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ABSTRACT 

Dynamical systems are often required to satisfy certain con­
straints arising from basic physical laws, mathematical prop­
erties or geometric considerations. Incorporating constraints 
improves the performance of state estimation and increases 
the accuracy compared to unconstrained estimation. 

Particle filters (PF) have gained popularity within the sig­
nal processing community, thanks to their asymptotically op­
timal estimation for nonlinear and non-Gaussian state-space 
models. However, their constrained formulation has emerged 
only very recently; and the developments to incorporate state 
constraints in particle filters have mainly relied on constrain­
ing all particles of the PF. This approach is termed Pointwise 
or Particle Density Truncation (PDT). 

In this paper, we show that PDT constrains the posterior 
density of the state rather than the conditional mean estimate, 
which leads to more stringent and possibly completely differ­
ent or even irrelevant conditions than the original constraints. 
Subsequently, we introduce an alternative novel solution to 
constrained particle filtering, which enforces the constraints 
on the conditional mean without further restricting the state 
posterior density. The proposed approach is termed Mean 
Density truncation (MDT) and is compared to PDT and pro­
jection methods for a severely nonlinear model. 

Index Terms- Constrained Particle Filtering; State Esti­
mation; Constrained Bayesian Estimation. 

1. INTRODUCTION 

The state of many dynamical systems is often required to 
satisfy certain constraints arising from basic physical laws, 
mathematical properties or geometric considerations, e.g., 
maximum power or transmission capacity, energy conserva­
tion laws and bounded parameters. In fact, constrained sys­
tems are already omnipresent in many real-world applications 
including camera tracking [1], fault diagnosis [2], chemical 
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processes [3], vision-based systems [4], target tracking [5,6], 
biomedical systems [7], robotics [8] and navigation [9]. 

Particle Filters (PF) are a broad class of Monte Carlo 
algorithms, which provide approximate solutions to analyti­
cally intractable inference problems, which can include non­
linear and non-Gaussian modeling scenarios. PFs can solve 
these problems by using particles, which sample the state 
space of the system. These particles are then weighted to es­
timate the state posterior density. The estimation converges, 
in the mean-square error, to the true posterior density of the 
state. PFs have become a viable alternative to more tradi­
tional techniques, such as the Extended Kalman Filter (E KF) 
due to the PF's ability to calculate posterior densities with­
out using functional approximation such as local linearization 
techniques or assume Gaussian noise. 

However, the very numerical nature of the particle filters, 
which constitutes their strength for multidimensional numer­
ical integration, becomes their major weakness in handling 
constraints on the state. The main difficulty of the constrained 
PF problem stems from the fact that every particle in the par­
ticle approximation of the state posterior density is a local 
representation of the density, and thus cannot characterize 
global properties of the density, such as constraints on the 
conditional mean or any other functional expectation. The 
current trend in constrained particle filtering simply enforces 
the constraints on all particles of the PF. This approach, how­
ever, constrains the posterior density of the state rather than its 
mean, which leads to more stringent conditions and possibly 
a completely different condition than the original constraints 
(see Fig. 1). We refer to the approach of constraining all par­
ticles as the Pointwise Density Truncation (PDT) method. 

In this paper, we introduce a new approach called, Mean 

Density Truncation (MDT), that imposes the state constraints 
on the conditional mean estimate without further restraining 
the posterior distribution of the state. The paper is organized 
in the following way: the unconstrained PF framework is re­
viewed in Section 2, the PDT and MDT approaches are ad­
vanced in Section 3, simulation results that compare PDT, 
MDT and projection approaches are presented in Section 4, 

and concluding remarks and future directions are discussed 
in Section 5. 
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2. THE UNCONSTRAINED PARTICLE FILTER 

We consider a discrete-time state-space model defined by the 
following state and measurement equations: 

Xk = h(Xk-d + Wk, 
(1) 

where Xk E ]Rnx and Yk E ]Rny represent the system state 
and the system output, respectively, f k and hk are known, 
possibly non-linear, mappings, and Wk and Vk are zero-mean 
process and measurement noise with known probability den­
sity functions (pdfs), g and r, respectively. 

Let yk 
= [Y1' ... , Yk] denote the history of observations 

up to time k. In the Bayesian context, inference of Xk given 
a realization of the observations yk relies upon the posterior 
density p(xklyk). Using the Bayesian rule, we can obtain 
the following two-step Bayesian recursion formula: 

p(xklyk-1) = J g(xklxk_dp(Xk_llyk-1)dxk_1 (2) 

( Iyk) - r(Yklxk)p(Xklyk-1) 
(3) P Xk - J r(Yklxk)P(Xklyk-l)dxk 

Equations (2)-(3) are a conceptual solution because the inte­
grals defined are, in general, intractable. For the linear Gaus­
sian model, it is easy to check that p( Xk Iyk) is a Gaus­
sian distribution whose mean and covariance can be com­
puted using the Kalman filter. However, for most nonlinear 
non-Gaussian models, it is not possible to compute these dis­
tributions in closed-form. 

The PF approximates the posterior pdf using an ensemble 
of particles {X�i) };":1 and their associated weights {W�i)}: 

N 

p(xklyk) = L w�i)O(Xk - X�i») (4) 

i=l 
where 0(.) is the Dirac delta function and N is the num­
ber of particles. Ideally, the particles are required to be 
sampled from the true posterior, p(xklyk), which is not 
available. Therefore, another distribution, referred to as 
the importance distribution or the proposal distribution, 

q(xklxk-I, Yk)' is used. The particles at time k are sam­

pled from X�i) rv q(xklx�i�l' Yk)' The importance weight of 

each particle x �i) is computed as 

() () () -(i) (i) r(Yklxk" )g(xk" IxLI) 
Wk = Wk-1 (i) (i) 

, (5) 
q(xk Ixk-l' Yk) 

where Wk are the un-normalized weights [10]. The normal­
ized weights in (4) are given by W�i) = W�i) /2:;=1 wP). 

3. THE CONSTRAINED PARTICLE FILTER 

We focus on the discrete state-space model in (1) augmented 
with the following general constraint 

(6) 
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Fig. 1. IUustration of the PDT approach for an interval-constrained sys­
tem, Xn E [70, 170] for all n. The true posterior density (green curve) is 
multi model with mean 110 (green x-mark). If all particles are constrained 
to be within the interval [70, 170], then the estimated posterior density (red 
curve) will be a truncated exponential density, that is dramatically different 
from the true posterior distribution. 

where cPn is the constraint function at time n and the inequal­
ity holds for all elements. It is important to emphasize the 
fact that the constraint needs to only be satisfied by the state 
estimate given by the conditional mean, i.e., we must have 

N 

ak :s: cPk(Xk) = cPk(E[Xklyk]) � cPk(L w�i)X�i») :s: bk 
j=l 

This mean constraint is not a local condition, meaning there 
are many ways to globally constrain the mean. Projection of 
the unconstrained density onto the constraint set is only one 
possible option. The widely used approach in constrained se­
quential Monte Carlo is the acceptance/rejection approach, 
which enforces the constraints by simply rejecting the par­
ticles violating them [11]. The acceptance/rejection proce­
dure does not make any assumption on the distributions and 
therefore maintains the generic property of the particle filter. 
However, the number of samples will be reduced and hence 
the estimation accuracy may decrease, especially with a poor 
choice of the proposal density. An extreme example is when 
most (or all) of the particle violate the constraint and the al­
gorithm fails [12]. 

3. 1. Pointwise Density Truncation (PDT) 

The current practice in the literature constrains the mean of 
the posterior distribution by imposing the constraints on all 
particles of the PF [12-20]. However, this is not true. Im­
posing the constraint on all particles results, in general, in 
a stronger constraint and possibly a completely different or 
even irrelevant condition. To see this, let us consider the 
scalar case with Ck = [a, b] for all k: the state estimate is 
constrained in the interval [a, b] or a :s: Xk :s: b. Constraining 
every particle to be within the interval [a, b] is equivalent to 
constraining the support of the posterior distribution to this 
interval, which is a much stronger condition than constrain-



ing the mean of the distribution, or any point estimate, to be 
inside the interval. We refer to this approach as pointwise den­

sity truncation or particle density truncation (PDT). Since the 
particle filter estimates the posterior density of the state, im­
posing stronger constraints may, and in general will, result in 
an erroneous estimation of the density, as illustrated in Fig. 1. 

3.2. Mean Density Truncation (MDT) 

In the constrained state-space model, the constraints must be 
satisfied by the estimate of the conditional mean. Unlike the 
pointwise density truncation approach, which enforces the 
constraints on all particles, we propose the mean density trun­
cation (MDT) approach, which constrains only one particle in 
order to confine the estimated mean to the desired constraints. 
In the MDT approach, (N - 1) unconstrained particles are 
drawn from the proposal distribution. Then, the Nth particle 
is constrained in order to impose the conditions on the sam­
ple mean. A constraint of the form ak :s: g( Xk) :s: bk can be 
equivalently expressed as 

N 
ak:S: g(f;wkj)x�») ::; bk. (7) 

For simplicity, we will assume that the weights are given by 
the likelihood, i.e., the proposal density is the prior distribu­
tion function; the essence of the MDT method remains the 
same in the general case, where the proposal density is dif­
ferent from the prior distribution. Separating the summation 
of the (N - 1) unconstrained particles from the Nth particle, 
and taking into account the normalization of the weights, the 
constraint becomes 

Then, conditions on the Nth particle can be derived depend­
ing on the explicit expression of the constraint function g. For 
instance, if we consider the interval-type constraint, i.e., g 
is the identity function, then the above inequality becomes 
equivalent to the two inequalities, 

N-1 
L p(Yklx�»(ak - x�» 
j=l 
N-1 
L p(Yklx�»(bk - x�» 
j=l 

(8) 

(9) 

which have to be satisfied for the Nth particle only. C1 and 
C2 are two constants, which depend only on the already sam­
pled (N - 1) unconstrained particles and their weights. De­
pending on the likelihood function, Eq (10) can be solved an­
alytically or numerically. The solution to (10) may not be 

unique. Many "Nth particles " can satisfy (10), all of them 
enforcing the original constraint on the sample mean esti­
mate. These different solutions may lead to different con­
strained estimates. We found, in our preliminary results, that 
the solution with the highest weight (here, likelihood) leads to 
the most accurate estimator among all other solutions having 
lower weights. 

If the proposal distribution is chosen poorly, the (N - 1) 
unconstrained particles will lie in a low probability region of 
the posterior density of the state. In this case, it may not be 
possible to find an Nth particle that satisfies (10), thus im­
posing the constraint on the sample mean. Intuitively, if the 
initial particle sampling is poor, then one additional particle 
may not be able to force the mean to satisfy the desired con­
straints. We advance two solutions to ensure the existence of 
an Nth particle that will enforce the constraint on the sample 
mean: mth-order MDT and inductive MDT (IMDT). 

In the case where one particle may not be sufficient to con­
strain the mean, it seems reasonable to consider constraining 
more than one particle, e.g., two, three or up to m ::; N parti­
cles. These m constrained particles will ensure that the sam­
ple mean satisfies the desired constraint. The MDT method 
is thus termed pt-order MDT, and its extension to m con­
strained particles is called mth-order MDT. In the mth-order 
MDT, (N - m) unconstrained particles are sampled from the 
proposal distribution, and the remaining m particles are con­
strained in order to satisfy the condition on the sample mean. 
It is important to notice that when m = N, the Nth-order 
MDT is very different from the PDT method: In the PDT ap­
proach, the original constraint is imposed on all particles. On 
the other hand, the Nth-order MDT constrains the particles, 
as in Eq. (7), in order to impose the desired condition on the 
sample mean. 

4. SIMULATION RESULTS 

We consider the following nonlinear dynamic system 
Xk Xk Xk+1 = -2 + 25--2 + 8cos(1.2k) + Wk (11) 

1 + xk 
X� 

Yk = 25 
+Xk +Vk; -5::; Xk ::; 5, 

where Wk and Vk are zero-mean Gaussian white noise. This 
example is severely nonlinear, both in the system and the mea­
surement equations. It was shown in [21] that the E KF fails in 
estimating the true state value of this unconstrained system. 

Figure (2)(a) shows the true and estimated trajectories us­
ing 1 st-order MDT, PDT and projection of the unconstrained 
mean estimate. The results are shown for 1000 Monte Carlo 
simulations. It is seen that, on average, the pt-order MDT 
leads to more accurate estimation of the dynamic state, where 
both the mean-square error and the variance are smaller. 
Figures (2) (b ),( c ),( d) show the posterior density of the con­
strained state as it evolves over time, for pt-order MDT, 
PDT and projection, respectively. First, observe that the PDT 
approach (Fig. 2( c» produces posterior distributions with a 
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Fig. 2. Constrained state-estimation of the nonlinear dynamic system in (11)- (a) State estimation for 1000 Monte Carlo simulations_ Shading represents 
a two standard deViatIOns band. Top row: 1st-order MDT (MSE=3.S8, a = 0.83); middle row: PDT (MSE=S.36, a = 2_03); bottom row: projection of 
the unconstramed mean estimate (MSE=S.92, a = 1.31). (b),(c),(d): State posterior densities evolving over time for 1 st-order MDT, PDT and projection, 
respectively. 

bounded support at all time points, whereas the MDT and 
projection approaches result in proper unbounded support 
densities. Moreover, the PDT and the projection estimation 
approaches result in multiple spurious peaks within the densi­
ties. These large peaks are located mainly at the boundary of 
the constraining interval. In the PDT approach, these spuri­
ous peaks are due to the fact that sampled particles that do not 
satisfy the constraint are projected onto the boundary, thus 
creating a significant positive mass at the boundary of the 
constraint set and a small density mass elsewhere. In other 
words, in PDT, the density outside of the interval [-5,5] 
is projected onto the boundary points. In the mean projec­
tion approach, unconstrained particles are sampled from the 
proposal density (here, the prior). Because of the highly non­
linear nature of the system, the constraint and the poor choice 
of the proposal, many of these particles are sampled from low 
probability regions of the actual posterior; thus having low 
weight. These low weight particles are replaced, during the 
resampling procedure, by higher weight boundary particles. 
On the other hand, the 1 st-order MDT method does not suffer 
from the 'boundary spurious peaks' problem and estimates 
smooth (multinomial) densities over time, which result in 

more accurate estimation of the conditional mean. 

5. CONCLUSION 

Arising from physical principles and process restnctlOns, 
constraints are conunonly encountered in real-world dynami­
cal systems. Therefore, constraints must be taken into account 
in order to obtain physically meaningful estimation results. 
In this paper, we considered the particle filter framework 
for state estimation in nonlinear and non-Gaussian dynam­
ical systems. We argued that constraining all particles is 
equivalent to constraining the posterior distribution of the 
state. This may lead either to a stronger condition or to a 
different (unrelated) condition; both of which result in in­
correct estimation of the posterior distribution of the state. 
We, subsequently, advanced a new approach, MDT, which 
imposes the desired constraints on the conditional mean es­
timate without further restricting the posterior density of the 
state; and hence preserving the convergence properties of 
the particle filter towards the optimal posterior density of the 
state. Future research directions include efficient algorithmic 
implementation of the MDT approach and its variants. 
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