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A Bootstrap Based Neyman—Pearson Test for Identifying Variable Importance

Gregory Ditzler, Student Member, IEEE, Robi Polikar, Senior Member, IEEE,
and Gail Rosen, Member, IEEE

Abstract— Selection of most informative features that leads to a
small loss on future data are arguably one of the most important
steps in classification, data analysis and model selection. Several
feature selection (FS) algorithms are available; however, due
to noise present in any data set, FS algorithms are typically
accompanied by an appropriate cross-validation scheme. In this
brief, we propose a statistical hypothesis test derived from
the Neyman-Pearson lemma for determining if a feature is
statistically relevant. The proposed approach can be applied as
a wrapper to any FS algorithm, regardless of the FS criteria
used by that algorithm, to determine whether a feature belongs
in the relevant set. Perhaps more importantly, this procedure
efficiently determines the number of relevant features given
an initial starting point. We provide freely available software
implementations of the proposed methodology.

Index Terms— Feature selection (FS), Neyman—-Pearson.

I. INTRODUCTION

IGH-DIMENSIONAL data sets are frequently encoun-

tered in real-world machine learning problems. In such
scenarios, the feature vectors, X, are represented in a high
dimensional space RX, where some or many of the K features
may be irrelevant, carry a little or no information about the
learning problem while others may be redundant (i.e., carry
the same information as other features in regards to the class
labels). In either of these scenarios, using a fewer features is
likely to be sufficient for learning. A plethora of algorithms
have been proposed, many well established, for reducing the
number of features to k (k < K) by optimizing an objective
function that selects the & most informative features, while
minimizing the redundancy of these k features (see [1] and [2]
for a review of such approaches). While individual feature
selection (FS) methods vary from each other, many share the
general principle: select k < K features through (possibly)
an iterative process that optimizes a predetermined objective
function.
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FS algorithms typically fall into one of three categories:
wrapper-, embedded-, and filter-based approaches. A FS
wrapper is a classifier-dependent implementation that selects
features minimizing some predictive scoring objective function
for a specific classification model. Embedded methods cor-
porate FS into the construction of the classification model—
still a classifier dependent model for FS. Finally, filters are
independent of the classifier, and select features based on an
objective function that is independent of classification loss,
such as mutual information or y? statistics.

Selecting the appropriate subset size k is one of the key
considerations in feature subset selection. Heuristics may lead
to severely suboptimal results, whereas grid searches are
infeasible for large data sets. Also of practical importance is
whether a post-hoc test can be used to determine the accuracy,
or the optimality, of initial selection of k, and taking the appro-
priate action when warranted. There are existing hypothesis-
testing approaches for FS; however, the implementations of
these approaches are usually not flexible with respect to other
objective functions. For example, the y? test may be used to
measure a lack of independence between the data variables X
and label variables Y; however, the Xz-based FS does not
allow the inspection of objective functions such as mutual
information.

In this brief, correspondence, we present a Neyman—Pearson
hypothesis test for the identification of relevant features. Our
approach is derived from a given base FS algorithm that selects
k features across several bootstrap data sets. Given the results
obtained by running the FS algorithm on n bootstrap data sets,
we derive a hypothesis test to infer the number of relevant
features k*, which may in fact be different than the k that was
used by the base FS algorithm.

This paper is organized as follows. Section II presents
the related work. Section III presents the proposed approach.
Section IV presents the results on several synthetic and UCI
benchmark data sets. Finally, Section V includes a discussion
and concluding remarks.

II. RELATED WORK

FS is a well-researched area that seeks to find an optimal
feature subset, cleared from irrelevant and redundant features.
Such a feature subset not only improves classification accu-
racy, but also reduces the computational complexity of the
model. Guyon and Elisseeff’s tutorial [1] on variable selection
covers several FS and subsequent validation methods. Valida-
tion is important in evaluating a FS approach, as it allows us
to determine the robustness of the approach to variations in
its free parameter(s). Selecting and inferring values of such
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free parameters, such as the number of features a method
selects as relevant, is the focus of this brief communication.
Brown et al. [3] recently presented an information-theoretic
FS framework for maximizing of the conditional likelihood
function, where they examine the consistency to measure the
stability of FS methods. However, in their approach k was
selected heuristically, and was not optimized for any of their
experiments, an issue that is addressed in this communication.

Yang et al. [4] developed a hypothesis test-based FS method
to find textual abundance features that contribute to the spam
class for email prediction. Their work presented a methodol-
ogy that used a binomial hypothesis test that was designed to
identify features that were highly probable to be in a spam
email. However, the approach, while effective, assumes the
features of the data are of a particular form, or distribution.
Other approaches, such as Relief and Focus, can be used to
determine feature relevance [5], [6]; however, these approaches
do not allow for the selection of the objective function being
optimized.

Some FS methods have the capability to dynamically select
the number of features based on the ){2 statistic [7], which
measures the lack of independence between random variables
X and Y. However, using the x? statistic fixes the objective
function for the FS method. Developing a general and versatile
framework that allows free choice of the objective function
while providing inference on parameter selection appears to
be an under explored area.

Kuncheva [8] presents a consistency index for determining
the level of stability of a FS algorithm when tested with
multiple validation data sets. Kuncheva’s consistency index
was designed to meet three primary criteria: the consistency
index 1) is a monotonically increasing function of the number
of features common to two feature sets; 2) is bounded; and
3) has a constant value for independently drawn subsets of
features of the same cardinality.

Definition 2.1 (Consistency [8]): The consistency index for
two subsets A C X and B C X, such that r = | AN B and
|A| = |B| =k, where 1 <k < |X| =K, is

rK — k2

IC(A, B) - MT—]{)

III. NEYMAN—PEARSON HYPOTHESIS TESTING FOR FS

Different FS algorithms optimize different objective func-
tions, hence, making different assumptions about the disper-
sion or distribution of the data. Unfortunately, a few methods
can offer the dynamic selection of k, and a fewer yet have
the ability to work with other FS objective functions (e.g.,
they already have a specified filter criteria: see FS with the y?2
statistic [7]).

In this section, we present an algorithm-independent
metaapproach to determine an appropriate level of k using the
Neyman—Pearson FS (NPFS) hypothesis test. This approach
can be used with any FS algorithm. Table I contains the
mathematical notations used throughout this paper.

A. Overview of the Proposed Method and Preliminaries

A FS algorithm, F, is run n-times with bootstrap data sets
sampled uniformly from D. In this setting, data instances—and

TABLE I
MATHEMATICAL NOTATIONS
Notation Meaning
X full set of features, | X| = K
F feature selection algorithm
X Bernoulli random variable indicating if
a feature was selected as relevant on the /th
bootstrap trial
Z Binomial random variable
Hyp null hypothesis
Hy alternative hypothesis
Cerit Neyman-Pearson (critical) threshold
k number of features selected by F
n number of bootstraps
T(Z) sufficient statistic of random variable Z

not the features—that are sampled randomly. For each boot-
strap data set, F selects k of the K features in the relevant fea-
ture set. For the moment, we assume there is a k*, the optimal
number of relevant features. Ideally, the same & features would
be found by F as relevant over each of the n trials; however,
this is rarely the case due to initializations and randomness
in the bootstrap sample. A consistency index can be used to
measure the stability of the relevant feature sets over these n
trials. This index, however, is not based on a statistical hypoth-
esis test, nor is it designed to determine if a feature is consis-
tently selected as relevant. In fact, by Kuncheva’s formulation,
Zc (A, B) is a random variable (this is easy to see since R = r
is a random variable with a hypergeometric distribution).

B. Algorithm Derivation and Implementation

Let us first consider a hypothesis test being applied to a
single feature (the proposed test can be applied to each feature
individually). At each bootstrap iteration, JF, returns a set of
indices for the relevant feature set. For each feature in the
set X', we mark whether the feature was in the relevant set
(X; = 1) or not in the set (X; = 0), where [ € [n] is the
bootstrap iteration.

In this situation, we can determine that the random variable
X is distributed as a Bernoulli random variable with probabil-
ity p (that is yet to be determined). The n Bernoulli random
variables from the n bootstrap data sets form a Binomial
distribution with Z,, = X;+---+ X,, successes (Z,, = z be an
observation of the random variable Z,). If a feature is selected
by chance, then the probability for such a feature appearing
in the relevant feature set is pgp = k/K. Now, there is the
observed probability of a feature appearing in the relevant
feature set from the bootstrap trials, which is p; = z/n. If all
the features were equally relevant (or equally irrelevant), we
would expect these probabilities to be equal to one another.
Ultimately, we would like to know if p; > po, or in other
words, if the probability of a feature being in the relevant set
is greater than the probability of a feature being selected by
random chance. Against this background, we have a hypothesis
test formulated as follows:

Ho : po = p1
Hy:p1> po

where Hy is the null hypothesis (that all features are equally
relevant), and H; is the alternative hypothesis (that some
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features are more relevant than others). We select the Neyman—
Pearson test for several reasons: 1) the likelihood functions
under Hp and H; can be explicitly computed as shown
below; 2) the solution with the Neyman—Pearson lemma is
a simple yet elegant result; and 3) perhaps most importantly,
the Neyman—Pearson test is the most powerful test available
for size a. The Neyman—Pearson lemma states that we reject
the null hypothesis if

P(z|H1)
P(z|Ho)
where P(z|Hp) is the probability distribution under the null

hypothesis, P(z| H1) is the probability distribution under the
alternative hypothesis, and (it is a threshold such that

P(T (2) > CeritlHo) = a )

where a is size of the test, and 7' (z) is the test-statistic. Using
log A(z) would provide equivalent results since taking the
logarithm does not affect the solution. Recall that the random
variable Z follows a Binomial distribution. Using (1) and
the form of the probability distribution on Z, we apply the
Neyman—Pearson lemma

P(Z, =z|H) _ ()pi(l —p)'™*
P(Zy =zIHo) (%) p§(1 — po)"—*

_ (1 —Pl)" . (Pl(l —po))Z
1—po po(1 — p1)

> Lerit-

A(Z) = > Cerit (1)

Since (1 — p1/1 — po)" is simply a constant, which can be
moved to the other side of the inequality, resulting in a new
threshold ¢/ ;. Thus

pi(l = po)\*

(RU=m)
po(1 = p1)

Taking the logarithm gives us

p1(1 = po)

po(1 = p1)

where again, the logarithm term is simply a constant and it
can be removed to find a scaled threshold ¢/7;. Thus, we are
seeking

zlog{ ] -

1"
z> Ccrit

where (eir is a critical threshold determined by P(z >
¢l |Ho) = a (note by definition that z is a sufficient sta-
tistic for 7'(z)). Since the probability distribution on the null
hypothesis is known (i.e., Binomial), we may explicitly solve

for CW

crit

]P(Z > C///'t|H0) =1-

cr1

—a. (3)

crit

P(z < i Ho)
——————
cumulative distribution function

Since P(z < ¢!,|Ho) has a closed-form expression, it can
be obtained from a lookup table. Note that o can be used
to control how conservative the hypothesis test will be. That
is, if a is small, it will become more difficult for a feature
to be detected as relevant because ¢ will become large.
To summarize, NPFS is implemented as follows.

1) Run a FS algorithm F on n independently sampled
data sets (sampling instances, not features). The inde-
pendently sampled data sets can be a result of
cross-validation or bootstrap samples. Form a matrix
X e {0, 1}X*" where {X};; is the Bernoulli random
variable for feature i on trial /.

2) Compute ¢’ using (3), which requires n, po, and the
Binomial inverse cumulative distribution function.

3) Let {z}; = > {X}s. If {z}; > ¢/, then feature
belongs in the relevant set, otherwise the feature is
deemed nonrelevant. Use only the features selected by
the Neyman—Pearson detector for learning a classifica-
tion or regression function.

C. Advantages of the Proposed Approach

The proposed method for postanalysis of FS offers several
capabilities. Let us assume that k was selected to be too large
compared with the true number of relevant features, k*. How
can we determine a more accurate value of k? The proposed
approach provides a natural solution: simply use the features
that Neyman—Pearson detector returns as being relevant. Note
that the number of features returned by the Neyman—Pearson
detector need not be k: if k were too large, we expect the test
to return fewer relevant features. Having such an inference on
k can reduce the complexity of the classifier or the regression
function. We can also ask the opposite question: what if k—
provided as a user-input to the FS algorithm—was selected
too small? Could we apply this hypothesis test to determine
the subset of K features that are relevant even though F
never selects all of them because k was smaller than k*?
Our experiments, described in Section IV, test these conditions
under controlled simulations as well as on data sets obtained
from the UCI machine learning repository.

D. Upper Bound on Parameter Estimation

An important property of the proposed approach is that if
X1,..., X, ~ Bernoulli(p), then we expect the difference
between p and its bootstrap estimate p to become arbitrarily
small as n grows large. The probability of the magnitude of
difference between p and p being greater than some € > 0
can be upper bounded using Hoeffding’s inequality.

Theorem 3.1 (Hoeffding’s Inequality [10]): Let Yi,
Y>,...,Y, be independent random observations such that
E[Y]=u, Y = %ziYi, and a < Y; < b. For any € > 0, the
following inequality holds:

P(Y — ul = €) < 272/ 0=0)", )
Hoeffding’s inequality is similar to that of Markov’s inequal-
ity; however, it produces a tighter bound for larger deviations.
We may use Hoeffding’s inequality with a few assumptions to
bound the differences between the bootstrap’s estimate p, and
the true probability p. If X, ..., X, ~ Bernoulli(p), then for
any € > 0, we have

P(p— p| > €) < 26721 )

where p = %Z,,. Thus, if Xi,..., X, ~ Bernoulli(p), then
p approaches p exponentially quickly as a function of n.
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Fig. 1. Results of the Neyman—Pearson hypothesis test applied to the synthetic uniform data set for different cardinalities of the relevant feature set. The
Neyman—Pearson hypothesis test recovers the original five relevant features (first five rows of each plot) with only a few additional irrelevant features in the
set. This is a visualization of X, where black segments indicate X; = 0, white segments X; = 1, and the orange rows are the features detected as relevant by
the Neyman—Pearson test. (a) k = 10. (b) k = 15. (c) k = 20. (d) k = 24.
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Fig. 2. Number of features selected by the Neyman—Pearson detector for varying levels of k (too large and too small) when there are 15 relevant features
(k*) in the synthetic data set. The number of features selected by the proposed approach appears to be converging to 15 when k is initially selected too small.
Even though the number of selected features diverges when k is selected too big, they undershoot the original guess while the too small k’s overshoot their
original guesses. (a) K = 50, k* = 15. (b) K =100, k* = 15. (¢c) K =250, k* = 15.
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3) If k were selected too small, can NPFS identify all the Fig. 3. Variation in the Neyman—Pearson’s test for the value of k* given

. . that k may have been selected too small. x-axis represents the data set under
relevant features that could not be identified as relevant test and the y-axis is the predicted k* by the proposed approach using 10000

due to k being too small? bootstraps.
We provide a MATLAB implementation of NPFS under the
GNU GPLv3!. 1) Description of the Uniform Data: M observations are
generated with features that are independently and identically
A. Data Sets and Testing Procedure distributed uniform random variables in the interval [0, 10].

This data set is referred to as Dyyi. Each feature vector x,, for
m € [M] has K features. The true labeling function, unknown
to any algorithm, is given by

The proposed Neyman—Pearson hypothesis testing method-
ology (NPFS) for any given FS algorithm was tested on a
synthetic data set, and a collection of data obtained from the
UCI machine learning repository [11] (Table II). The synthetic |, Zf‘; Xn(i) <5 k*
data, described below, allows us to tailor experiments to test Ym =
the strengths and weaknesses of the proposed approach.

0, otherwise

hence, only the first k* features carry information for deter-
Uhttp://github.com/EESI/NPFS mining the label y,, of a feature vector x,. Our goal is
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TABLE II
CLASSIFICATION ERRORS OF A NAIVE BAYES AND CART TESTED ON THE UCI DATA SETS (SECTION IV-C) AND RANK

AFTER TENFOLD CROSS-VALIDATION. THE ERRORS IN THE TABLE HAVE BEEN TRUNCATED; HOWEVER, THE

RANKS ARE DETERMINED VIA THE UNTRUNCATED VALUES

data set [ instances  features || nb nb-jmi nb-npfs | cart cart-jmi cart-npfs
breast 569 30 0.069 (3) 0.055 (1.5) 0.055 (1.5) 0.062 (3) 0.056 (2) 0.041 (1)
congress 435 16 0.097 (3) 0.088 (1) 0.088 (2) 0.051 (3) 0.051 (1.5)  0.051 (1.5)
heart 270 13 0.156 (1) 0.163 (2) 0.174 (3) 0.244 (3) 0.226 (2) 0.207 (1)
jonosphere 351 34 0.1173) 0091 (2) 0091 (1) | 00773) 0068 (1) 0074 (2)
krvskp 3196 36 0.122 (3) 0.108 (1) 0.116 (2) 0.006 (1) 0.056 (3) 0.044 (2)
landsat 6435 36 0.204 (1) 0.231 (2.5) 0.231 (2.5) 0.161 (1) 0.173 (2) 0.174 (3)
lungcancer 32 56 0.617 (3) 0.525 (1) 0.617 (2) 0.542 (2) 0.558 (3) 0.533 (1)
parkinsons 195 22 0.251 (3) 0.170 (1.5) 0.170 (1.5) 0.133 (1.5) 0.138 (3) 0.133 (1.5)
pengcolon 62 2000 0274 (3) 0179 (2)  0.164 (1) 021 (1) 022625 0226 (2.5)
pengleuk 72 7070 0.421 (3) 0.029 (1) 0.043 (2) 0.041 (2) 0.027 (1) 0.055 (3)
penglung 73 325 0.107 (1) 0.368 (3) 0.229 (2) 0.337 (1) 0.530 (3) 0.504 (2)
penglymp 96 4026 0087 (1) 0317 (3)  0140(2) || 0357 (3) 03122 0311 (1)
pengnci9 60 9712 0.900 (3) 0.600 (2) 0.400 (1) 0.667 (2) 0.617 (1) 0.783 (3)
semeion 1593 256 0.152 (1) 0.456 (3) 0.387 (2) 0.25 (1) 0.443 (3) 0.355 (2)
sonar 208 60 0294 (3)  0279(2) 0241 (1) | 02592  0263(3) 0201 (1)
soybean 47 35 0.000 (2) 0.000 (2) 0.000 (2) 0.020 (2) 0.020 (2) 0.020 (2)
spect 267 22 0.210 (2) 0.206 (1) 0.232 (3) 0.187 (1) 0.210 (2) 0.229 (3)
splice 3175 60 0.044 (1) 0.054 (2) 0.055 (3) 0.085 (3) 0.070 (2) 0.066 (1)
waveform 5000 40 0.207 (3) 0.204 (2) 0.202 (1) 0.259 (3) 0.238 (2) 0.228 (1)
wine 178 13 0.039 (2.5) 0.039 (2.5) 0.034 (1) 0.079 (3) 0.068 (1.5)  0.068 (1.5)
average 2.275 1.900 1.825 2.075 2.1250 1.800
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Fig. 4. Top row: 16 x 16 image from the OCR data set corrupted with noisy pixels. The actual OCR images are 8 x 8 and take a 4-bit value. Bottom row:
irrelevant features marked by the Neyman—Pearson test are indicated in black. Note only black pixels are irrelevant feature and not the actual value of the
pixel (i.e., we have scaled the pixel to assure there were not black pixels). The Neyman—Pearson test selects a subset of 52 features in the 16 x 16 image that

are relevant.

to identify, using our hypothesis test, those features (indices
i € [k*]) that are relevant to the classification problem.
Note that the threshold for determining the class label is the
statistical expectation of the linear combination of the first k*
feature variables (this is easily shown using the properties of
the expectation of a linear function). Such a threshold sets the
prior probability on each of the classes to approximately % for
a randomly sampled data set.

There are n bootstrap data sets drawn from Dy, and
the JMI FS algorithm is run independently on each sampled
bootstrap set. k of K features are selected for each bootstrap
data set, and a vector with binary indicators representing
whether or not the feature was selected is produced. The n
vectors form a K x n matrix with binary entries (i.e., X). Each
row, corresponding to a feature, is the sequence of Bernoulli
experiments of success and failures used in NPFS.

B. Results on Synthetic Data Sets

Let us start with our questions on appropriate selection
of k: if k is selected too large, can k* be found such that
k* < k, and what is approximately the ideal value of k given

the results from the n bootstraps? In this experiment, five
features were considered relevant out of 25 features (recall
that the features are uniform random variables). The value
of k was varied from 10 to 24. For these cases, there are
(at least) 5 to 19 irrelevant features are incorrectly selected
as relevant at any given bootstrap iteration. We apply the
Neyman—Pearson test after 100 bootstraps. Fig. 1 shows that
the Neyman—Pearson test can identify when irrelevant features
are being selected by JMI. In this figure, the matrix X is
visualized with white entries indicating features selected by
JMI at different bootstrap iterations. The orange rows highlight
the features that Neyman—Pearson method identifies as being
relevant. Note that features {1, 2, 3,4, 5} are the only relevant
features for this problem. Clearly, the inference provided by
the Neyman—Pearson test allows us the ability to reduce k to
achieve a much smaller subset of relevant features. In each
of these experiments, we find that there are a few features
being detected as relevant, which are actually nonrelevant.
It is possible to tune n and o such that in every experiment
only features one through five are being detected as rele-
vant. In every experiment, however, the proposed method is
always recommending the use of fewer features, because many
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of the features JMI selects at each bootstrap iterations are
irrelevant.

The second key question is: can the value of k* be recovered
if k£ was initially chosen too small, and if so, how many
bootstraps are needed? To examine this situation, three more
synthetic uniform data sets were generated. All synthetic data
sets’ features are uniform random variables with 15 relevant
features; however, the data set have 50, 100, or 250 features.
We apply our Neyman—Pearson test with the number of
bootstraps varying between 1 and 500. Furthermore, k €
{3, 5,10, 15, 25} are examined. Fig. 2(a) shows that the value
k* selected by the Neyman—Pearson algorithm is approaching
the true value for various selections of k. We should note
that we can improve these results by increasing the number of
observations in the data set. However, if k were too large, there
are still a few features left in the relevant set as determined
by the Neyman—Pearson detector (as observed previously in
Fig. 1). Fig. 2(c) shows the effect of using 250 features
rather than 50 features. Again, if k were selected too small,
the Neyman—Pearson detector finds approximately k* features;
however, the method still unable to completely recover all of
them with 500 bootstraps.

C. Results on UCI Data Sets

In this section, we present the classification error using a
base classifier trained on: 1) all features; 2) trained on the
top 10 features selected by JMI; and 3) trained on features
selected by the proposed approach. The data sets are obtained
from the UCI machine learning repository [11], and the Peng
et al.’s mRMR paper [12]. The naive Bayes (nb) and CART
algorithms are used as baseline classifiers [13], [14]. We use
the following notation to denote the classifier and the FS
algorithm: nb (naive Bayes trained on all features), nb-npfs
(naive Bayes trained with features identified by JMI and the
proposed NPES), and nb-jmi (top 10 features selected with
JMI). It is important to note that we do not have access to the
(true) k* or the degree of feature relevancy for these data sets,
therefore, we must examine the performance of a classifier to
evaluate the methods effectiveness.

Table II shows each classifier’s error and its rank [15].
The proposed approach for both the naive Bayes and CART
produces the best average rank. Unfortunately, there is not
enough statistical evidence to suggest that the proposed
approach provides uniformly the lowest error rate. There
is, however, statistical significance between CART-NPFS and
CART-JMI, with CART-NPFS out performing CART-JMI with
an a-level of 0.1 using the Wilcoxon’s signed rank test. The
average number of features being selected by the Neyman-—
Pearson test after 10000 bootstraps can be found in Fig. 3. The
UCI data sets do not allow us to control the level of feature
relevancy as we did with the synthetic data and it is worth
noting that we do not observe NPFS detecting all features as
relevant even when the number of bootstraps is quite large.

D. Optical Character Recognition

Our final experiment uses the optical character recogni-
tion (OCR) data set collected from UCI machine learning

repository. Each image in the experiment consists of 64 pixels
represented by 4-bits (i.e., an 8 x 8 image); however, each
image has been corrupted by adding noisy pixels. The final
image is 16 x 16. Just as before, we run 100 bootstrap trials
with the JMI FS algorithm and apply the Neyman—Pearson
hypothesis test. In this experiment, k = 64 and K = 256.
Each noisy pixel is sampled from a uniform probability mass
function taking possible values {1, ..., 16}.

Fig. 4 shows the NPFS results on OCR data set. The top
row of Fig. 4 shows the 16 x 16 images corrupted with noisy
pixels. Note that the original OCR images can be observed as
they are embedded within the noise. The bottom row of Fig. 4
shows the irrelevant features marked in black by the Neyman—
Pearson test. Note that only the black pixels are irrelevant
features and not the actual value of the pixel (i.e., we have
scaled the pixel to assure there were not black pixels). The
Neyman—Pearson test selects a subset of 52 features in the
16 x 16 image that are relevant. Thus, the Neyman—Pearson test
is suggesting that there is a subset of features, fewer than 64,
that are relevant for the discrimination between the characters
in the image.

V. CONCLUSION

In this brief communication, we presented a wrapper
methodology for validating the selection of k given a FS algo-
rithm using the Neyman—Pearson hypothesis test—uniformly
the most powerful hypothesis test. There are no assumptions
made about the distribution of the data that the base FS
algorithm would not already be making. The approach is easily
integrated with existing FS methods, and can be used as a
post-hoc test to determine the selection of the free parameter
k was appropriate. We demonstrated, on synthetic data sets,
that NPFS is cable of identify the correct number of relevant
features even when the base-FS method does not select k*
features for each bootstrap, and that NPFS works well in
practice on UCI data sets.
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