radial basis function.  
 

 
,ሻܠሺ߶ۃ ߶ሺܠᇱሻۄ ൌ ݇ሺܠ, ᇱሻܠ

ൌ exp ቆെ
ԡܠ െ ᇱԡଶܠ

ଶߪ ቇ       (13) 

 
 The free parameter of this kernel is the choice of ߪ, 

which controls the spread of the radial basis function. 
Clearly, varying the spread can have a drastic effect on the 
function’s reach: if the ߪ is very small then the kernel 
becomes very focused at a particular point. On the other 
hand, if ߪ is very large, the kernel becomes too broad. 
Therefore, we would like to use an EA to optimize ߪ and ߥ 
by generating a Pareto optimality set that will give the user a 
series of feasible solutions that can be used for their 
classification problem.  
 

B. Multi-Objective Optimization 
The goal in multi-objective optimization (MOO) is to 

simultaneously optimize two or more (possibly) conflicting 

objective functions subject to a set of predefined constraints. 
For a set of ݉ objective functions, to be optimized with 
respect to a set ݊ variables ܠ ൌ ሾݔଵ, ,ଶݔ … ,  ௡ሿ, theݔ
formulation is given as follows: 

 

 min
ܠ

ሺ ଵ݂ሺܠሻ, ଶ݂ሺܠሻ, ଷ݂ሺܠሻ, … , ௠݂ሺܠሻሻ 
               
      (14) 
 

  ݋ݐ ݐ݆ܾܿ݁ݑݏ 
 ݃௜ሺܠሻ ൑ 0       (15) 

 ௝݄ሺܠሻ ൌ 0       (16) 

௟௢௪௘௥ܠ  ൑ ܠ ൑  ௨௣௣௘௥       (17)ܠ

 
where ݃௜ሺܠሻ and ௝݄ሺܠሻ are the ith and jth inequality and 
equality constraints, respectively. Each parameter may also 
be constrained between some lower and upper bound. 

 A set of optimality conditions for the multi-objective 
case, known as Pareto optimality conditions, define a set of 
feasible, non-dominated solutions in the objective space. A 
solution, ݂ሺܠሻ, is said to be non-dominated if for any other 
feasible objective vector, ݂ሺכܠሻ: 

 ௜݂ሺܠሻ ൑ ௜݂ሺכܠሻ; ݅׊ ൌ 1, 2, 3 … ݉ 
 
      (18) 
 

and there exists at least one objective such that: 

 ௝݂ሺܠሻ ൏ ௝݂ሺכܠሻ; ݆ א 1, 2, 3 … ݉ 
 
      (19) 
 

This is formally written as ݂ሺܠሻ ط ݂ሺכܠሻ. The Pareto front 
is then defined as the set of all such non-dominated points. 

C. Application for NSGA-II Parameter Selection 
In cases where the dimensionality of the MOO problem is 

high, or where the solution is non-convex, an analytical 
solution that produces the entire Pareto front may become 
intractable. In such cases, it is desirable to approach the 
MOO problem in a manner that generates a representative 
subset of the Pareto front. The application of evolutionary 
algorithms has become a popular approach to the 
aforementioned problem due to their ability to search for 
multiple Pareto optimal solutions concurrently as a result of 
the inherent parallelism in the algorithm [5]. 

 The NSGA-II algorithm is an elitist EA that was 
developed to solve MOO problems with an emphasis on 
reduced computational complexity and diversity 
preservation [11]. The use of elitism in EAs applied to MOO 
problems has been shown to improve performance by 
allowing non-dominated solutions to persist across 
generations [12]. Diversity preservation ensures that the EA 
maintains a good spread of solutions along the generated 
Pareto front. Diversity preservation is implemented in 
NSGA-II using the crowded comparison operation; a 
crowding metric which is free of user defined parameters 
present in other algorithms [11]. Finally, the worst case 
computational complexity of the NSGA-II algorithm is 



 
 

 

ܱሺܰܯଶሻ, where M is the number of objectives and N is the 
population size. Thus the algorithm boasts a lower 
complexity than other MOO-EAs, such as Strength Pareto 
Evolutionary Approch-2 (SPEA-2) [13]. 

 When applying the NSGA-II algorithm to the 
optimization of ν-SVM parameters, we need to determine 
the parameter space and the fitness function to be optimized. 
The parameter space defined for the ν-SVM is given by the ν 
parameter and the parameters associated with the chosen 
kernel, the spread parameter, ߪ, for the Gaussian kernel. The 
fitness function to be optimized by the NSGA-II algorithm is 
then the sensitivity and specificity for the generated 
classifier. 

The formulation for this MOO problem is given by:  

 min
஝,஢

ሺെ ଵ݂ሺߥ, ,ሻߪ െ ଶ݂ሺߥ,  ሻሻߪ
  
      (20) 
 

.ݏ    .ݐ
 0 ൑ ߥ ൑ 1       (21) 

 0 ൏ ߪ ൏ ∞       (22) 

where, ଵ݂ሺν, σሻ is the sensitivity and  ଶ݂ሺν, σሻ  is the 
specificity of the classifier on a given data set.  

IV. RESULTS 
The results presented in this section use 5-fold cross-

validation on each dataset to independently evaluate the 
generalization of the sensitivity and specificity on each 
database. The Pareto optimality fronts are presented along 
with an interpretation of the curves. All databases were 
preprocessed to normalize all features to ሾെ1,1ሿ range, 
which allows us to limit the search region of the spread 
parameter. A random label test was also performed to check 
whether the classifier is overfitting to the data with the 
parameters determined by the EA. This technique works 
well when the data is uniformly distributed in feature space. 

 

 
Fig. 1. Checkerboard dataset feature space. 

 
Four datasets were used, whose names and cardinalities 

can be found in Table I. All databases, with the exception of 
the checkerboard dataset (which can be easily generated), 
are publically available from the UCI Machine Learning 

Repository [14]. The breast cancer database contains 10 
features that come from a digitized image of a fine needle 
aspirate (FNA) of a breast mass which is used to classify 
malignant and benign diagnosis. The ionosphere database 
contains 34 continuous features and diagnoses of a feature 
that shows “good” or “poor” evidence of structure in the 
ionosphere. The Parkinson’s dataset contains biomedical 
voice measurements with 23 features used to diagnose 
Parkinson’s patients. The checkerboard dataset is a synthetic 
binary classification problem with zero rotation and four 
squares (see Figure 1). This problem reduces down to the 
classical non-linear XOR separation problem. The 
checkerboard training data was varied between 100 and 200 
random samples and the testing dataset is 5000 random 
samples. All datasets described above are relatively balanced 
datasets, but it should be noted that not all of the databases 
have an equal number of examples from each class.  
 

TABLE I. DATASETS USED 
 

Dataset # of instances  
ionosphere 351 

checkerboard 100/200 
breast cancer 569 
Parkinson’s 197 

 

A. Optimality Search Results 
The resulting Pareto optimality curves for the Parkinson’s, 

ionosphere, breast cancer, and checkerboard database can 
been seen in Figure 2, 3, 4, and 5, respectively. A variation 
of the checkerboard dataset is also shown in Figure 6. This 
second checkerboard test uses 200 examples in the training 
set rather than 100. The bold points in the figures – 
corresponding to the optimal values that actually cause 
overfitting – will be discussed later in the next section in 
more detail. 

 
Fig. 2. Parkinson’s Pareto optimal set. 
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The maximization of the sensitivity and specificity returns 
a set of optimal values for ߥ and ߪ known as the Pareto 
optimality set. Each of these parameters was optimized such 
that no other point could maximize one of the objective 
functions without decreasing another. Each set provides a 
range of parameters that can be used to obtain a good 
balance between the sensitivity and specificity metrics on 
each dataset. However, there may be points along each curve 
that are better choices than others (i.e. some parameters may 
cause overfitting), as we discuss later in this section. 

Table II, Table III, Table IV and Table V display some of 
the optimal parameters chosen from the Pareto set for the 
Parkinson’s, ionosphere, breast cancer, and checkerboard 
datasets, respectively. Several interesting observations can 
be made from these tables. For example, there is very little 
variation in the selection of ߥ for the ionosphere database, 
which appears to indicate that this is the only possible 
solution, however this was not observed in other databases. 
The breast cancer and checkerboard datasets provided a 
wider spread of SVM parameters (both ߥ and ߪ) that can be 
used to maximize sensitivity and specificity, as shown in 
Table IV and V. Recall, that a large value of ߥ corresponds 

to a small value C. This means that the margin is wide and a 
small penalty is applied to the slack variables in the original 
SVM formulation.  

The results also show that the evolutionary algorithms are 
able to find sets of parameters that can maximize the 
sensitivity and specificity of the ߥ-SVM classifier on a 
dataset. However, these algorithm parameters (ߪ/ߥ) do not 
tell us whether the classifiers trained with these “optimal” 
values will cause overfitting. Once we have a set of 
parameters, we need to determine which set(s) of parameters 
are best for the given dataset. Clearly, we would like a set of 
parameters that provides a good balance between sensitivity 
and specificity, but it is also important that the classifier is 
not overfitting. Therefore, generalization accuracy on 
previously unseen data is also an important quality sought 
from the classifier. We would like to determine a method or 
set of methods that can be used to analyze which set of 
parameters are overfitting and to what extent. 

 
 

 
 

   

  
Fig. 3. Pareto optimal set for the Ionosphere dataset.         Fig. 4. Pareto optimal set for the breast cancer dataset. 

 

   
Fig. 5. Checkerboard (m=100) Pareto optimal set.          Fig. 6. Checkerboard (m=200) Pareto optimal set. 
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TABLE II. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO 

OPTIMAL SET FOR THE PARKINSON’ DATASET 
 

 sensitivity specificity ߪ ߥ
0.2407 0.0061 0.7787 0.9813 
0.2150 0.0081 0.9667 0.9333 
0.1401 0.3689 0.8825 0.9517 
0.1072 0.5229 0.9867 0.9201 

 
TABLE III. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO 

OPTIMAL SET FOR THE IONOSPHERE DATABASE  
 

 sensitivity specificity ߪ ߥ
0.6270 0.1214 0.9929 0.4915 
0.6676 0.2301 0.9534 0.8827 
0.6363 0.4643 0.9359 0.9103 
0.6811 0.3387 0.8504 0.9826 

 
TABLE IV. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO 

OPTIMAL SET FOR THE BREAST CANCER DATABASE 
 

 sensitivity specificity ߪ ߥ
0.6988 0.0038 0.6677 0.9825 
0.3333 0.0073 0.8183 0.9795 
0.0859 0.1843 0.9978 0.9631 
0.0521 0.0832 0.9778 0.9713 

 
TABLE V. ߥ-SVM PARAMETERS CHOSEN FROM THE PARETO 

OPTIMAL SET FOR THE CHECKERBOARD DATASET 
 

 sensitivity specificity ߪ ߥ
0.1595 0.3909 0.9569 0.9742 
0.0972 0.5432 0.9820 0.9451 
0.0604 0.3006 0.9763 0.9648 
0.0444 0.3684 0.9610 0.9725 

 

B. Overfitting Analysis 
The commonly used k-fold cross-validation procedure 

allows us a better estimate of the generalization error, but 
does not conclusively determine if a classifier is overfitting. 
In order to determine whether optimal parameters may cause 
overfitting, we devised a random label test. In the random 
label test we assign labels to the data completely at random, 
and then train a classifier using the (optimal) parameters 
determined by the EA, on this data whose labels are 
randomly assigned. The classifier is then evaluated with the 
test data, whose labels are also randomly assigned. Under 
this experiment, we would expect the classifier to perform 
close to random guess. If the classifier performs particularly 
well on the randomly labeled data, then this outcome shows 
that the classifier is clearly overfitting. We decided to let 
േ15% (45 െ 65% ) of a random guess to indicate if a 
classifier was overfitting with an optimal set of parameters 
from the MOO task. The large range was selected because 
we are interested in determining what sets of parameters 
were causing the classifier to blatantly overfit to the data. 

 
 

 
TABLE VI. RANDOM LABEL TESTING 
PERFORMED ON THE CHECKERBOARD 

DATASET  
   

 error ߪ ߥ
0.1411 0.5920 0.4900 
0.0537 0.3450 0.5200 
0.0537 0.3451 0.4650 
0.0566 0.3623 0.4850 
0.0550 0.3776 0.5300 
0.0568 0.3717 0.5300 
0.0736 0.3971 0.4750 

 
Table VI and VII provides the results of the random label 

test for the checkerboard and Parkinson’s dataset, 
respectively. In Table VI, the error after applying random 
labels to the data and training a classifier using different 
values of ߥ and ߪ are very close to random chance for this 
two class checkerboard problem. This is an indication that 
the classifiers trained with the checkerboard dataset – using 
the parameters selected from the Pareto optimality front - are 
not overfitting. In fact all of the random label assignment 
tests for the checkerboard dataset displayed results that were 
approximately within േ5% of the random guess. On the 
other hand, as we discuss next, checkerboard was the only 
database presented in this paper for which the optimally 
determined parameters did not cause the classifier overfit. 
We believe this is due to the relative simplicity of the 
problem and the data being uniformly sampled from feature 
space.  

TABLE VII. RANDOM LABEL TESTING 
PERFORMED ON THE PARKINSON’S DATASET  

   

ߥ  error ߪ
0.1072 0.5229 0.5983 
0.1254 0.4173 0.5726 
0.1401 0.3689 0.5128 
0.1914 0.0058 0.9972 
0.2520 0.9603 0.5185 
0.1072 0.5229 0.5983 

 
The spread parameter of the RBF kernel provides another 

indicative measure of overfitting of the ߥ-SVM. A classifier 
that is overfitting the data will typically have a very small 
spread parameter, thus becoming very focused at a particular 
point. For example, the spread parameters for the first two 
entries in Table IV in the breast cancer database are very 
small. The fourth entry in Table VII also has very small 
spread parameter compared to the others and the overall 
error after applying the random label test is 99.7% (which, 
with the flip of labels, effectively represents a 99.7% 
accuracy). This is a clear indication that the parameters in 
the fourth entry of Table VII are causing overfitting. Other 
optimal sets shown in Table VII do not have nearly as small  
 and correspondingly, as extreme error rate. In fact most , ߪ
of them are just around random chance, as we would 
normally expect from the a properly trained classifier on a 



 
 

 

random label test. Yet, with the exception of the 
checkerboard dataset, all other datasets resulted in optimal 
parameters that overfit the data. For instance, the first two 
examples in Table II and IV have very small spread 
parameters, whose random label errors were between 0.96-
1.0, a clear indication of overfitting. The breast cancer 
database was by far the worst by having nearly all the 
optimal parameters achieve a very high classification rate 
with the randomly assigned labels. 

The bold points in the Pareto front curves indicate 
examples that appear to yield a classifier that has a high/low 
classification rate on a randomly labeled dataset. The 
threshold was set such that the overfitting examples were 
above 65% after a random label test was applied. Therefore, 
we argue that each Pareto optimal point should be evaluated 
for overfitting either by performing this test on the classifier 
or by some other means of the designer’s choice. 

C. Modified Multi Objective Function 
In this section, we present the preliminary results of 

adding an additional objective function to be minimized in 
the optimization problem. The first and second objective 
functions are still sensitivity and specificity, respectively. 
The third objective function is the absolute value of the 
difference between the random label error and a random 
guess for a two class problem. Specifically, ଷ݂ሺߥ, ሻߪ ൌ
|0.5 െ ߳| where ߳ is the generalization error produced by the 
 parameters selected by the EA after ߪ and ߥ SVM with the-ߥ
cross validation.  

 min
஝,஢

ሺെ ଵ݂ሺߥ, ,ሻߪ െ ଶ݂ሺߥ, ,ሻߪ ଷ݂ሺߥ,  ሻሻߪ
     
      (23) 
 

.ݏ    .ݐ
 0 ൑ ߥ ൑ 1       (24) 

 0 ൏ ߪ ൏ ∞       (25) 

Table VIII and Figure 8 show the test results using ߥ-
SVM parameters determined with the third objective 
function optimization, on the worst case breast cancer 
dataset. Unlike the previous case, where most optimal 
solutions caused overfitting, the new optimization provides 
several solutions that do not cause overfitting. The algorithm 
also makes it trivial to detect overfitting – when it happens – 
with a zero error on random label test. As expected, these 
cases also correspond to very small spread values. All other 
sets of parameters result in a random label test error close to 
0.5, indicating that the classifier is not overfitting. 

V. CONCLUSION 
We have described an application of EA for the 

maximization of sensitivity and specificity of the ߥ–SVM, 
using a multi-objective optimization approach. The obvious 
benefit of using this approach is that optimization techniques 
can be applied to determine parameters rather than heuristics 
thus providing a sound justification for using the set of 
parameters for a specific dataset. 

TABLE VIII. RANDOM LABEL TESTING 
PERFORMED ON THE BREAST CANCER DATASET  

   

 error ߪ ߥ
0.1106 0.5598 0.4938 
0.1368 0.7809 0.4903 
0.1438 0.1968 0.5131 
0.1637 0.6205 0.4938 
0.1676 0.6047 0.4815 
0.1919 0.0069 0 
0.3049 0.0023 0 
0.5437 0.0015 0 
0.0411 0.0528 0.4534 

 

 
Fig. 7. Pareto optimal set for the breast cancer dataset with the modified 
optimization problem. 

  
The ߥ–SVM was chosen in this work because the ߥ 

parameter in the optimization of the classifier is bound 
between [0,1] unlike the more commonly used ܥ-SVM 
which does not have this bound. The initial results show that 
there is a diverse set of parameters that can be used to 
maximize sensitivity and specificity. However, it may be 
more advantageous for a designer to choose one set of 
parameter over another as some sets of parameters may 
cause the classifier to overfit the training data. 

We have then described a simple procedure that can be 
applied to determine if the classifier is overfitting, by 
assigning random labels to the data. One would expect the 
error of a classifier trained/tested with randomly labeled data 
to be near random guess. The initial results have shown that 
several of the solutions in the Pareto optimal set do in fact 
cause overfitting. This was especially evident in the breast 
cancer dataset. Nearly all the solutions suggested by the 
Pareto set caused overfitting, whereas the checkerboard 
dataset had few indications of overfitting. This leads us to 
the conclusion that the optimal parameter sets should be 
checked for overfitting regardless of the optimization 
approach used, but certainly for the commonly used EA 
approaches. Adding a third objective function, as the 
absolute value of the difference between the random label 
error and a random guess for a two class problem appeared 
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to provide several parameters that did not cause overfitting. 
Our future efforts will focus in additional experiments to 
determine the theoretical and experimental behaviors of this 
approach. 
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