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Abstract-Many traditional supervised machine learning ap­
proaches, either on-line or batch based, assume that data are 
sampled from a fixed yet unknown source distribution. Most 
incremental learning algorithms also make the same assumption, 
even though new data are presented over periods of time. Yet, 
many real-world problems are characterized by data whose dis­
tribution change over time, which implies that a classifier may no 
longer be reliable on future data, a problem commonly referred to 
as concept drift or learning in nonstationary environments. The 
issue is further complicated when the problem requires prediction 
from data obtained at a future time step, for which the labels are 
not yet available. In this work, we present a transductive learning 
methodology that uses probabilistic models to aid in computing 
ensemble classifier voting weights. Assuming the drift is limited in 
nature, the proposed approach exploits a probabilistic estimate to 
determine the class responsibility of components in a Gaussian 
mixture model (GMM), generated from labeled and unlabeled 
data. A general error bound is provided based on the ensemble 
decision, the probabilistic estimate of the GMM, and the true 
labeling function, which, unfortunately is never actually known. 

Keywords-concept drift; Gaussian mixture models; multiple 
classifier systems; unlabeled data 

I. INTRODUCTION 

Concept drift is the problem of learning from a data source, 
whose distribution - intermittently or continuously - changes 
in time, and it is referred to as learning in nonstationary 

environments. The change in data structure can be abrupt or 
gradual, fast or slow, reoccurring, or otherwise. These drift 
types can lead to other forms of drifting environments (e.g., 
abrupt change in the evidence, p(x) , of a random variable 
x or the true decision function, f(x) . The drift in data can 
be real or virtual in nature. Real drift is a change in the 
posterior, p(wlx) (the probability of class w conditioned on 
observation x), while virtual drift is an observed change (e.g., 
change in likelihood, p(xlw» - as a result of an incomplete 
representation of the true distribution of the current data (e.g., 
due to sampling bias). Typically, we find that real and virtual 
drift occur at the same time, thus making the learning problem 
quite difficult [1]. Some researchers strictly focus on one 
scenario, such as virtual drift [2], while we try to address 
the problem more generally. The fundamental problem that 
concept drift presents is that classifiers created in the past 
become outdated or remain only partially relevant (e.g., some 
portions of the learning problem may not have changed or 
changed very little). 
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Consider, as an example, the problem of predicting precip­
itation from four features (average temperature, wind speed, 
humidity, and barometric pressure). Assume batch based pro­
cessing where a classifier is generated on a season of data, 
e.g., spring, and must predict on data from the next season, 
summer, for which the labels are not yet available. There will 
likely be some change in p(x) because of the temperature and 
barometric pressure changing from the seasonal transition, as 
well as a change in p(xlw = rain) and P(w = rain) as it may 
rain more in the spring than summer. Therefore, a classifier 
should be able to adapt to such a changing environment to 
predict on future data. On-line processing also faces similar 
problems: given a stream of instances, appearing one instance 
at a time, when should a classifier be modified or perhaps 
replaced by a new classifier, if p(x) , p(xlw) , or P(w) change 
in time, possibly from one sample to the next. 

Consider an adversary that controls the source from which 
the train/test sets are sampled. The adversary is therefore in 
charge of defining how the environment changes, as well as 
the rate of the change. Therefore, in classification problems 
where an adversary is in control of the drift, the data must be 
learnable even with the change. It is always possible for the 
adversary to select a source(s) (e.g., at random) that cannot 
possibly be predicted by the learning algorithm at each time 
stamp [3] (as true randomness cannot be learned). Therefore, 
and without any loss of generality, it is necessary to assume 
that the drift contains - at a minimum - some loose form of 
structure, and that it evolves over time. We will refer to this 
assumption as the limited drift assumption. 

In this work, we first describe a multiple classifier sys­
tems (MCS) based approach to learn from batch data over 
time, where the sources generating the data are changing (or 
drifting). If the data are arriving in an online fashion, we 
can simply wait for a period to accumulate a batch of data 
prior to processing. The novelty of the approach is that we 
use unlabeled (test) data in a transductive learning setting 
to improve the performance of the ensemble in predicting 
labels to field data. Probabilistic models are generated on 
(labeled) training and (unlabeled) testing data. A maximum 
a posteriori (MAP) estimate is performed to infer the degree 
of responsibility each known class accepts to explain the 
parameters of the model generated with the unlabeled data. 
The probabilistic models are used to aid in the calculation of 
classifier voting weights. A loose error bound is produced for 
the MCS, written in terms of the ensemble hypothesis, the 
probabilistic model estimates, and the true labeling function. 
We also demonstrate the feasibility of a second, related, trans­
ductive learning algorithm that offers a less computationally 
complex solution to the problem than ensembles, under certain 
conditions. 



This paper is organized as follows: Section II presents a 
brief overview of the related work on learning from concept 
drift with an emphasis on ensemble based systems, Section III 
presents our approach for learning concept drift with classifiers 
and Gaussian mixture models, Section IV presents results from 
synthetic and real-world experiments and finally, Section V 
discusses some final conclusions as well as future research 
directions. 

II. REL ATED WORK 

A variety of methods have been proposed to handle concept 
drift including single classifier methods, drift detection, and 
MCS based solutions to name a few. Typically, concept drift 
algorithms can be categorized as active or passive based ap­
proaches [4]. Active approaches seek to identify when change 
occurs in the data stream and then takes appropriate corrective 
action based on the amount and nature of the drift detected. 
A passive approach simply assumes that some amount of drift 
may be present in the data and adjusts algorithm parameters 
whenever new data become available. For example, a drift 
detection approach such as the the early drift detection method 
(EDDM), [5] and Hellinger distance drift detection method 
(HDDDM) [6], would be considered active, whereas dynamic 
weighted majority (DWM) [7], is a passive approach. 

Many of the earliest approaches for concept drift use a 
single classifier and/or sliding window [3], [8], or use adaptive 
classifiers along with drift detection to learn in nonstationary 
environments. For example, Alippi et. al. propose an adaptive 
k-NN classifier with the computational intelligence cumulative 
sum (CI-CUSUM) for drift detection [9], [10] and more 
recently have presented classifiers for detecting gradual drift 
[11], [12], a more difficult problem than detecting an abrupt 
change. Another example of a single classifier approach is the 
uniFied Instance Selection algoritHm (FISH), which uses time 
and distance information to form training sets for a classifier 
[13]. Yamauchi proposes a single classifier design using radial 
basis function (RBF) neural networks, inspired by previous 
work for covariate shift; however, his approach relaxes the 
computational requirements of prior work [2]. 

Ensemble based approaches constitute a different group 
of concept drift algorithms that have been widely popular 
because of their simple, yet well-founded theory based on 
variance reduction, and their ability to strike a meaningful 
balance between stability and plasticity. Thus, ensemble based 
approaches can avoid catastrophic forgetting associated with 
other algorithms that replace the existing classifier with a new 
one trained on the new data only [14], [15]. In [16], ECSMiner 
is presented for learning concept drift and identifying novel 
classes in data streams. Kolter & Maloof present dynamic 
weighted majority (DWM) , an on-line learning ensemble 
designed for concept drift applications [7]. DWM maintains 
a pool of classifiers and weighs these classifiers in a semi­
heuristic method that reduces classifier weights when in­
stances are misclassified. Classifiers with low weights are then 
discarded. Another ensemble-based approach, Learn++ .NSE 
generates a classifier with each new dataset and uses a 

dynamic weighting strategy that features a weighted sum of 
each classifier's time-adjusted errors over current and recent 
environments [4]. More recently, Bifet et al. proposed an on­
line bagging approach that uses adaptive size Hoeffding trees 
(ASHT) [17]. ASHT is motivated by the idea that smaller 
trees adapt more quickly to a changing concept than a large 
tree, but a large tree performs better over periods where the 
concepts are not changing. Also in [17], ADWIN bagging was 
presented, which combines the adaptive windowing algorithm, 
ADWIN, and bagging. Minku et. al. have proposed that diver­
sity in classifier ensemble can also be informative for handling 
concept drift [18], [19]. 

Many of the batch-based learning algorithms update clas­
sifier parameters when labeled data are presented, then new 
data are classified [4], [20]. None of the aforementioned 
approaches have a mechanism to take advantage of unlabeled 
data, even though many applications provide test-then-train 
type data, where the labels of the test data are not immediately 
available. Climate data, financial data, power demand and 
pricing data are just a few examples of such applications. With 
the exception of a few works, such as that of Zhang et al. [21], 
which combines classification and clustering, taking advantage 
of unlabeled data has not been addressed within concept drift 
literature. More recently, we proposed a weight estimation 
algorithm (WEA) for updating classifier weights by relating 
Gaussian mixture models (generated at different time stamps 
on labeled and unlabeled data) through the Bhattacharyya 
distance [22]. 

In the next section, we describe a proof-of-concept method­
ology that exploits unlabeled field data to aid in updating 
the parameters of the ensemble. With the aforementioned 
limited drift assumption in place, we expect the ensemble 
to benefit from the information provided by the unlabeled 
data, and we present a loose error bound for the ensemble 
hypothesis. The approach presented in the next section is 
therefore a transductive learning algorithm for nonstationary 
environments. 

III. ApPROACH 

The proposed approach, called TRansductive leArning eN­
SEmble (TRANS E) for concept drift, is designed to use 
knowledge learned from previous environments to infer class 
information about the target probability distribution that has 
no class information yet available (Le., test data distribution). 
Thus, data from the target distribution are assumed to be 
unlabeled and sampled i.i.d. from an unknown distribution that 
has not been learned. TRANSE uses the unlabeled target data 
- sampled possibly from a different distribution than training 
distributions - to infer label information about each unlabeled 
data. This approach is considered transductive because the 
primary focus is on classification of the unlabeled data, not to 
make TRANSE a generalized prediction algorithm on distant 
future unlabeled data. That is because, a generalized prediction 
algorithm would not work well in situations were the source 
that generates the data changes with time. 



Input: labeled data 'Dt = {(Xi,Yi)}i":,b unlabeled data Bt = 

{(Xq)}�=l' Learn base learning algorithm, and e GMM 
parameters 

1: for t = 1, 2, ... do 
2: Call Learn with 'Dt and receive classifier (hypothesis) ht 
3: Compute GMM parameters e� for all classes c 

1 ... ,C from 'Dt 
4: Use Bt to compute GMM parameters e� 
5: Compute 9c(X) using (3) for x E Bt (where c = 

1, ... ,C) and compute the expected error, El,t, for clas­
sifier l on Bt, where l = 1, ... ,t. 

6: Update classifier voting weights 

1 - El t 
Cl'.l,t = log ---' 

El,t 

7: Predict class labels for Xq E Bt 
t 

(1) 

H(xq) = argmax L Cl'.1,t[hl(Xq) = Y] (2) 
yEY 1=1 

8: end for 
Output: Ensemble hypothesis H(xq) for q = 1, ... , n 

Fig. 1. Transductive learning ensemble pseudo code (TRANSE) 

TRANSE is designed to learn in scenarios where labeled 
data are available intermittently at some arbitrary time stamp 
t, which have been sampled from source St. Some unlabeled 
data become available after training on the labeled data; 
however, the source used to sample the unlabeled data may 
be different from St. Under the assumption of limited drift, 
TRANSE aims to transfer knowledge from St to infer possible 
class information about the unlabeled data. This transferred 
knowledge is then used to update an ensemble's parameters 
and classify the unlabeled data. We emphasize that samples 
drawn from a source at a particular time t are assumed to be 
i.i.d. 

A. Algorithm Description 

The pseudo code for TRANSE is shown in Fig. 1. A 
density estimation algorithm is needed by TRANSE, for which 
we choose Gaussian mixture models (GMM). TRANSE is 
provided with labeled training data 'Dt with data pairs (Xi, Yi) 
for i = 1, . . .  ,mt at time stamp t. Unlabeled field (target) data, 
Bt, is presented after the training data have been processed. 
The unlabeled dataset, Bt, is not only the target data to be 
classified by TRANSE, but it is also used by TRANSE to 
update its model parameters - hence the transductive learning 
component of TRANSE. 

The algorithm begins by calling Learn, any supervised 
classification algorithm, with the labeled data, 'Dt, to generate 
a new classifier (Line 2). Then for each class c in the training 
dataset 'Db a GMM is generated, where 8� represents the 
GMM parameters (i.e., mean & covariance components) for 
class c at time stamp t (Line 3). There are Kc components 
in 8� and the total number of components for all classes is 

Input: labeled data 'Dt = {(Xi,Yi)}i":,l, unlabeled data Bt = 

{(Xq)}�=b and e GMM parameters 

1: for t = 1, 2, ... do 
2: Using 'Dt, apply EM to find parameters e� Vc for the 

"labeled" GMM 
3: Given unlabeled data, Bt, which is sampled from 'Dt 

without the labeled information, apply EM to Bt to find 
parameters e� for the "unlabeled" GMM 

4: Classify Xq E Bt using (3) 
5: end for 

Fig. 2. EM-based approach for learning a changing data stream (TRANSE­
EM) 

expressed as K = Lc Kc. In Line 4 of the pseudo code, a 
GMM, with parameters 8�, is generated from the unlabeled 
data Bt, when that data become available. This GMM with 
parameters 8� is formed with K components. Since Bt do 
not have labels, we cannot - yet - associate class labels to 
each component in the GMM with parameters 8�. Therefore, 
we need to find a mechanism to relate the components in E>� 
to 8�. 

Let us define an estimate of the posterior probability on Bt 
as gc(x) , which is calculated in (3). As stated earlier, labels 
cannot be directly associated with each component in E>�. 
However, using (3) we can assign a weight to each component 
in E>� for class c. This weight represents the amount of 
responsibility that class c accepts for representing component 
k in E>�. This measure of responsibility is estimated as 
the posterior, P(WciJ.lk) , given the GMM generated from 
the labeled training data. The quantity P(WciJ.lk) is easily 
computable with the GMMs with parameters E>�. The priors 
P(wc) is the prior probability that can be computed directly 
from the data. Given a limited amount of drift present between 
the source and target data, this estimate should reasonably 
indicate the class that is the most responsible for generating 
such data with J.lk. 

K 
P(wc) L P(wciJ.lk) 1l"kN(xiJ.lk, Ek) 

k=l gc(x) = 
C K 
L P(wc,) L P(wc' iJ.lk) 1l"kN(xiJ.lk, Ek) 

c'=l k=l 

(3) 

where 1l"k are the GMM mixing coefficients, J.lklEk is the kth 
mean/covariance in E>� and N(xiJ.l, E) is a Gaussian density 
function with mean J.l and covariance E. The P(WciJ.lk) can 
be computed using (4) with the parameters GMM parameters 
in 8�. 

(4) 

where E>� determines the GMM mixing coefficients 1l"k' the 



covariance 1:k, and the mean f.Lk for the kth component of the 
cth class. If the drift is evolutionary in nature, then P(Wclf.Lk) 
provides a good inference of f.Lk'S class association. 

The expected pseudo error for a hypothesis, hi, l = 1, . . .  , t, 
is computed using (5) or (6), which is referred to as mean 
square error (mse) and absolute mean error (ame), respectively 
(see Line 5). The pseudo error is dependent on the probabilistic 
estimate of gc(x). In this work, we empirically test these two 
pseudo error measures, which are used to derive the classifier 
voting weights. 

where El,t is the pseudo error of hypothesis l at time t, hl,c(Xi) 
is the posterior estimate for class c from hypothesis l on Xi 
and gc(Xi) is the GMM posterior for class c on Xi. 

The classifier voting weights are determined in Line 6 using 
pseudo error described above. The form of voting weights is 
a commonly used form of a non-uniform weighting scheme 
inspired by Adaboost [23], and the final ensemble hypothesis, 
H(x), is computed using a weighted majority vote as in Line 
7. 

A couple points are worth noting: first, hi should preferably 
provide a continuous probabilistic interpretation of class sup­
ports; however, TRANSE can still run even if hi only provides 
binary decisions. Second, it is reasonable to ask whether H(x) 
should be used at all if gc(x) has strong influence on H(x). 
This question - whether the ensemble members should be 
retained at all - has a complex answer, as we discuss below 
and again in the results section. The short answer is that 
decision depends on how accurate we believe our estimate of 
the posterior on Bt is. If this estimate is very accurate, then the 
ensemble members are not necessary, and we can directly use 
gc(x). A generalization of the TRANSE algorithm that follows 
this approach is shown in Fig. 2. This algorithm, which follows 
an EM-like mechanism - is referred to as TRANSE-EM. 

We anticipate that the posterior estimate is likely to be accu­
rate if indeed the GMM parameters (and the number of mixture 
components) have been accurately predicted, which is likely to 
happen for data with simple and well-behaving distributions. 
However, for complex distributions whose accurate estimate 
using the GMM may be difficult, the knowledge learned by 
the ensemble members - aided by the limited accuracy of the 
GMMs provided in the form of classier weights - can help 
build a robust knowledge base and continuously reinforce and 
update previously learned knowledge. Furthermore, note that 
the selection of GMM parameters (such as the user-defined 
number of mixture components) can also drastically change 
the effectiveness of the GMM-only approach as shown in Fig. 
2. It is therefore important to evaluate challenging problems 
from real-world data to observe the impact and sensitivity of 
GMM parameters on the ability of the algorithm to track the 

changing environment. We provide preliminary results of such 
an analysis later in the results section of this paper. 

B. Relationship Between Ensemble Error and the Probabilis­

tic Model 

In this section we present the error bound of ensemble 
hypothesis, and explore whether classifier weighting should 
be uniform or weighted. To guide us, we choose a natural 
measure of error between the classifier hypothesis, h(x), and 
an ideal labeling function, f (x), as the absolute difference 
given by (7), where IEx�p['l is the expectation computed over 
some distribution P (note that P not a dataset). 

E(h,1) = IEx�p[1 h(x) -f(x) Il (7) 

This disagreement function can be computed between any 
arbitrary hypothesis h and labeling function f on a distri­
bution P. For the purpose of this paper, we are interested 
in ET(hl, Jr), or ET(hl) in shorthand notation, which is the 
disagreement between the hypothesis generated at time stamp 
l and the true labeling function on the target distribution, 
fT. More importantly, we are interested in solving for the 
ensemble error bound on the target distribution, ET(H). 

Theorem 1 (Classifier error bound): The error of a hypoth­
esis, hi, generated at time stamp l from PI, on a target PT is 
bounded above by (8). 

ET(hl) ::; El(hl) + d1(PI, PT) 
+min{ET(JT,!I),EI(JT,fl)} (8) 

where d1 (', .) is the variational divergence. The proof of this 
theorem is given by Ben-David et al. [24]. 

Theorem 2 (Ensemble error bound): The error of the en­
semble hypothesis, H, on a target PT is bounded above by 
(9). 

(9) 

Proof' The proof of Theorem 2 is rather straight forward 
and is proven by adding/subtracting ET(H, g), which is the 
error between the ensemble hypothesis and the GMM estimate 
of the true labeling function, as shown in below: 

ET(H) ET(H,Jr) +ET(H,g)-ET(H,g) 
< ET(H,g)+ 1 ET(H,Jr) -ET(H,g) 1 
< ET(H,g) +IEx�PT[I g(x) -Jr(x) Il 
< ET(H,g) + ET(JT,g) 

• 

The second term in the ensemble error bound, ET(JT, g), is 
intuitive to understand as it is simply the disagreement between 
the probabilistic (GMM) model g(x) and the true labeling 
function Jr(x). However, the relationship of g(x) and H(x) 
has not been mathematically analyzed. Therefore, we should 
determine how g(x) and H(x) affect each other. The ET(H, g) 



term can be simplified by exploiting the fact that hl and 9 can 
be written in terms of biased versions of fT. 

tT(H,g) = lEpT[I g(x) -H(x)] 

= lEpT [lg(X) - 1; alhl(x) ll 
= lEpT [IJr(X) + (3(x) - 1; (Wl + "fl)(Jr(X) + Tl(X))ll 

where Tl(X) is hl's bias (error) on x, (3(x) is g(x)'s bias on 
x, and 'Yl is the bias of the calculated classifier weight (ad 

from the optimal voting weight Wl. 
Let us assume for the moment 9 H fT I::/x, that is, the 

GMM estimate approaches the true target function. If this is 
the case, then we have: 

lim tT(H,g) = 
g--+ JT 

lEpT [t { �Jr(X) -Wl(��) } 1 
1 1 

ht(x) 

since (3(x) H 0 and 'Yl H O. The 'Yl terms should be 
expected to decrease as 9 improves because the error of 9 

affects the bias in the classifier weights. We can see that 
Jr(x) - L1=1 wlhl(x) = 0 is an obvious solution to the prob­
lem. Using the expectation over PT, our goal is to minimize 
lEx�PT [I Jr(x) - Ll wlhl(x) I]· This analysis suggests that 
if we can infer upon the bias of a classifier, i.e., relate the 
classifier weights to the error of the classifier (as done in step 
5 of the algorithm), weighted majority voting goes along with 
our intuition that poorly performing classifier should have their 
weights reduced. However, if this task is not possible, then 
using a uniform vote as suggested in [I] is the ideal choice. 
The experiments sections presents several algorithms that can 
infer upon bias and one that does not, thus indicating that a 
weighted majority vote may be better in those cases. 

IV. EXPERIMENTS 

The proposed approach, TRANSE along with three variants, 
are compared against Learn++ .NSE (referred to as NSE in 
result tables) [25], SEA (streaming ensemble algorithm) [20], 
and WEA (weight estimation algorithm) [22]. The TRANSE 
approaches are refereed to as TRANSE (arne), (mse) and 
TRANSE-EM, where TRANSE (arne) uses (6) to compute 
expected risk, TRANSE (mse) uses (5) to compute expected 
risk and TRANSE-EM uses gc(x) as the hypothesis (i.e., 
ensemble classifiers are not used as presented in Fig. 2). WEA 
uses GMMs to generate synthetic data from the estimated 
target distribution to infer the expected error on the target. 
WEA uses unlabeled data to update the classifier ensemble in 
nonstationary environments. Learn ++ .NSE generates a classi­
fier when new data are presented. Classifiers in the ensemble 
are combined through a weighting scheme that accounts for a 

Fig. 3. The rotating Gaussian problem consists of two Gaussian probability 
density functions drift in a circular pattern causing environments to be 
encountered multiple times in a single experiment (i.e., a class expectation is 
controlled by J.Lt 

= [cosilt, sin iltrr, hence environments repeat 27r). 

Fig. 4. Rotating checkerboard drifting scenario consists of a checkerboard 
pattern rotating between 0 and 27r in 300 evenly spaced intervals. Reoccurring 
environments are encountered at every integer multiple of 7r. Hence the data 
from 0 to 7r is identical to the data sample from 7r to 27r. 

classifier's error in recent time [4], [25]. SEA is a benchmark 
ensemble algorithm that uses un weighted classifier voting [20]. 
The base classifier selected for all ensemble systems was 
the C4.5 decision tree. In each experiment we inject bias 
between the training and testing datasets as described in the 
next section. Several synthetic and real-world datasets have 
been selected to evaluate the algorithms. 

A. Datasets Used 

We used two synthetic (rotating Gaussian and rotating 
checkerboard) and two real-world (Electricity Pricing and 
Weather) datasets to evaluate the proposed approach and 
compare its different versions to state-of-the-art approaches. 
The rotating Gaussian dataset, referred to as GaussCir, is 
comprised of two Gaussian components, each representing a 
different class, rotating around one another (Fig. 3). The class 
means are determined by using the parametric equations tA = 

[cos etl sin etF, J.l� = -J.lI (where the subscripts 1 & 2 refer to 
classes), et = 27fmt/N, with fixed class covariance matrices 
given by �1 = �2 = 0.5 * I, where m is the number of 
cycles, t is an integer valued time stamp (t = 0, 1, ... , N  -1) 

and I is a 2 x 2 identity matrix. The experiment is run over 
2 complete rotations with 1000 train/test instances in each 
batch, and with varying levels of bias between the training 
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25 
time 

Fig. 5. The drift rate (daj dt) of the rotating checker boards varied according 
to the experiment in [4). Predicting on the dataset becomes more difficult as 
the rate increases. 

and testing datasets. Bias was injected by sampling the testing 
dataset from a future time stamp. In this paper, we refer to 
increasing number of time steps between training and test data 
as increasing or injecting bias. 

The rotating checkerboard problem (RC) is a challenging 
generalization of the classical non-linear XOR probleml. The 
XOR problem is the special case when the angle of rotation 
equals a = 0, �, 7r, 327r and 27r. The experiment is controlled 
by two parameters, namely the relative side length of each 
square (representing one of the classes) with respect to the total 
length of the board (fixed at 0.5 in our experiments), and the 
angle of rotation, a. By varying the rotation angle in smaller 
steps between 0 and 27l', a significantly more challenging 
set of decision boundaries can be created. This experiment 
is particularly effective for observing an algorithm's ability 
to learn data in recurring environments. Fig. 4 depicts six 
snapshots of the board, corresponding to half of the rotating 
(a E [0,7rj) checkerboard experiment. During the second half 
(a E [7r, 27rj), the environment identically repeats the first 
half, which in turn simulates a recurring environment. We also 
experiment with three different drift rates in this work, namely: 
constant (RCC), exponential (RCE), and sinusoidal (RCS), as 
shown in Fig. 5. 

The real-world Electricity Pricing dataset (elec2) was first 
presented in [26] and has been used as a benchmark for 
concept drift problems. This dataset is a sequence of infor­
mation related to time and demand fluctuations in the price 
of electricity in New South Wales, Australia. We use the 
day, period, NSW (New South Wales) electricity demand, 
VIC (Victoria) electricity demand and the scheduled electricity 
transfer as the features. The task is to predict whether the NSW 
price will be higher or lower than VIC's in a 24 hour period. 

Finally, the Weather Dataset is a subset of the NOAA dataset 
that we first processed and released as a concept drift dataset 
[27]. The dataset is obtained from Offutt Air Force Base in 
Bellevue, Nebraska. Daily measurements were taken for a 

I The rotating checkerboard dataset among other resources and 
datasets for nonstationary environments can be downloaded from 
http://users.rowan.eduJ�polikar/RESEARCHlNSE/ 

TABLE I 
RAW CLASSIFICATION ACCURACY AND RANKS FOR GAUSSIAN CIRCLE 

(GC) & REAL-WORLD DATASETS. 

I bias level I NSE I SEA I ame I mSf! I TRANSE-EM I WEA I 
GC I 0.90 (3.5) 0.57 (6) 0.90 (3.5) 0.90 (3.5) 0.91 (I) 0.90 (3.5) 
GC 2 0.88 (5) 0.51 (6) 0.89 (3) 0.89 (3) 0.91 (1) 0.89 (3) 
GC 3 0.86 (5) 0.46 (6) 0.89 (2.5) 0.88 (4) 0.91 (1) 0.89 (2.5) 
GC 5 0.80 (5) 0.35 (6) 0.87 (3) 0.87 (3) 0.91 (1) 0.87 (3) 
GC 7 0.72 (5) 0.26 (6) 0.85 (3) 0.84 (4) 0.91 (I) 0.86 (2) 
GC 10 0.54 (5) 0.16 (6) 0.75 (2.5) 0.67 (4) 0.84 (I) 0.75 (2.5) 
GC 11 0.48 (5) 0.14 (6) 0.69 (2) 0.56 (4) 0.78 (1) 0.68 (3) 
GC 13 0.35 (2) 0.11 (6) 0.28 (4) 0.23 (5) 0.37 (I) 0.31 (3) 
GC 15 0.25 (1) 0.10 (6) 0.14 (4) 0.13 (5) 0.16 (2.5) 0.16 (2.5) 

I average I 4.06 I 6.00 I 3.05 I 3.94 I 1.17 I 2.78 I 
weather 0.76 (I) 0.75 (2) 0.71 (5) 0.73 (4) 0.64 (6) 0.74 (3) 
electricity 0.70 (1) 0.67 (5) 0.68 (3) 0.68 (3) 0.64 (6) 0.68 (3) 

I average I 1.0 I 3.5 I 4.0 I 3.5 I 6.00 I 3.00 I 

TABLE II 
RAW CLASSIFICATION ACCURACY AND RANKS FOR CHECKERBOARD 

DATASETS. 

bO I I l3S eve NSE SEA ., , TRANSE EM WEA 
ReS 1 0.73 (2) 0.59 (6) 0.71 (3.5) 0.68 (5) 0.78 (1) 0.71 (3.5) 
Res 5 0.63 (2) 0.55 (6) 0.61 (3.5) 0.59 (5) 0.67 (I) 0.610.5) 
Res 10 0.58 (2) 0.52 (6) 0.56 (3) 0.54 (5) 0.62 (I) 0.55 (4) 
Res 15 0.59 (2) 0.49 (6) 0.57 (3.5) 0.55 (5) 0.61 (1) 0.57 (3.5) 
Res 25 0.50 (3.5) 0.49 (6) 0.50 (3.5) 0.50 (3.5) 0.52 (I) 0.50 (3.5) 
Res 50 0.83 (2) 0.64 (6) 0.78 (4) 0.76 (5) 0.85 (1) 0.79 (3) 
RCC I 0.73 (2) 0.57 (6) 0.70 (3.5) 0.68 (5) 0.77 (I) 0.70 (3.5) 
RCC 5 0.61 (2) 0.49 (6) 0.59 (3.5) 0.57 (5) 0.65 (1) 0.59 (3.5) 
RCC iO 0.51 (2) 0.45 (6) 0.50 (3.5) 0.48 (5) 0.55 (I) 0.50 (3.5) 
RCC 15 0.41 (3) 0.46 (1) 0.39 (5) 0.38 (6) 0.45 (2) 0.40 (4) 
RCC 25 0.56 (I) 0.41 (6) 0.55 (3) 0.52 (5) 0.55 (3) 0.55 (3) 
RCC 50 0.81 (2) 0.66 (6) 0.76 (4) 0.72 (5) 0.85 (I) 0.77 (3) 
RCE 1 0.71 (2) 0.58 (6) 0.69 (3.5) 0.65 (5) 0.77 (1) 0.69 (3.5) 
RCE 5 0.59 (2) 0.52 (6) 0.58 (3.5) 0.56 (5) 0.66 (I) 0.58 (3.5) 
RCE 10 0.53 (2) 0.49 (5) 0.50 (3.5) 0.48 (6) 0.58 (1) 0.50 (3.5) 
RCE 15 0.48 (2) 0.47 (4) 0.47 (4) 0.46 (6) 0.52 (I) 0.47 (4) 
RCE 25 0.43 (4) 0.44 (1) 0.43 (4) 0.43 (4) 0.43 (4) 0.43 (4) 
RCE 50 0.82 (2) 0.65 (6) 0.81 (3) 0.77 (5) 0.86 (I) 0.79 (4) 

I average I 2.19 I 5.28 I 3.61 I 5.03 I 1.33 I 3.58 I 

variety of features such as temperature, pressure, visibility, and 
wind speed. We chose eight features and set the classification 
task to predict whether rain precipitation was observed on 
each day. The training size was set to 120 instances (days), 
approximately one season, and data from the next season 
served as the test data. 

B. Experimental Results 

The preliminary results for TRANSE and their comparisons 
to other algorithms are presented in Table I and II for all 
datasets. We have grouped the results into two tables repre­
senting the Gaussian datasets (with bias) and the real-world 
datasets (as shown in Table II), and the rotating checker­
board variations (as shown in Table II) because of the large 
difference in database properties. For example, the Gaussian 
datasets are easily modeled with GMMs, whereas the rotating 
checkerboard is significantly more difficult to model because 
it is a uniform distribution with a fairly complex decision 
boundary. The (arne) and (mse) columns of the tables are 
TRANSE with the absolute mean error and mean square error 
weighting schemes applied to the ensemble, respectively. The 
TRANSE-EM column indicates the generalized version of 
TRANSE using gc(x) as the classifier as shown in Fig. 2. Fig. 
6 shows that the accuracy of the proposed approaches remains 
near constant even though the bias between the training and 
testing data sets increases. Fig. 7 and 8 present a graphical 
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Fig. 6. Effect of increasing the bias between training and testing sets on 
a classifier's accuracy for the GaussCir dataset. As expected, all classifier's 
accuracy significantly drop as the bias between the training and testing datasets 
becomes extremely large; however algorithms that use unlabeled data are 
extremely effective when the bias is limited in nature. 
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Fig. 7. Raw classification accuracy on the rotating checkerboard datasets 
with a constant drift rate over time. 

representation of a classifier's raw classification accuracy over 
the duration of an experiment for the rotating checkerboard 
with constant drift and NOAA weather dataset, respectively. 
The first observation to note from Tables I & II and the figures 
is that weighted classifier voting schemes offer improved 
accuracy over uniform weighting. Furthermore, the approaches 
presented in this work and WEA, all of which use unlabeled 
data to tune ensemble parameters with unlabeled data, achieve 
higher accuracies than approaches (i.e. Learn++ .NSE and 
SEA) that simply predict on unlabeled data without any 
adjustments made for the unlabeled data. 

Second, TRANSE-EM, TRANSE (arne) , and TRANSE 
(mse) outperform ensembles that do not use unlabeled data 
(e.g., Learn++ .NSE and SEA) on the datasets where the bias 
is large, as in the Gaussian dataset with a 7 time stamp bias. 
This effect is also observed with WEA algorithm, which also 
uses unlabeled data. While Learn++ .NSE works well on a 
large array of problems; it performs behind TRANSE-EM, 
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Fig. 8. Algorithm accuracy comparison on the weather dataset. The overall 
accuracy for each algorithm can be found in Table I. The TRANSE-EM 
approach, while highly effective on synthetic datasets performs poorly on 
a dataset where the cardinality of the data is low and p(x) is not easily 
modelled. 

but surprisingly performs better than TRANSE with (arne) 

or (mse) weighting in the overall average ranks. We believe 
Learn ++ .NSE is outperforming the proposed approaches on 
the rotating checkerboard data because: a) Learn++ .NSE has 
been shown to be quite effective at recovering knowledge 
from the reoccuring environments and b) the GMM based ap­
proaches make a loose assumption that the decision boundaries 
formed by the labeling function it (x) for any arbitrary time 
stamp are in regions of low density. Since the checkerboard 
data are distributed uniformly, this assumption is not met. 
Third, we see from Table I that TRANSE-EM works quite 
well when the datasets experience a large bias between the 
training and testing sources. We should note that the results for 
TRANSE-EM can vary greatly depending on the parameters 
selected (e.g., the number of components used in the GMM). 
Generating a good GMM can become increasingly difficult 
as the complexity of the true distribution increases. This is 
most dramatically illustrated with the results of the real world 
datasets (elec2 and weather), where the best TRANSE-EM 
was significantly outperformed by other versions of TRANSE 
and other approaches (refer to Table I). 

V. DISCUSSION & CONCLUSION 

In this proof-of-concept study we investigated the use of 
unlabeled data to essentially "tune" a classifier to be a better 
predictor on data, which can be particularly effective in a 
transductive learning setting for non stationary environments. 
The approaches presented in this paper and in [22] are robust 
to changes in the source used for testing a classifier. In this 
work, we selected a transductive methodology for classifica­
tion rather than semi-supervised learning because developing a 
generalized mapping function for (distant) future data may be 
unfeasible for future unlabeled data as the source generating 
the data is drifting over time. Therefore, our approaches have 
focused on adapting the classifier to best classify the unlabeled 
data that are currently available. We presented a general 



framework for using labeled and unlabeled data to aid in 
configuring and fine tuning an ensemble classifier's decision. 
GMMs are generated from labeled and target (unlabeled) data, 
which allows for the transfer of class information onto the 
unlabeled distribution. Once the class information of the target 
distribution has been inferred, classifier voting weights are 
updated using this information and the ensemble decision is 
made on the target. Results indicate that the GMMs are all that 
are needed on simple problems, whereas complex problems 
(e.g., where the probability distribution is not easily modeled) 
are aided by retaining ensemble member classifiers. Our results 
have also shown that the simple tranductive algorithm, which 
does not use the classifier ensemble, can be effective for 
moderately biased datasets provided that there is sufficient data 
to form a reliable GMM. 

While the results for TRANSE-EM are appealing, we em­
phasize that in a practical setting (e.g., limited data and a 
complex distribution that is not easily modeled), TRANSE­
EM becomes infeasible. In such complex cases, the ensemble, 
such as TRANSE with mse or ame, approach combined 
with weighted majority voting, where the weights are based 
on the GMM based probabilistic model, clearly outperforms 
the non-ensemble approaches. For simpler cases, such as 
the rotating Gaussians, a simpler version of the TRANSE 
approach where we simply use the 9c(X) instead of the 
ensemble is also effective, as 9c(X) is a good approximator 
of the class posteriors in such cases. Using the 9c (x ) alone 
is not recommended for complex real world cases, however, 
because of the difficulty in accurately estimating the GMM 
parameters. In such cases, the imperfect posteriors estimated 
by the GMM are not sufficient to track the changing en­
vironment, however can be extremely useful in guiding the 
ensemble to properly weight its classifiers to effectively track 
the changing environment. Approaches that keep an ensemble 
of discriminative classifiers such as TRANSE with either ame 
or mse options (and even Learn++ .NSE), can significantly 
improve over TRANSE-EM. Furthermore, many application 
driven problems that involve incremental learning require that 
model adaptation be implemented, and from our experiments, 
unlabeled data should be used to refine a classifier before 
field data are classified. If a small amount of labeled data are 
available from the field data, then more advanced transductive 
and/or domain adaptation approaches should be investigated. 
We leave this final note as expansion for future work. 
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