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Abstract—Learning in non-stationary environments is an
increasingly important problem in a wide variety of real-world
applications. In non-stationary environments data arrives in-
crementally, however the underlying generating function may
change over time. While there is a variety of research into
such environments, the research mainly consists of detecting
concept drift (and then relearning the model), or developing
classifiers which adapt to drift incrementally.

We introduce Heuristic Updatable Weighted Random Sub-
spaces (HUWRS), a new technique based on the Random
Subspace Method that detects drift in individual features via
the use of Hellinger distance, a distributional divergence metric.
Through the use of subspaces, HUWRS allows for a more fine-
grained approach to dealing with concept drift which is robust
to feature drift even without class labels. We then compare
our approach to two state of the art algorithms, concluding
that for a wide range of datasets and window sizes HUWRS
outperforms the other methods.

Keywords-Concept Drift; Hellinger Distance; Random Sub-
spaces; Non-stationary learning;

I. INTRODUCTION

One of the current topics in data mining research is
learning from non-stationary data streams. In such learning
scenarios, data arrive incrementally (or in batches), and, over
the course of time, the underlying data generation function
may change. Learning in such environments requires the
classifier be able to respond to such changes, while ensuring
that it still retains all (relevant) past knowledge. These two
competing forces bring rise to what is known as the stability-
plasticity dilemma [11]. This issue is further complicated if
data cannot be stored due to space constraints.

Since in non-stationary environments the underlying gen-
erating function changes — or drifts — over time, such
environments are said to exhibit concept drift. Typically
when referencing concept drift, the drift is further specified
as being real (i.e., the class conditional changes) or virtual
(i.e., the prior probabilities change) [33]. While concept
drift can be “real” or “virtual”, it can also occur gradually,
instantaneously (sometimes called concept change), or in a
cyclic manner (sometimes called a recurring context).

In traditional incremental learning environments, in-
stances arrive sequentially, i.e., an unlabeled instance first

arrives for testing, and then, once a prediction is given, a
label is made available to update the classifier. Alternatively,
data may arrive in batches, i.e., a non-empty set of instances
first arrive unlabeled for testing. Once predictions have been
given for all instances in the set, the labels for each of the
instances are made available in order to update the classifier.

For the sake of completeness, we consider both types
of drift (i.e., “real” and “virtual”) occurring gradually, as
sudden concept change, or as a recurring concept. Due to
the nature of our algorithm, however, we consider the case
where instances arrive in batches instead of on-line. We
discuss our future plans on mitigating this shortcoming in
Section IX.

Contributions: The current state of the art techniques
for learning in non-stationary environments consider concept
drift to have occurred if drift is detected in any of the
features. We claim that this is an oversimplification, as a
different features may drift at different rates and times,
and the information available in non-drifting features can
be leveraged into making strong predictions. Therefore, we
propose a method of learning in subspaces of the feature
space called Heuristic Updatable Weighted Random Sub-
spaces (HUWRS) (Section III), where each base classifier
is weighted based on the amount of drift experienced in its
subset of features. We then compare HUWRS to a variety
of state of the art models (Section VI). We also specifically
demonstrate how HUWRS exploits the nature of learning in
subspaces to provide an accurate classifier even without the
aid of labels (Section VII). We conclude with a discussion
and future work (Section IX).

II. MOTIVATION

The prevailing unstated assumption in the current state of
the art in non-stationary learning is that a drift in a single
feature results in having to relearn the entire model. In spite
of this, when generating synthetic datasets for concept drift
it is common practice to provide an option that defines
what percentage of the features experience concept drift,
while the remainder continue to be drawn from their original
distribution. Such differing assumptions indicate that there is
a disconnect between the state of the art learning algorithms,
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and the stream generation algorithms. This disconnect can be
costly, as the amount of information (in terms of the models
learned and data) discarded can be vast. This is especially
true if only one out of tens or hundreds of features are
drifting, in which case building a model on the remaining
features would be a more practical solution than relearning
the model once the drift in the drifting feature is too great.

In order to avoid this specious assumption, we recom-
mend a different approach to learning in non-stationary data
streams. Instead of building models on all features, and
thus requiring retraining when any type of concept drift
is detected, we recommend building multiple models on
subsets of the features. This technique, which has been
demonstrated to be effective in traditional data mining tasks
[16], has received little attention in concept drift research.

With this goal in mind, we require a method for detecting
individual drifting features. Feature drift is commonly de-
tected by using the distribution of each feature with respect
to each of the classes. Storing so much data per classifier
is often unsatisfactory, however, as it is preferable to build
models that rely only on the dataset for the current time step
to update, rather than previous ones as well. Learning under
these assumptions is called incremental learning.

In order to overcome this limitation, we first note that we
can, instead of storing the feature value for each instance,
bin each of the features by class. Binning is a common
machine learning technique whereby continuous features are
discretized into “bins” — the count of each bin represents
the number of instances which have a feature value in the
range of the bin1. Through the use of binning we can reduce
the space required from being proportional to the number
of instances, down to a fixed constant due to the number
of bins. As the datasets continue to grow in size, this will
result in substantial memory savings.

The primary task is now to use the binned feature values
to determine if — and to what extent — concept drift
has occurred. One attractive option, explored previously
as a method of detecting dataset drift [6], [27], is to use
Hellinger distance [15], as it is insensitive to the number
of examples in a sample. Specifically, in order to detect
concept drift we can, considering each class individually,
measure the distance between the feature in the training
dataset as well as the feature’s current distribution. This
is powerful, as it allows us to compare the amount of
feature drift encountered even if the two samples are not
(near) equisized (unlike Euclidean distance). Furthermore,
the use of Hellinger distance also allows us to assign a
weight to a feature based on how close it is to the reference
distribution (i.e., how similar the newly seen instances are
to the instances the classifier was trained on).

One common challenge when dealing with concept drift
is updating the classifier when labels are unavailable. That

1Specifically, we consider equal-width binning

is, most methods are unable to cope with feature drift if
labels are unavailable, since the class label is required in
order to detect drift. However, this overlooks the fact that
while “real” drift cannot be detected without labels (as it is,
by definition, a change in the class conditionals), “virtual”
drift can still be detected. As Hellinger distance is a measure
of distributional divergence, in addition to comparing each
feature with respect to the class, we can also ignore the class
when performing the computation. In this way we can obtain
a weight between distributions of only unlabeled instances.

III. METHOD

In this section we begin by describing the Random
Subspace Method (RSM) [16] in the traditional data mining
context. We then extend this idea to the context of batched
learning in the presence of concept drift with the use of
Hellinger distance.

A. The Random Subspace Method

In the data mining community, an ensemble is a collection
of base learners (also known as base classifiers) each built
on (in some sense) separate training datasets, which then
classify new instances by voting the individual base learners
predictions [7]. Two of the most widely used ensemble
methods are bagging [4] and AdaBoost [9].

Another widely used ensemble method is the Random
Subspace Method (RSM) [16]. In the RSM (described in
Algorithm 1) while multiple base learners are trained on the
same dataset, each base learner actively uses only a (random)
subset of the available features. Because each base classifier
learns on incomplete data, each individual base classifier is
(typically) less effective than a single classifier trained on
all of the data. Since the RSM combines multiple classifiers
of this type, each with a random bias based on the features
it sees, RSM often prove more effective than learning the
base classifier on all of the features.

In the context of drifting features, learning on only a
subset of the features is an advantage, as it means that if not
all features drift simultaneously then not all base learners
must be retrained. Similarly, this also enables each of the
base learners in the ensemble to be weighted by the subset
of features it was built on. That is, if a base learner was built
on a feature which exhibits concept drift, we can reduce the
weight of that classifier relative to the other classifiers.

B. Heuristic Updatable Weighted Random Subspaces for
Non-stationary Learning

In the previous section we saw how the RSM is applied
in the typical batch learning context, and motivated its
adaptation to non-stationary environments. In this section
we further explore the requirements for adaptation into non-
stationary environments. As a result, we must first be able
to detect feature drift. Once we can detect this drift, we can
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Algorithm 1 𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑀𝑒𝑡ℎ𝑜𝑑

Require: Training set 𝑋 , number of features to consider 𝑝,
and number of classifiers to train 𝑛 > 0.

Ensure: CLASSIFIER is the model trained on training set
𝑋 , consisting of 𝑛 classifiers.
for 𝑖 = 1 to 𝑛 do

Select 𝐹 , a random subset of the features such that
∣𝐹 ∣ = 𝑝.
Let 𝑌 ← 𝑋 .
for all 𝑎 such that 𝑎 is a feature of 𝑌 do

if 𝑎 /∈ 𝐹 then
Remove feature 𝑎 from 𝑌

end if
end for
Train CLASSIFIER𝑖 on dataset 𝑌 .

end for

weight each classifier appropriately in order to improve the
overall classification accuracy of the ensemble.

In order to detect the drift of a feature, we introduce
Hellinger distance [15]. We then specify how to incorporate
it into the RSM in order to combat concept drift.

1) Hellinger Distance: Fundamentally, Hellinger distance
is a measure of distributional divergence [20], [32]. In order
to define Hellinger distance formally, let (𝑃 ,𝐵,𝜈) be a
measure space [13], where 𝑃 is the set of all probability
measures on 𝐵 that are absolutely continuous with respect
to 𝜈. Consider two probability measures 𝑃1, 𝑃2 ∈ 𝑃 . The
Bhattacharyya coefficient between 𝑃1 and 𝑃2 is defined as:

𝑝(𝑃1, 𝑃2) =

∫
Ω

√
𝑑𝑃1

𝑑𝜈
⋅ 𝑑𝑃2

𝑑𝜈
𝑑𝜈. (1)

The Hellinger distance is derived using the Bhattacharyya
coefficient as:

ℎ𝐻(𝑃1, 𝑃2) = 2

[
1−

∫
Ω

√
𝑑𝑃1

𝑑𝜈
⋅ 𝑑𝑃2

𝑑𝜈
𝑑𝜈

]

=

√√√⎷∫
Ω

(√
𝑑𝑃1

𝑑𝜈
−
√

𝑑𝑃2

𝑑𝜈

)2

𝑑𝜈. (2)

While this equation gives us the ability to compare two
continuous distributions, when comparing two features we
only have access to a sample of discrete instances. With this
in mind, the discrete version of Hellinger distance is defined
as:

𝑑𝐻(𝐷1, 𝐷2) =

√∑
𝑖∈𝑉

(√
𝑃 (𝐷1∣𝑋 = 𝑖)−

√
𝑃 (𝐷2∣𝑋 = 𝑖)

)2
,

(3)
where 𝐷1 and 𝐷2 are the distributions of a feature at two
different time s2.eps, and 𝑋 = 𝑖 is the set of instance with
value 𝑖 for the current feature. If the feature is continuous,
we use equal width binning on the feature to turn it into a

discrete feature. Note that 𝐷1 and 𝐷2 can either be all of
the instances seen so far, or merely the instances available
for a particular class. We discus the implications of this in
future sections.

While Hellinger distance is applicable to detecting drift
in a feature, it is ill-suited for use as a weight. Since a
low Hellinger distance means a high agreement in the two
distributions, a low Hellinger distance should correspond
to a high weight. Thus we obtain a weight from Hellinger
distance2 as:

ℎ𝑤(𝐷1, 𝐷2) =

√
2− 𝑑𝐻(𝐷1, 𝐷2)√

2
, (4)

resulting in a normalized [0,1] weight.
2) Combining Hellinger Distance and the RSM: By

combining the RSM with Hellinger weights, we now
define Heuristic Updatable Weighted Random Subspaces
(HUWRS) (Algorithms 2 and 3). There are two main facets
to the algorithm. First, Algorithm 2 updates the classifier
when labeled instances become available. Second, Algorithm
3 updates the classifier as new testing (i.e., unlabeled)
instances become available.

Algorithm 2 𝑇𝑟𝑎𝑖𝑛 𝐻𝑈𝑊𝑅𝑆 𝑀𝑒𝑡ℎ𝑜𝑑

Require: Training sets 𝑋 , number of features 𝑝, retraining
threshold 𝑡, number of bins 𝑏, and ensemble size 𝑛 > 0.

Ensure: CLASSIFIER is the model trained on training set
𝑋 consisting of 𝑛 classifiers, FEATURES𝑖 is a vector
consisting of the features used to train CLASSIFIER𝑖,
CLASS WEIGHT is a length 𝑛 vector containing the
weights given to each base classifier.
CLASSIFIER, FEATURES ←
𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑀𝑒𝑡ℎ𝑜𝑑(𝑋0)
for 𝑐 = 1 to 𝑛 do

BINS𝑐 ← 𝐵𝐼𝑁(𝑋0, FEATURES𝑐, 𝑏)
end for
CLASS WEIGHT← −→1
while New time step 𝑖 is available do

CLASSLESS WEIGHT← −→0
for 𝑐 = 1 to 𝑛 do

𝑡𝑒𝑚𝑝← 𝐵𝐼𝑁(𝑋𝑖, FEATURES𝑐, 𝑏)
CLASS WEIGHT𝑐 ← 𝐶𝑙𝑎𝑠𝑠 𝐻𝑊 (𝑡𝑒𝑚𝑝,BINS𝑐)
CLASSLESS WEIGHT𝑐 ← 0
if CLASS WEIGHT𝑐 < 𝑡 then

Train CLASSIFIER𝑖 on dataset 𝑋𝑖 using features
in FEATURES𝑖.
CLASS WEIGHT𝑐 ← 1
BINS𝑐 ← 𝐵𝐼𝑁(𝑋𝑖, FEATURES𝑐, 𝑏)

end if
end for

end while

2Note that
√
2 is the maximum Hellinger distance between two distri-

butions.
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Algorithm 3 𝑇𝑒𝑠𝑡 𝐻𝑈𝑊𝑅𝑆 𝑀𝑒𝑡ℎ𝑜𝑑

Require: CLASSIFIER as learned using
𝑇𝑟𝑎𝑖𝑛 𝑈𝑝𝑑𝑎𝑡𝑎𝑏𝑙𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 𝑆𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑀𝑒𝑡ℎ𝑜𝑑,
testing instance 𝑥, set of previously seen testing instances
𝑋 , intra-batch update frequency 𝑢, and 𝑇𝑒𝑠𝑡 returns a
probability vector associated with testing 𝑥 on a classifier.

Ensure: 𝑝𝑟𝑜𝑏𝑖 contains the probability that 𝑥 is class 𝑖, and
CLASSLESS WEIGHTupdated if ∣𝑋∣ ≥ 𝑢.
𝑝𝑟𝑜𝑏 =

−→
0

𝑛𝑢𝑚 𝑐𝑙𝑎𝑠𝑠𝑒𝑠← the number of classes in the dataset.
𝑋 ← 𝑋

∪{𝑥}
for 𝑐 = 1 to 𝑛 do

if ∣𝑋∣ ≥ 𝑢 then
𝑡𝑚𝑝 𝑏𝑖𝑛𝑠← 𝐵𝐼𝑁(𝑋, FEATURES𝑐, 𝑏)
CLASSLESS WEIGHT𝑐 ←
𝐶𝑙𝑎𝑠𝑠𝑙𝑒𝑠𝑠 𝐻𝑊 (𝑡𝑚𝑝 𝑏𝑖𝑛𝑠,BINS𝑐)

end if
𝑤 ← CLASS WEIGHT𝑐 + CLASSLESS WEIGHT𝑐

𝑝𝑟𝑜𝑏← 𝑝𝑟𝑜𝑏+ (𝑤 ⋅ 𝑇𝑒𝑠𝑡(CLASSIFIER𝑐, 𝑥)/𝑛)
end for

When labeled instances are not available, we are unable to
use the class labels to determine whether or not concept drift
has occurred. That is, we cannot detect if “real” concept drift
has occurred, but can only detect “virtual” drift. In order
to detect virtual drift, we compute the Hellinger distance
between the binned feature values for each base learner3

and the current dataset, ignoring the class values.
Specifically, let 𝐷1 and 𝐷2 be two separate sets of

probability distributions over a set of features. That is, let
𝐷1,𝑓 denote the probability distribution for dataset 𝐷1 and
feature 𝑓 . We can convert Hellinger distance into a Hellinger
weight as:

𝐶𝑙𝑎𝑠𝑠𝑙𝑒𝑠𝑠 𝐻𝑊 (𝐷1, 𝐷2) =
1

𝑛

𝑛∑
𝑎=1

√
2− 𝑑𝐻(𝐷1,𝑓 , 𝐷2,𝑓 )√

2
(5)

where 𝑛 is the number of features to consider. When classes
are not available, the Hellinger weight is computed as the
average of the Hellinger weights of each of the features.

The value of this approach is that we can attempt to
characterize the drift between batches of instances even
when labels are not available. Hence, we can update the
weight periodically, and dynamically react to virtual drift as
more instances become available. We perform this check at
periodic intervals (e.g., every 𝑋% of a batch, we consider
only the last 𝑋% instances to update the intra batch weight).

The ability to update each classifier’s weight is important
because in special cases (e.g., loan data), the length of time
between seeing a batch of instances to test on and then

3Note that even if a pair of classifiers share a feature, the bins may be
different since one may have been retrained on a different time period due
to a drift in a second, unshared, feature.

their subsequent labels may be very long (e.g., years). By
updating the classifier using only unlabeled data, we can
exploit a frequently ignored portion of the data in order to
improve classification accuracy over the course of time.

Similar to other techniques, we can also update weights
when labels are available (enabling us to detect “real”
concept drift in the process). To do so, we consider not just
the distribution of the feature over the entire dataset, but the
distribution of the feature for each class over the dataset.
That is, for each class we compute the Hellinger distance
between the two distributions and average them. Given these
weights, we then choose the minimum value as the weight of
the classifier. If this minimum weight is below a threshold,
we relearn the classifier on the new data.

Specifically, let 𝐷1 and 𝐷2 be two separate sets of
probability distributions over a set of features and classes.
That is, let 𝐷1,𝑓,𝑖 denote the probability distribution for
dataset 𝐷1, feature 𝑓 , and class 𝑖. We convert Hellinger
distance into a Hellinger weight as:

𝐶𝑙𝑎𝑠𝑠 𝐻𝑊 (𝐷1, 𝐷2) = min
𝑓∈𝑓𝑡𝑟𝑠

1

𝑐

𝑐∑
𝑖=1

√
2− ℎ𝑑(𝐷1,𝑓,𝑖, 𝐷2,𝑓,𝑖)√

2
(6)

where 𝑓𝑡𝑟𝑠 is the set of features to consider, and 𝑐 is the
number of classes.

With these two methods (𝐶𝑙𝑎𝑠𝑠𝑙𝑒𝑠𝑠 𝐻𝑊 and
𝐶𝑙𝑎𝑠𝑠 𝐻𝑊 ) of detecting concept drift (and consequently
weighting each classifier), we must determine how to
combine them into a single, unified, weight. To do so,
we simply add the two values, i.e., if 𝑐𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡
denotes the weight of the classifier on the previous
batch, and 𝑐𝑙𝑎𝑠𝑠𝑙𝑒𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 denote the weight of the
classifier on the current batch, then, when classifying
an instance, we weight the classifier’s output by
𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑐𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡+ 𝑐𝑙𝑎𝑠𝑠𝑙𝑒𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡.

IV. MEMORY USAGE

One of the important factors when developing an algo-
rithm that handles concept drift in data streams is to ensure
that the algorithm does not use a (potentially) infinite amount
of memory. We now demonstrate that the memory usage of
HUWRS is finite and bounded.

Consider how HUWRS is defined: the ensemble requires
a number 𝑏 which represents how many bins are to be used
to detect concept drift, an ensemble size 𝑛, and a classifier
type. Assume that the base classifier is guaranteed to use
no more than 𝑥 bytes of memory. For each base classifier,
we must maintain 𝑏 integers for each class (i.e., the number
of instances in each of the bins for each class). Letting the
number of classes be 𝑐, that is 4⋅𝑏⋅𝑐 (or 8 for 64-bit integers,
however the factor of 2 does not affect the argument) bytes
of storage required per classifier.

In addition to the space used by each classifier, we also
must account for the amount of space consumed by the saved
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test instances. Since we can control the number of instances
stored by the ensemble, we assume that we allow, at most,
𝑦 bytes of space to be consumed by these instances.

Given this, the overall memory utilization of the ensemble
is, at most, 𝑦+𝑛⋅(4⋅𝑏⋅𝑐+𝑥) bytes. Since this number is finite
and bounded (by definition of each of the terms), we see
that HUWRS can be easily modified to perform inside most
memory footprints via appropriate choices of parameters.

V. EXPERIMENTAL DESIGN

We begin with a description of the implementation details
of the methods used, defining relevant parameters for each of
the algorithms. We then describe each of the datasets used.

A. Implementation Details

We implemented HUWRS in MOA [2], a stream mining
suite based off of Weka [12]. For our comparative analysis,
we chose two state of the art algorithms: Adaptive Hoeffding
Option Trees (AHOT) [3], and Dynamic Weighted Majority
(DWM) [26] (further information about these methods can
be found in Section VIII). As HUWRS is an ensemble
applicable to any traditional base classifier, we chose C4.4
[30] decision trees, i.e., unpruned, uncollapsed C4.5 decision
trees [31] with Laplace smoothing applied at the leaves. As
outlined by Kolter and Maloof [26], the base learner used
used for DWM was standard Naı̈ve Bayes.

In addition to a base learner, HUWRS requires several
other parameters. As recommended for many ensembles,
we set the ensemble size for HUWRS to 𝑛 = 100. When
considering the threshold and the number of bins, due
to experiments that tested the effectiveness of Hellinger
distance in the context of drift detection, we set 𝑡 = 0.7,
and 𝑏 = 30. The application of weights across all datasets
in this manner sets a general guideline, and allow us to test
the method without overfitting to any particular dataset. In
addition to these parameters, we also define a frequency for
updating the weights of the classifier based on test instances.
Due to the varying sizes of the training datasets, we chose
to update the classless weights every 10% of the window
size, or 30 instances, whichever is larger. We can hence
ensure a minimum number of instances to consider, while
still allowing for multiple weight updates.

Finally, while HUWRS relies on using a subset of features
to train each base learner, a comprehensive search through
different subspace size may lead to dramatic overfitting and
overstated performance. Therefore, instead of choosing a
fixed subspace size for each classifier, every time a classifier
is initially trained we choose a random subset size between
10% and 90% of the number of features. Thus we can
test not only the effectiveness of the algorithm, but also its
robustness to a variety of subspace sizes.

As HUWRS is a batch learner, we applied an interleaved
batch chunk test-then-train on binary balanced datasets. That
is, we partitioned the dataset into multiple equisized chunks,

testing each instance in a chunk without labels first. Once all
instances in a chunk were tested, we computed the accuracy
of the classifier over the chunk, introduced labels for all
of the instances, finally presenting them to the classifier
for updating. The accuracy presented for each algorithm is
computed as the average chunk performance of the classifier
on the dataset.

We chose to perform the experiments over multiple dif-
ferent sizes of chunks in order to test HUWRS’s robustness
to the different chunk sizes. Each chunk size was chosen
such that the dataset would yield at least 10 chunks at the
chosen size. See Section IX for a more detailed explanation
of our assumptions.

B. Datasets

To ensure a fair comparison, we tested the algorithms
on multiple real world and synthetic datasets, the details
of which are available in Table I. The choice to use a
combination of real and synthetic datasets is motivated by
the fact that while concept drift is assumed in real datasets, it
is difficult to identify. For this reason, synthetic datasets are
often considered when learning in the presence of concept
drift, as the drift type and properties can be precisely
controlled. We now describe the datasets in detail, referring
to the original publication for more information.

One limitation of testing with real datasets is that only one
proper ordering exists, i.e., since the dataset comes from a
real source, the instances must appear to a classifier in a
single order. Therefore the results for all real datasets are
presented as the average of the accuracies on each chunk.
For the synthetic dataset, however, we were able to run five
iterations, and obtain the average overall performance for
each set of parameters.
elec2: One widely used dataset in the concept drift commu-

nity is the electricity dataset originally due to Harries
[14]. The dataset consists of records collected from the
Australian New South Wales Electricity Market, where
prices vary based on the demand present in the market.
Data points are collected in 30 minute intervals, where
the class label indicates a change in price over the last
24 hours, thereby providing a level of smoothing.

email-data: The email dataset, created by Katakis,
Tsoumakas, and Vlahavas [23], consists of a stream of
emails sequentially presented to a user who, in turn, de-
termines whether the emails are spam (not desirable) or
ham (desirable) according to personal preference. The
dataset is composed of a stream of emails covering sev-
eral topics, namely: science/medicine, science/space,
and recreation/sports/baseball. The stream is then par-
tition into five, 300 instance chunks, where, in the odd
number chunks science/medicine is considered as the
positive class while the other two topics are considered
the negative class. Conversely in the even number
chunks, science/medicine is considered as the negative
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class, while the other two topics are the positive class.
Thus this dataset is an example of concept change,
rather than concept drift.

spam-data: The spam dataset, also created by Katakis,
Tsoumakas, and Vlahavas [21], consists of spam/ham
emails sent to a user collected from Spam Assassin
(http://spamassassin.apache.org/). According to the cre-
ators, the spam messages present in the dataset exhibit
gradual, rather than instantaneous, concept drift.

usenet1: The usenet1 dataset, created by Katakis,
Tsoumakas, and Vlahavas [22], was generated
from three newsgroups, namely: science/medicine,
science/space, and recreation/sports/baseball. The
dataset is broken into chunks of 300 instances, where
the chunks are defined as in email-data.

usenet2: In the usenet2 dataset, created by Katakis,
Tsoumakas, and Vlahavas [22], the same newsgroups
were used as in usenet1. The positive class, however,
was chosen as only one topic at a time. Therefore,
the positive class was, in order: science/medicine,
science/space, recreation/sports/baseball, science/space,
science/medicine.

RBF: The Random RBF (Radial Basis Function) generator
is a synthetic dataset generator available in the MOA
data mining suite. In this generator, a fixed number of
random centroids are generated, where each centroid
has a random location, a standard deviation, a class
label, and a weight. Each new instance is generated
by choosing a centroid at random (based on weights).
Drift is introduced by selecting a subset of the features
(in our experiments we consider drift in 4 of the
20 features), and introducing random Gaussian noise,
where the center of the Gaussian drifts at the rate
controlled by a parameter. In order to capture both slow
and fast moving drift, we chose values of: 0.5, 1, 2, 5,
and 10.

Dataset # Ftrs # Insts WS
elec2 6 45,312 100, 300, 500, 700, 1000
email-data 914 1,500 30, 50, 70, 100, 150
spam-data 500 9,324 30, 50, 70, 100, 200, 500
usenet1 100 1,500 30, 50, 70, 100, 150
usenet2 100 1,500 30, 50, 70, 100, 150
RBF-{0.5,1,2,5,10} 20 1,000,000 5000, 10000, 50000

Table I
STATISTICS FOR THE DATASETS USED. # FTRS IS THE NUMBER OF

FEATURES, # INSTS IS THE NUMBER OF INSTANCES, WS DENOTES THE

VARIOUS WINDOW SIZES USED FOR THE DATASET. WHILE RBF IS ONLY

LISTED ONCE, IT WAS BUILT WITH MULTIPLE DIFFERENT PARAMETERS

FOR DRIFT SPEED AS ENUMERATED.

VI. RESULTS

We begin by discussion the synthetic dataset (Figure 1, as
it illustrates the effectiveness of our algorithm in a known

concept drift situation. We then discuss our results on the
real datasets (Figure 2), showing how we can effectively
function in such spaces as well.

A. Results on the Synthetic Datasets

For the synthetic dataset (Figure 1), HUWRS consistently
outperforms the other two by up to approximately 20% in
accuracy. This is a strong result, as it validates empirically
what HUWRS aimed to overcome. That is, this experiment
shows that HUWRS can quickly and easily overcome drift in
a subset of the features in order to generate a highly accurate
ensemble of classifiers.

One interesting observation in these results is that
HUWRS’ method of drift detection seems much more suited
to faster moving concept drift (Figure 1e) rather than drift
that occurs more gradually (Figure 1a). This results from
the fact that while in fast drift HUWRS is able to quickly
(and efficiently) update the weights of each base learner
before seeing labels, slow drift is missed. The weights of
the base learners are therefore not properly updated, thereby
negatively impacting performance.

Another observation which can be made is that HUWRS
seems to preform universally better as the window size in-
creases. This is due to the fact that HUWRS, upon detecting
drift, retrains any “bad” base classifiers (i.e., those using the
drifting attributes) and resets its weight to be unit. This,
effectively, over weights these “bad” classifiers as they still
contain drifting attributes. When larger window sizes are
used, however, the intra-batch weighting mechanism is able
to act more effectively over the incoming instances, and
thus able to keep the weight of the “bad” classifiers down,
resulting in a more effective ensemble.

B. Results on the Real-World Datasets

When considering the results on the real datasets (Figure
2), we see two major trends. First, for all datasets except
usenet2, HUWRS outperforms the others in the vast majority
of cases. This performance increase, however, is not limited
to a single window size. Instead there exist a large number
of (contiguous) cases for which HUWRS outperforms the
others. Secondly, for the majority of datasets, the accuracy
of the classifiers tends to decrease as the window size is
increased. We begin by addressing the performance of the
classifiers on usenet2.

While for the vast majority of cases we see that HUWRS
outperforms the others, usenet2 shows a more convoluted
picture. In order to understand the performance of the
algorithms on usenet2, we consider how it was created. As
described in Section V-B, usenet2 was created by collecting
data for three concepts, and every 300 instances selecting
a different concept to represent the positive class. Since
the concept to represent the positive class reoccurs, DWM
is well equipped for the task (assuming the window size
selected is not too large). That is, since DWM (potentially)
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Figure 1. Accuracy results for the three classifiers used (Heuristic Updatable Weighted Random Subspaces, Adaptive Hoeffding Option Tree, and Dynamic
Weighted Majority) on the synthetic datasets

learns a classifier at each time step, and weights each
according to its performance on the current concept, it
can (potentially) reuse previously learned base classifiers
when the concept reoccurs. It is therefore not surprising
to see DWM perform well on this task with reoccurring
concepts. It is worth noting, however, that HUWRS does
provide the highest overall accuracy. This shows that even
for datasets which DWM is well suited, HUWRS can still
provide exceedingly high performance.

The second main trend observed is a decrease in accuracy
as the window size increases. This affect is not surprising,
as in the email (Figure 2b), usenet1 (Figure 2d), and usenet2
(Figure 2e) datasets in particular, there is a sharp concept
change after 300 instances. Thus when the window size
increases (especially to 150 instances), the methods perform
very poorly on the first 150 instances after the concept
change (as there are no class labels available to notice the
change), explaining the observed drop in performance on
each of the datasets. For the spam dataset, such a drop
in performance may be due to the fact that, over such
(relatively) large windows, the methods are not able to
capture the drift fast enough, and thereby observe vast drops
in performance.

VII. ANALYSIS OF THE INTRA BATCH WEIGHTING

TECHNIQUE

Given the results presented in Section VI-A, one obvious
question is how effective the intra batch weighting scheme
is at detecting and mitigating concept drift. In order to test
this, we performed a modification of the experiments of
the previous section on the RBF dataset. Instead of each

classifier receiving instances as a series of chunks (i.e.,
chunk test-then-train), each classifier instead only received
the labels for the first chunk, with the remaining instance’s
classes withheld for the entirety of the experiment. In this
way we tested how effective the ensemble is at dealing with
drift without the presence of labels, particularly relative to
the other methods.

The results of this experiment are shown in Figure 3.
Given the results, there are two main observations to be
made. First, AHOT and DWM perform significantly worse
than when they are given labels, with decreases of approxi-
mately 10-20% in accuracy. This result is not surprising, as
neither of these methods is able to detect concept drift with-
out labels, and thus are ill suited to task of learning without
labels. The second observation stems from the fact that not
only does HUWRS maintain a higher performance (in this
case significantly higher than the others), its performance
actually increases over that of its performance when given
labels.

The increase in performance observed in this context in
HUWRS is due mainly to the retrain feature (i.e., when
a classifier’s weight drops below a certain performance
threshold it is retrained). Since in the RBF case drift is
continuously occurring in a portion of the features, every
time a classifier using one of the drifting features is retrained,
it is mistakenly given a high weight under the assumption
that the next time step will look similar to the current one.
This increased weight results in the predictions made by
these classifiers being given a weight which is too high,
as the features are still drifting. Since the base classifiers
are quickly no longer relevant due to the concept drift, this
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Figure 2. Accuracy results for the three classifiers used (Updtable Weighted Random Subspaces, Adaptive Hoeffding Option Tree, and Dynamic Weighted
Majority) on the real datasets

results in decreased performance.
Finally, given that the performance of HUWRS actually

increases (unlike the other two methods) when labels are
omitted, we claim that our intra batch weighting scheme
offers a benefit to classification performance.

VIII. RELATED WORK

In order to learn in the presence of concept drift, algorithm
designers must deal with two main problems. The first prob-
lem is detecting concept drift present in the stream. Once
concept drift has been detected, one must then determine
how to best adapt to make the most appropriate predictions
on the new data.

In the next section we present a variety of state of the
art learning algorithms for concept drift (e.g., AHOT and
DWM). Subsequently, we introduce a variety of popular
concept drift detection techniques.

A. State of the Art Techniques

One base learner which has been heavily studied in the
context of concept drift is the decision tree; of which
the most common traditional variant is C4.5 [31]. The
original extension of the decision tree learning algorithm,
called VFDT, was proposed by Domingos and Hulten [8].
In VFDT, Hoeffding bounds [17], [28] are used to grow
decision trees in streaming data. The authors show that in
the case of streaming data, applying Hoeffding bounds to
a subset of the data can, with high confidence, choose the
same split feature as a method using all of the data. This
observation allows for trees to be grown online that are
nearly equivalent to those built offline. Since its inception,

VFDT has been the basis for numerous extensions and
improvements [19], [18], [1].

As an extension to standard decision trees, Buntine [5]
introduced option trees, which were further explored by
Kohavi and Kunz [25]. In standard decision trees, there is
only one possible path from the root to a leaf node, where
predictions are made. In option trees, however, a new type
of node — known as an option node — is added to the tree,
which splits the path along multiple split nodes. Pfahringer,
Holmes, and Kirby combined the concept of Hoeffding trees
and option trees to create Hoeffding Option Trees [29]. They
combine these two methods by beginning with a standard
Hoeffding tree and, as data arrives, if a new split is found
to be better than the current split at a point in the tree,
an option node is added and both splits are kept. Further
extending Hoeffding Option Trees are Bifet et. al. [3]. In
their extension, called Adaptive Hoeffding Option Trees,
each leaf is provided with an exponential weighted moving
average estimator, where the decay is fixed at 0.2. The
weight of each leaf is then proportional to the square of
the inverse of the error.

While Hoeffding Trees build a single decision tree (or in
the case of Hoeffding Option Trees, a single option tree),
Dynamic Weighted Majority (DWM) [26] instead creates
an ensemble of classifiers. In order to test an instance using
DWM, every new instance is classified by the ensemble by
using a weighted vote of each of its base classifiers.

In order to train DWM, given a new training instance,
the ensemble begins by attempting to classify it. Each base
classifier which misclassifies the instance has its weight
reduced by a multiplicative constant 𝛽. If the entire ensemble
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Figure 3. Accuracy results for the three classifiers used (Heuristic Updatable Weighted Random Subspaces, Adaptive Hoeffding Option Tree, and Dynamic
Weighted Majority) on the synthetic datasets when labels are only available for the first chunk.

misclassifies the instance, the ensemble adds a new classifier
with a weight of 1 after rescaling the weights of each
existing classifier to 1 (in order to prevent new classifiers
from dominating the voting process). The ensemble then
removes each classifier with a weight lower than some
threshold 𝜃, and then provides the instance to each of the
base classifiers for updating.

B. Drift Detection Techniques

One popular technique for drift detection is due to
Klinkenberg and Joachims [24] who proposed a method
based on Support Vector Machines (SVMs). Specifically,
they proposed the use of 𝜉𝛼-estimator to compute a bound
on the error rate of the SVM. Specifically, assuming 𝑡
batches, they use the 𝜉𝛼-estimator to compute 𝑡 error
bounds. The first error bound corresponds to learning the
classifier on just the newest batch, the second bound corre-
sponds to learning on the newest 2 batches, etc. They then
choose the window size which has the minimum estimated
error.

Gama et. al. [10] proposed a method based on the error
rate over time of the learning algorithm. To accomplish this,
they assume that each new instance represents a random
Bernoulli trial. Based on this, they then compute the prob-
ability of observing a “false” for instance 𝑖 (𝑝𝑖), and the
standard deviation (𝑠𝑖 =

√
𝑝𝑖(1− 𝑝𝑖)/𝑖). They then argue

that a significant increase in the error rate denotes a concept
drift. With this in mind, they state that their algorithm issues
a warning if 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 2𝑠𝑚𝑖𝑛, and drift is detected
if 𝑝𝑖 + 𝑠𝑖 ≥ 𝑝𝑚𝑖𝑛 + 3𝑠𝑚𝑖𝑛.

IX. DISCUSSION AND FUTURE WORK

We introduced Heuristic Updatable Weighted Random
Subspaces (HUWRS) as a method for dealing with con-
cept drift in data streams. In this method an ensemble of
classifiers is built, such that each classifier is learned on
a different subspace of the features. When (sufficient) drift
is detected in a feature, only those classifiers learned on
that feature are retrained, thereby enabling the classifier to
perform less retraining. Additionally, we demonstrate how
the algorithm is able to cope even in scenarios where labels
are rare, updating the weights of each classifier to reflect the
current, perceived, drift in each of the features.

In order to prove the effectiveness of HUWRS, we
compared it to two other state of the art methods, namely
Adaptive Hoeffding Option Trees, and Dynamic Weighted
Majority. For a wide variety of datasets and window sizes,
we found that HUWRS outperformed these other methods.
Additionally, we tested the case where each of the methods
was only given one chunk with labels. In this non-standard
scenario, HUWRS was able to demonstrate exceedingly high
performance in the face of concept drift.

One of the obvious shortcomings of HUWRS when com-
pared to the other methods is the requirement that instances
arrive in batches. This shortcoming is due first to our choice
of a non-incremental base learner (C4.4), and secondly to
our choice of drift detection technique (i.e., a simple, non-
sliding windowed technique). In future work we seek to
remedy this failing, making HUWRS more applicable to a
wider variety of problem. Due to the wide range of window
sizes for which HUWRS outperformed the other state of the
art methods, we believe this is an attainable goal.
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Given all of these considerations, in scenarios where
data arrives in batches and is subject to either gradual
concept drift or sudden concept change, we recommend
using Heuristic Updatable Weighted Random Subspaces.
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