
WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15,2012 - Brisbane, Australia IJCNN

Transductive Learning Algorithms for Nonstationary Environments

Gregory Ditzler, Gail Rosen and Robi Polikar

Abstract-Many traditional supervised machine learning ap­
proaches, either on-line or batch based, assume that data are
sampled from a fixed yet unknown source distribution. Most
incremental learning algorithms also make the same assumption,
even though new data are presented over periods of time. Yet,
many real-world problems are characterized by data whose dis­
tribution change over time, which implies that a classifier may no
longer be reliable on future data, a problem commonly referred to
as concept drift or learning in nonstationary environments. The
issue is further complicated when the problem requires prediction
from data obtained at a future time step, for which the labels are
not yet available. In this work, we present a transductive learning
methodology that uses probabilistic models to aid in computing
ensemble classifier voting weights. Assuming the drift is limited in
nature, the proposed approach exploits a probabilistic estimate to
determine the class responsibility of components in a Gaussian
mixture model (GMM), generated from labeled and unlabeled
data. A general error bound is provided based on the ensemble
decision, the probabilistic estimate of the GMM, and the true
labeling function, which, unfortunately is never actually known.

Keywords-concept drift; Gaussian mixture models; multiple
classifier systems; unlabeled data

I. INTRODUCTION

Concept drift is the problem of learning from a data source,
whose distribution - intermittently or continuously - changes
in time, and it is referred to as learning in nonstationary

environments. The change in data structure can be abrupt or
gradual, fast or slow, reoccurring, or otherwise. These drift
types can lead to other forms of drifting environments (e.g.,
abrupt change in the evidence, p(x) , of a random variable
x or the true decision function, f(x) . The drift in data can
be real or virtual in nature. Real drift is a change in the
posterior, p(wlx) (the probability of class w conditioned on
observation x), while virtual drift is an observed change (e.g.,
change in likelihood, p(xlw» - as a result of an incomplete
representation of the true distribution of the current data (e.g.,
due to sampling bias). Typically, we find that real and virtual
drift occur at the same time, thus making the learning problem
quite difficult [1]. Some researchers strictly focus on one
scenario, such as virtual drift [2], while we try to address
the problem more generally. The fundamental problem that
concept drift presents is that classifiers created in the past
become outdated or remain only partially relevant (e.g., some
portions of the learning problem may not have changed or
changed very little).

G. Ditzler and G. Rosen are with the Dept. of Electrical & Computer
Engineering at Drexel University, Philadelphia, PA. They are supported by the
National Science Foundation (NSF) CAREER award #0845827, NSF Award
#1120622, and the Department of Energy Award #SC004335. Author email:
gregory.ditzler@gmail.com, gailr@ece.drexel.edu

R. Polikar is with the Dept. of Electrical & Computer Engineering at Rowan
University. He is supported by the NSF under Grant No: ECCS-0926159.
Author email: polikar@rowan.edu

U.S. Government work not protected by U.S. copyright

Consider, as an example, the problem of predicting precip­
itation from four features (average temperature, wind speed,
humidity, and barometric pressure). Assume batch based pro­
cessing where a classifier is generated on a season of data,
e.g., spring, and must predict on data from the next season,
summer, for which the labels are not yet available. There will
likely be some change in p(x) because of the temperature and
barometric pressure changing from the seasonal transition, as
well as a change in p(xlw = rain) and P(w = rain) as it may
rain more in the spring than summer. Therefore, a classifier
should be able to adapt to such a changing environment to
predict on future data. On-line processing also faces similar
problems: given a stream of instances, appearing one instance
at a time, when should a classifier be modified or perhaps
replaced by a new classifier, if p(x) , p(xlw) , or P(w) change
in time, possibly from one sample to the next.

Consider an adversary that controls the source from which
the train/test sets are sampled. The adversary is therefore in
charge of defining how the environment changes, as well as
the rate of the change. Therefore, in classification problems
where an adversary is in control of the drift, the data must be
learnable even with the change. It is always possible for the
adversary to select a source(s) (e.g., at random) that cannot
possibly be predicted by the learning algorithm at each time
stamp [3] (as true randomness cannot be learned). Therefore,
and without any loss of generality, it is necessary to assume
that the drift contains - at a minimum - some loose form of
structure, and that it evolves over time. We will refer to this
assumption as the limited drift assumption.

In this work, we first describe a multiple classifier sys­
tems (MCS) based approach to learn from batch data over
time, where the sources generating the data are changing (or
drifting). If the data are arriving in an online fashion, we
can simply wait for a period to accumulate a batch of data
prior to processing. The novelty of the approach is that we
use unlabeled (test) data in a transductive learning setting
to improve the performance of the ensemble in predicting
labels to field data. Probabilistic models are generated on
(labeled) training and (unlabeled) testing data. A maximum
a posteriori (MAP) estimate is performed to infer the degree
of responsibility each known class accepts to explain the
parameters of the model generated with the unlabeled data.
The probabilistic models are used to aid in the calculation of
classifier voting weights. A loose error bound is produced for
the MCS, written in terms of the ensemble hypothesis, the
probabilistic model estimates, and the true labeling function.
We also demonstrate the feasibility of a second, related, trans­
ductive learning algorithm that offers a less computationally
complex solution to the problem than ensembles, under certain
conditions.

This paper is organized as follows: Section II presents a
brief overview of the related work on learning from concept
drift with an emphasis on ensemble based systems, Section III
presents our approach for learning concept drift with classifiers
and Gaussian mixture models, Section IV presents results from
synthetic and real-world experiments and finally, Section V
discusses some final conclusions as well as future research
directions.

II. REL ATED WORK

A variety of methods have been proposed to handle concept
drift including single classifier methods, drift detection, and
MCS based solutions to name a few. Typically, concept drift
algorithms can be categorized as active or passive based ap­
proaches [4]. Active approaches seek to identify when change
occurs in the data stream and then takes appropriate corrective
action based on the amount and nature of the drift detected.
A passive approach simply assumes that some amount of drift
may be present in the data and adjusts algorithm parameters
whenever new data become available. For example, a drift
detection approach such as the the early drift detection method
(EDDM), [5] and Hellinger distance drift detection method
(HDDDM) [6], would be considered active, whereas dynamic
weighted majority (DWM) [7], is a passive approach.

Many of the earliest approaches for concept drift use a
single classifier and/or sliding window [3], [8], or use adaptive
classifiers along with drift detection to learn in nonstationary
environments. For example, Alippi et. al. propose an adaptive
k-NN classifier with the computational intelligence cumulative
sum (CI-CUSUM) for drift detection [9], [10] and more
recently have presented classifiers for detecting gradual drift
[11], [12], a more difficult problem than detecting an abrupt
change. Another example of a single classifier approach is the
uniFied Instance Selection algoritHm (FISH), which uses time
and distance information to form training sets for a classifier
[13]. Yamauchi proposes a single classifier design using radial
basis function (RBF) neural networks, inspired by previous
work for covariate shift; however, his approach relaxes the
computational requirements of prior work [2].

Ensemble based approaches constitute a different group
of concept drift algorithms that have been widely popular
because of their simple, yet well-founded theory based on
variance reduction, and their ability to strike a meaningful
balance between stability and plasticity. Thus, ensemble based
approaches can avoid catastrophic forgetting associated with
other algorithms that replace the existing classifier with a new
one trained on the new data only [14], [15]. In [16], ECSMiner
is presented for learning concept drift and identifying novel
classes in data streams. Kolter & Maloof present dynamic
weighted majority (DWM) , an on-line learning ensemble
designed for concept drift applications [7]. DWM maintains
a pool of classifiers and weighs these classifiers in a semi­
heuristic method that reduces classifier weights when in­
stances are misclassified. Classifiers with low weights are then
discarded. Another ensemble-based approach, Learn++ .NSE
generates a classifier with each new dataset and uses a

dynamic weighting strategy that features a weighted sum of
each classifier's time-adjusted errors over current and recent
environments [4]. More recently, Bifet et al. proposed an on­
line bagging approach that uses adaptive size Hoeffding trees
(ASHT) [17]. ASHT is motivated by the idea that smaller
trees adapt more quickly to a changing concept than a large
tree, but a large tree performs better over periods where the
concepts are not changing. Also in [17], ADWIN bagging was
presented, which combines the adaptive windowing algorithm,
ADWIN, and bagging. Minku et. al. have proposed that diver­
sity in classifier ensemble can also be informative for handling
concept drift [18], [19].

Many of the batch-based learning algorithms update clas­
sifier parameters when labeled data are presented, then new
data are classified [4], [20]. None of the aforementioned
approaches have a mechanism to take advantage of unlabeled
data, even though many applications provide test-then-train
type data, where the labels of the test data are not immediately
available. Climate data, financial data, power demand and
pricing data are just a few examples of such applications. With
the exception of a few works, such as that of Zhang et al. [21],
which combines classification and clustering, taking advantage
of unlabeled data has not been addressed within concept drift
literature. More recently, we proposed a weight estimation
algorithm (WEA) for updating classifier weights by relating
Gaussian mixture models (generated at different time stamps
on labeled and unlabeled data) through the Bhattacharyya
distance [22].

In the next section, we describe a proof-of-concept method­
ology that exploits unlabeled field data to aid in updating
the parameters of the ensemble. With the aforementioned
limited drift assumption in place, we expect the ensemble
to benefit from the information provided by the unlabeled
data, and we present a loose error bound for the ensemble
hypothesis. The approach presented in the next section is
therefore a transductive learning algorithm for nonstationary
environments.

III. ApPROACH

The proposed approach, called TRansductive leArning eN­
SEmble (TRANS E) for concept drift, is designed to use
knowledge learned from previous environments to infer class
information about the target probability distribution that has
no class information yet available (Le., test data distribution).
Thus, data from the target distribution are assumed to be
unlabeled and sampled i.i.d. from an unknown distribution that
has not been learned. TRANSE uses the unlabeled target data
- sampled possibly from a different distribution than training
distributions - to infer label information about each unlabeled
data. This approach is considered transductive because the
primary focus is on classification of the unlabeled data, not to
make TRANSE a generalized prediction algorithm on distant
future unlabeled data. That is because, a generalized prediction
algorithm would not work well in situations were the source
that generates the data changes with time.

Input: labeled data 'Dt = {(Xi,Yi)}i":,b unlabeled data Bt =

{(Xq)}�=l' Learn base learning algorithm, and e GMM
parameters

1: for t = 1, 2, ... do
2: Call Learn with 'Dt and receive classifier (hypothesis) ht
3: Compute GMM parameters e� for all classes c

1 ... ,C from 'Dt
4: Use Bt to compute GMM parameters e�
5: Compute 9c(X) using (3) for x E Bt (where c =

1, ... ,C) and compute the expected error, El,t, for clas­
sifier l on Bt, where l = 1, ... ,t.

6: Update classifier voting weights

1 - El t
Cl'.l,t = log ---'

El,t

7: Predict class labels for Xq E Bt
t

(1)

H(xq) = argmax L Cl'.1,t[hl(Xq) = Y] (2)
yEY 1=1

8: end for
Output: Ensemble hypothesis H(xq) for q = 1, ... , n

Fig. 1. Transductive learning ensemble pseudo code (TRANSE)

TRANSE is designed to learn in scenarios where labeled
data are available intermittently at some arbitrary time stamp
t, which have been sampled from source St. Some unlabeled
data become available after training on the labeled data;
however, the source used to sample the unlabeled data may
be different from St. Under the assumption of limited drift,
TRANSE aims to transfer knowledge from St to infer possible
class information about the unlabeled data. This transferred
knowledge is then used to update an ensemble's parameters
and classify the unlabeled data. We emphasize that samples
drawn from a source at a particular time t are assumed to be
i.i.d.

A. Algorithm Description

The pseudo code for TRANSE is shown in Fig. 1. A
density estimation algorithm is needed by TRANSE, for which
we choose Gaussian mixture models (GMM). TRANSE is
provided with labeled training data 'Dt with data pairs (Xi, Yi)
for i = 1, . . . ,mt at time stamp t. Unlabeled field (target) data,
Bt, is presented after the training data have been processed.
The unlabeled dataset, Bt, is not only the target data to be
classified by TRANSE, but it is also used by TRANSE to
update its model parameters - hence the transductive learning
component of TRANSE.

The algorithm begins by calling Learn, any supervised
classification algorithm, with the labeled data, 'Dt, to generate
a new classifier (Line 2). Then for each class c in the training
dataset 'Db a GMM is generated, where 8� represents the
GMM parameters (i.e., mean & covariance components) for
class c at time stamp t (Line 3). There are Kc components
in 8� and the total number of components for all classes is

Input: labeled data 'Dt = {(Xi,Yi)}i":,l, unlabeled data Bt =

{(Xq)}�=b and e GMM parameters

1: for t = 1, 2, ... do
2: Using 'Dt, apply EM to find parameters e� Vc for the

"labeled" GMM
3: Given unlabeled data, Bt, which is sampled from 'Dt

without the labeled information, apply EM to Bt to find
parameters e� for the "unlabeled" GMM

4: Classify Xq E Bt using (3)
5: end for

Fig. 2. EM-based approach for learning a changing data stream (TRANSE­
EM)

expressed as K = Lc Kc. In Line 4 of the pseudo code, a
GMM, with parameters 8�, is generated from the unlabeled
data Bt, when that data become available. This GMM with
parameters 8� is formed with K components. Since Bt do
not have labels, we cannot - yet - associate class labels to
each component in the GMM with parameters 8�. Therefore,
we need to find a mechanism to relate the components in E>�
to 8�.

Let us define an estimate of the posterior probability on Bt
as gc(x) , which is calculated in (3). As stated earlier, labels
cannot be directly associated with each component in E>�.
However, using (3) we can assign a weight to each component
in E>� for class c. This weight represents the amount of
responsibility that class c accepts for representing component
k in E>�. This measure of responsibility is estimated as
the posterior, P(WciJ.lk) , given the GMM generated from
the labeled training data. The quantity P(WciJ.lk) is easily
computable with the GMMs with parameters E>�. The priors
P(wc) is the prior probability that can be computed directly
from the data. Given a limited amount of drift present between
the source and target data, this estimate should reasonably
indicate the class that is the most responsible for generating
such data with J.lk.

K
P(wc) L P(wciJ.lk) 1l"kN(xiJ.lk, Ek)

k=l gc(x) =
C K
L P(wc,) L P(wc' iJ.lk) 1l"kN(xiJ.lk, Ek)

c'=l k=l

(3)

where 1l"k are the GMM mixing coefficients, J.lklEk is the kth
mean/covariance in E>� and N(xiJ.l, E) is a Gaussian density
function with mean J.l and covariance E. The P(WciJ.lk) can
be computed using (4) with the parameters GMM parameters
in 8�.

(4)

where E>� determines the GMM mixing coefficients 1l"k' the

covariance 1:k, and the mean f.Lk for the kth component of the
cth class. If the drift is evolutionary in nature, then P(Wclf.Lk)
provides a good inference of f.Lk'S class association.

The expected pseudo error for a hypothesis, hi, l = 1, . . . , t,
is computed using (5) or (6), which is referred to as mean
square error (mse) and absolute mean error (ame), respectively
(see Line 5). The pseudo error is dependent on the probabilistic
estimate of gc(x). In this work, we empirically test these two
pseudo error measures, which are used to derive the classifier
voting weights.

where El,t is the pseudo error of hypothesis l at time t, hl,c(Xi)
is the posterior estimate for class c from hypothesis l on Xi
and gc(Xi) is the GMM posterior for class c on Xi.

The classifier voting weights are determined in Line 6 using
pseudo error described above. The form of voting weights is
a commonly used form of a non-uniform weighting scheme
inspired by Adaboost [23], and the final ensemble hypothesis,
H(x), is computed using a weighted majority vote as in Line
7.

A couple points are worth noting: first, hi should preferably
provide a continuous probabilistic interpretation of class sup­
ports; however, TRANSE can still run even if hi only provides
binary decisions. Second, it is reasonable to ask whether H(x)
should be used at all if gc(x) has strong influence on H(x).
This question - whether the ensemble members should be
retained at all - has a complex answer, as we discuss below
and again in the results section. The short answer is that
decision depends on how accurate we believe our estimate of
the posterior on Bt is. If this estimate is very accurate, then the
ensemble members are not necessary, and we can directly use
gc(x). A generalization of the TRANSE algorithm that follows
this approach is shown in Fig. 2. This algorithm, which follows
an EM-like mechanism - is referred to as TRANSE-EM.

We anticipate that the posterior estimate is likely to be accu­
rate if indeed the GMM parameters (and the number of mixture
components) have been accurately predicted, which is likely to
happen for data with simple and well-behaving distributions.
However, for complex distributions whose accurate estimate
using the GMM may be difficult, the knowledge learned by
the ensemble members - aided by the limited accuracy of the
GMMs provided in the form of classier weights - can help
build a robust knowledge base and continuously reinforce and
update previously learned knowledge. Furthermore, note that
the selection of GMM parameters (such as the user-defined
number of mixture components) can also drastically change
the effectiveness of the GMM-only approach as shown in Fig.
2. It is therefore important to evaluate challenging problems
from real-world data to observe the impact and sensitivity of
GMM parameters on the ability of the algorithm to track the

changing environment. We provide preliminary results of such
an analysis later in the results section of this paper.

B. Relationship Between Ensemble Error and the Probabilis­

tic Model

In this section we present the error bound of ensemble
hypothesis, and explore whether classifier weighting should
be uniform or weighted. To guide us, we choose a natural
measure of error between the classifier hypothesis, h(x), and
an ideal labeling function, f (x), as the absolute difference
given by (7), where IEx�p['l is the expectation computed over
some distribution P (note that P not a dataset).

E(h,1) = IEx�p[1 h(x) -f(x) Il (7)

This disagreement function can be computed between any
arbitrary hypothesis h and labeling function f on a distri­
bution P. For the purpose of this paper, we are interested
in ET(hl, Jr), or ET(hl) in shorthand notation, which is the
disagreement between the hypothesis generated at time stamp
l and the true labeling function on the target distribution,
fT. More importantly, we are interested in solving for the
ensemble error bound on the target distribution, ET(H).

Theorem 1 (Classifier error bound): The error of a hypoth­
esis, hi, generated at time stamp l from PI, on a target PT is
bounded above by (8).

ET(hl) ::; El(hl) + d1(PI, PT)
+min{ET(JT,!I),EI(JT,fl)} (8)

where d1 (', .) is the variational divergence. The proof of this
theorem is given by Ben-David et al. [24].

Theorem 2 (Ensemble error bound): The error of the en­
semble hypothesis, H, on a target PT is bounded above by
(9).

(9)

Proof' The proof of Theorem 2 is rather straight forward
and is proven by adding/subtracting ET(H, g), which is the
error between the ensemble hypothesis and the GMM estimate
of the true labeling function, as shown in below:

ET(H) ET(H,Jr) +ET(H,g)-ET(H,g)
< ET(H,g)+ 1 ET(H,Jr) -ET(H,g) 1
< ET(H,g) +IEx�PT[I g(x) -Jr(x) Il
< ET(H,g) + ET(JT,g)

•

The second term in the ensemble error bound, ET(JT, g), is
intuitive to understand as it is simply the disagreement between
the probabilistic (GMM) model g(x) and the true labeling
function Jr(x). However, the relationship of g(x) and H(x)
has not been mathematically analyzed. Therefore, we should
determine how g(x) and H(x) affect each other. The ET(H, g)

term can be simplified by exploiting the fact that hl and 9 can
be written in terms of biased versions of fT.

tT(H,g) = lEpT[I g(x) -H(x)]

= lEpT [lg(X) - 1; alhl(x) ll
= lEpT [IJr(X) + (3(x) - 1; (Wl + "fl)(Jr(X) + Tl(X))ll

where Tl(X) is hl's bias (error) on x, (3(x) is g(x)'s bias on
x, and 'Yl is the bias of the calculated classifier weight (ad

from the optimal voting weight Wl.
Let us assume for the moment 9 H fT I::/x, that is, the

GMM estimate approaches the true target function. If this is
the case, then we have:

lim tT(H,g) =
g--+ JT

lEpT [t { �Jr(X) -Wl(��) } 1
1 1

ht(x)

since (3(x) H 0 and 'Yl H O. The 'Yl terms should be
expected to decrease as 9 improves because the error of 9

affects the bias in the classifier weights. We can see that
Jr(x) - L1=1 wlhl(x) = 0 is an obvious solution to the prob­
lem. Using the expectation over PT, our goal is to minimize
lEx�PT [I Jr(x) - Ll wlhl(x) I]· This analysis suggests that
if we can infer upon the bias of a classifier, i.e., relate the
classifier weights to the error of the classifier (as done in step
5 of the algorithm), weighted majority voting goes along with
our intuition that poorly performing classifier should have their
weights reduced. However, if this task is not possible, then
using a uniform vote as suggested in [I] is the ideal choice.
The experiments sections presents several algorithms that can
infer upon bias and one that does not, thus indicating that a
weighted majority vote may be better in those cases.

IV. EXPERIMENTS

The proposed approach, TRANSE along with three variants,
are compared against Learn++ .NSE (referred to as NSE in
result tables) [25], SEA (streaming ensemble algorithm) [20],
and WEA (weight estimation algorithm) [22]. The TRANSE
approaches are refereed to as TRANSE (arne), (mse) and
TRANSE-EM, where TRANSE (arne) uses (6) to compute
expected risk, TRANSE (mse) uses (5) to compute expected
risk and TRANSE-EM uses gc(x) as the hypothesis (i.e.,
ensemble classifiers are not used as presented in Fig. 2). WEA
uses GMMs to generate synthetic data from the estimated
target distribution to infer the expected error on the target.
WEA uses unlabeled data to update the classifier ensemble in
nonstationary environments. Learn ++ .NSE generates a classi­
fier when new data are presented. Classifiers in the ensemble
are combined through a weighting scheme that accounts for a

Fig. 3. The rotating Gaussian problem consists of two Gaussian probability
density functions drift in a circular pattern causing environments to be
encountered multiple times in a single experiment (i.e., a class expectation is
controlled by J.Lt

= [cosilt, sin iltrr, hence environments repeat 27r).

Fig. 4. Rotating checkerboard drifting scenario consists of a checkerboard
pattern rotating between 0 and 27r in 300 evenly spaced intervals. Reoccurring
environments are encountered at every integer multiple of 7r. Hence the data
from 0 to 7r is identical to the data sample from 7r to 27r.

classifier's error in recent time [4], [25]. SEA is a benchmark
ensemble algorithm that uses un weighted classifier voting [20].
The base classifier selected for all ensemble systems was
the C4.5 decision tree. In each experiment we inject bias
between the training and testing datasets as described in the
next section. Several synthetic and real-world datasets have
been selected to evaluate the algorithms.

A. Datasets Used

We used two synthetic (rotating Gaussian and rotating
checkerboard) and two real-world (Electricity Pricing and
Weather) datasets to evaluate the proposed approach and
compare its different versions to state-of-the-art approaches.
The rotating Gaussian dataset, referred to as GaussCir, is
comprised of two Gaussian components, each representing a
different class, rotating around one another (Fig. 3). The class
means are determined by using the parametric equations tA =

[cos etl sin etF, J.l� = -J.lI (where the subscripts 1 & 2 refer to
classes), et = 27fmt/N, with fixed class covariance matrices
given by �1 = �2 = 0.5 * I, where m is the number of
cycles, t is an integer valued time stamp (t = 0, 1, ... , N -1)

and I is a 2 x 2 identity matrix. The experiment is run over
2 complete rotations with 1000 train/test instances in each
batch, and with varying levels of bias between the training

0.7

25
time

Fig. 5. The drift rate (daj dt) of the rotating checker boards varied according
to the experiment in [4). Predicting on the dataset becomes more difficult as
the rate increases.

and testing datasets. Bias was injected by sampling the testing
dataset from a future time stamp. In this paper, we refer to
increasing number of time steps between training and test data
as increasing or injecting bias.

The rotating checkerboard problem (RC) is a challenging
generalization of the classical non-linear XOR probleml. The
XOR problem is the special case when the angle of rotation
equals a = 0, �, 7r, 327r and 27r. The experiment is controlled
by two parameters, namely the relative side length of each
square (representing one of the classes) with respect to the total
length of the board (fixed at 0.5 in our experiments), and the
angle of rotation, a. By varying the rotation angle in smaller
steps between 0 and 27l', a significantly more challenging
set of decision boundaries can be created. This experiment
is particularly effective for observing an algorithm's ability
to learn data in recurring environments. Fig. 4 depicts six
snapshots of the board, corresponding to half of the rotating
(a E [0,7rj) checkerboard experiment. During the second half
(a E [7r, 27rj), the environment identically repeats the first
half, which in turn simulates a recurring environment. We also
experiment with three different drift rates in this work, namely:
constant (RCC), exponential (RCE), and sinusoidal (RCS), as
shown in Fig. 5.

The real-world Electricity Pricing dataset (elec2) was first
presented in [26] and has been used as a benchmark for
concept drift problems. This dataset is a sequence of infor­
mation related to time and demand fluctuations in the price
of electricity in New South Wales, Australia. We use the
day, period, NSW (New South Wales) electricity demand,
VIC (Victoria) electricity demand and the scheduled electricity
transfer as the features. The task is to predict whether the NSW
price will be higher or lower than VIC's in a 24 hour period.

Finally, the Weather Dataset is a subset of the NOAA dataset
that we first processed and released as a concept drift dataset
[27]. The dataset is obtained from Offutt Air Force Base in
Bellevue, Nebraska. Daily measurements were taken for a

I The rotating checkerboard dataset among other resources and
datasets for nonstationary environments can be downloaded from
http://users.rowan.eduJ�polikar/RESEARCHlNSE/

TABLE I
RAW CLASSIFICATION ACCURACY AND RANKS FOR GAUSSIAN CIRCLE

(GC) & REAL-WORLD DATASETS.

I bias level I NSE I SEA I ame I mSf! I TRANSE-EM I WEA I
GC I 0.90 (3.5) 0.57 (6) 0.90 (3.5) 0.90 (3.5) 0.91 (I) 0.90 (3.5)
GC 2 0.88 (5) 0.51 (6) 0.89 (3) 0.89 (3) 0.91 (1) 0.89 (3)
GC 3 0.86 (5) 0.46 (6) 0.89 (2.5) 0.88 (4) 0.91 (1) 0.89 (2.5)
GC 5 0.80 (5) 0.35 (6) 0.87 (3) 0.87 (3) 0.91 (1) 0.87 (3)
GC 7 0.72 (5) 0.26 (6) 0.85 (3) 0.84 (4) 0.91 (I) 0.86 (2)
GC 10 0.54 (5) 0.16 (6) 0.75 (2.5) 0.67 (4) 0.84 (I) 0.75 (2.5)
GC 11 0.48 (5) 0.14 (6) 0.69 (2) 0.56 (4) 0.78 (1) 0.68 (3)
GC 13 0.35 (2) 0.11 (6) 0.28 (4) 0.23 (5) 0.37 (I) 0.31 (3)
GC 15 0.25 (1) 0.10 (6) 0.14 (4) 0.13 (5) 0.16 (2.5) 0.16 (2.5)

I average I 4.06 I 6.00 I 3.05 I 3.94 I 1.17 I 2.78 I
weather 0.76 (I) 0.75 (2) 0.71 (5) 0.73 (4) 0.64 (6) 0.74 (3)
electricity 0.70 (1) 0.67 (5) 0.68 (3) 0.68 (3) 0.64 (6) 0.68 (3)

I average I 1.0 I 3.5 I 4.0 I 3.5 I 6.00 I 3.00 I

TABLE II
RAW CLASSIFICATION ACCURACY AND RANKS FOR CHECKERBOARD

DATASETS.

bO I I l3S eve NSE SEA ., , TRANSE EM WEA
ReS 1 0.73 (2) 0.59 (6) 0.71 (3.5) 0.68 (5) 0.78 (1) 0.71 (3.5)
Res 5 0.63 (2) 0.55 (6) 0.61 (3.5) 0.59 (5) 0.67 (I) 0.610.5)
Res 10 0.58 (2) 0.52 (6) 0.56 (3) 0.54 (5) 0.62 (I) 0.55 (4)
Res 15 0.59 (2) 0.49 (6) 0.57 (3.5) 0.55 (5) 0.61 (1) 0.57 (3.5)
Res 25 0.50 (3.5) 0.49 (6) 0.50 (3.5) 0.50 (3.5) 0.52 (I) 0.50 (3.5)
Res 50 0.83 (2) 0.64 (6) 0.78 (4) 0.76 (5) 0.85 (1) 0.79 (3)
RCC I 0.73 (2) 0.57 (6) 0.70 (3.5) 0.68 (5) 0.77 (I) 0.70 (3.5)
RCC 5 0.61 (2) 0.49 (6) 0.59 (3.5) 0.57 (5) 0.65 (1) 0.59 (3.5)
RCC iO 0.51 (2) 0.45 (6) 0.50 (3.5) 0.48 (5) 0.55 (I) 0.50 (3.5)
RCC 15 0.41 (3) 0.46 (1) 0.39 (5) 0.38 (6) 0.45 (2) 0.40 (4)
RCC 25 0.56 (I) 0.41 (6) 0.55 (3) 0.52 (5) 0.55 (3) 0.55 (3)
RCC 50 0.81 (2) 0.66 (6) 0.76 (4) 0.72 (5) 0.85 (I) 0.77 (3)
RCE 1 0.71 (2) 0.58 (6) 0.69 (3.5) 0.65 (5) 0.77 (1) 0.69 (3.5)
RCE 5 0.59 (2) 0.52 (6) 0.58 (3.5) 0.56 (5) 0.66 (I) 0.58 (3.5)
RCE 10 0.53 (2) 0.49 (5) 0.50 (3.5) 0.48 (6) 0.58 (1) 0.50 (3.5)
RCE 15 0.48 (2) 0.47 (4) 0.47 (4) 0.46 (6) 0.52 (I) 0.47 (4)
RCE 25 0.43 (4) 0.44 (1) 0.43 (4) 0.43 (4) 0.43 (4) 0.43 (4)
RCE 50 0.82 (2) 0.65 (6) 0.81 (3) 0.77 (5) 0.86 (I) 0.79 (4)

I average I 2.19 I 5.28 I 3.61 I 5.03 I 1.33 I 3.58 I

variety of features such as temperature, pressure, visibility, and
wind speed. We chose eight features and set the classification
task to predict whether rain precipitation was observed on
each day. The training size was set to 120 instances (days),
approximately one season, and data from the next season
served as the test data.

B. Experimental Results

The preliminary results for TRANSE and their comparisons
to other algorithms are presented in Table I and II for all
datasets. We have grouped the results into two tables repre­
senting the Gaussian datasets (with bias) and the real-world
datasets (as shown in Table II), and the rotating checker­
board variations (as shown in Table II) because of the large
difference in database properties. For example, the Gaussian
datasets are easily modeled with GMMs, whereas the rotating
checkerboard is significantly more difficult to model because
it is a uniform distribution with a fairly complex decision
boundary. The (arne) and (mse) columns of the tables are
TRANSE with the absolute mean error and mean square error
weighting schemes applied to the ensemble, respectively. The
TRANSE-EM column indicates the generalized version of
TRANSE using gc(x) as the classifier as shown in Fig. 2. Fig.
6 shows that the accuracy of the proposed approaches remains
near constant even though the bias between the training and
testing data sets increases. Fig. 7 and 8 present a graphical

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

10

____ nse
___ t-abs
.....e--t-em
........... wea
____ t-mse

15

Fig. 6. Effect of increasing the bias between training and testing sets on
a classifier's accuracy for the GaussCir dataset. As expected, all classifier's
accuracy significantly drop as the bias between the training and testing datasets
becomes extremely large; however algorithms that use unlabeled data are
extremely effective when the bias is limited in nature.

0.9

0.8

0.7

0.6

0.5

0.4

0.8

Bias"" 1

100 200

Bias"" 15

100 200

300

nse sea

0.8
Bias"" 5

Bias"" 25

t-abs t-em

0.7
Bias"" 10

Bias '= 50

100 200 300
wea t-msel

Fig. 7. Raw classification accuracy on the rotating checkerboard datasets
with a constant drift rate over time.

representation of a classifier's raw classification accuracy over
the duration of an experiment for the rotating checkerboard
with constant drift and NOAA weather dataset, respectively.
The first observation to note from Tables I & II and the figures
is that weighted classifier voting schemes offer improved
accuracy over uniform weighting. Furthermore, the approaches
presented in this work and WEA, all of which use unlabeled
data to tune ensemble parameters with unlabeled data, achieve
higher accuracies than approaches (i.e. Learn++ .NSE and
SEA) that simply predict on unlabeled data without any
adjustments made for the unlabeled data.

Second, TRANSE-EM, TRANSE (arne) , and TRANSE
(mse) outperform ensembles that do not use unlabeled data
(e.g., Learn++ .NSE and SEA) on the datasets where the bias
is large, as in the Gaussian dataset with a 7 time stamp bias.
This effect is also observed with WEA algorithm, which also
uses unlabeled data. While Learn++ .NSE works well on a
large array of problems; it performs behind TRANSE-EM,

0.9

0.85

0.55

0.5'----�-�-�--�-�-�--�
20 40 60 80 100 120 140

I -- nse -- sea -- t-abs --t-em -- wea --t-msel

Fig. 8. Algorithm accuracy comparison on the weather dataset. The overall
accuracy for each algorithm can be found in Table I. The TRANSE-EM
approach, while highly effective on synthetic datasets performs poorly on
a dataset where the cardinality of the data is low and p(x) is not easily
modelled.

but surprisingly performs better than TRANSE with (arne)

or (mse) weighting in the overall average ranks. We believe
Learn ++ .NSE is outperforming the proposed approaches on
the rotating checkerboard data because: a) Learn++ .NSE has
been shown to be quite effective at recovering knowledge
from the reoccuring environments and b) the GMM based ap­
proaches make a loose assumption that the decision boundaries
formed by the labeling function it (x) for any arbitrary time
stamp are in regions of low density. Since the checkerboard
data are distributed uniformly, this assumption is not met.
Third, we see from Table I that TRANSE-EM works quite
well when the datasets experience a large bias between the
training and testing sources. We should note that the results for
TRANSE-EM can vary greatly depending on the parameters
selected (e.g., the number of components used in the GMM).
Generating a good GMM can become increasingly difficult
as the complexity of the true distribution increases. This is
most dramatically illustrated with the results of the real world
datasets (elec2 and weather), where the best TRANSE-EM
was significantly outperformed by other versions of TRANSE
and other approaches (refer to Table I).

V. DISCUSSION & CONCLUSION

In this proof-of-concept study we investigated the use of
unlabeled data to essentially "tune" a classifier to be a better
predictor on data, which can be particularly effective in a
transductive learning setting for non stationary environments.
The approaches presented in this paper and in [22] are robust
to changes in the source used for testing a classifier. In this
work, we selected a transductive methodology for classifica­
tion rather than semi-supervised learning because developing a
generalized mapping function for (distant) future data may be
unfeasible for future unlabeled data as the source generating
the data is drifting over time. Therefore, our approaches have
focused on adapting the classifier to best classify the unlabeled
data that are currently available. We presented a general

framework for using labeled and unlabeled data to aid in
configuring and fine tuning an ensemble classifier's decision.
GMMs are generated from labeled and target (unlabeled) data,
which allows for the transfer of class information onto the
unlabeled distribution. Once the class information of the target
distribution has been inferred, classifier voting weights are
updated using this information and the ensemble decision is
made on the target. Results indicate that the GMMs are all that
are needed on simple problems, whereas complex problems
(e.g., where the probability distribution is not easily modeled)
are aided by retaining ensemble member classifiers. Our results
have also shown that the simple tranductive algorithm, which
does not use the classifier ensemble, can be effective for
moderately biased datasets provided that there is sufficient data
to form a reliable GMM.

While the results for TRANSE-EM are appealing, we em­
phasize that in a practical setting (e.g., limited data and a
complex distribution that is not easily modeled), TRANSE­
EM becomes infeasible. In such complex cases, the ensemble,
such as TRANSE with mse or ame, approach combined
with weighted majority voting, where the weights are based
on the GMM based probabilistic model, clearly outperforms
the non-ensemble approaches. For simpler cases, such as
the rotating Gaussians, a simpler version of the TRANSE
approach where we simply use the 9c(X) instead of the
ensemble is also effective, as 9c(X) is a good approximator
of the class posteriors in such cases. Using the 9c (x) alone
is not recommended for complex real world cases, however,
because of the difficulty in accurately estimating the GMM
parameters. In such cases, the imperfect posteriors estimated
by the GMM are not sufficient to track the changing en­
vironment, however can be extremely useful in guiding the
ensemble to properly weight its classifiers to effectively track
the changing environment. Approaches that keep an ensemble
of discriminative classifiers such as TRANSE with either ame
or mse options (and even Learn++ .NSE), can significantly
improve over TRANSE-EM. Furthermore, many application
driven problems that involve incremental learning require that
model adaptation be implemented, and from our experiments,
unlabeled data should be used to refine a classifier before
field data are classified. If a small amount of labeled data are
available from the field data, then more advanced transductive
and/or domain adaptation approaches should be investigated.
We leave this final note as expansion for future work.

REFERENCES

[1] 1. Gao, W. Fan, 1. Han, and P. S. Yu, "A general framework for
mining concept-drifting data streams with skewed distributions, " in
SIAM International Conference on Data Mining, 2007, pp. 203-208.

[2] K. Yamauchi, "Incremental learning and model selection under virtual
concept drifting environments, " in Int'l Joint Conf. on Neural Netw.,
2010, pp. 1-8.

[3] A. Kuh, T. Petsche, and R. L. Rivest, "Learning time-varying concepts, "
in NIPS, 1991.

[4] R. Elwell and R. Polikar, "Incremental learning of concept drift in
nonstationary environments, " IEEE Trans. on Neural Netw., vol. 22,
no. 10, pp. 1517-1531, 2011.

[5] M. Baena-Garcia, 1. del Campo-Avila, R. Fidalgo, A. Bifet, R. Gavaldua,
and R. Morales-Bueno, "Early drift detection method, " in Int'l Wksp. on
Know!. Disco. from Data Streams, 2006.

[6] G. Ditzler and R. Polikar, "Hellinger distance based drift detection for
nonstationary environments, " in IEEE Symp. on Compo Intell. in Dyn.
and Uncert. Envir., 2011, pp. 41-48.

[7] 1. Kolter and M. Maloof, "Dynamic weighted majority: An ensemble
method for drifting concepts, " Journal of Machine Learning Research,
vol. 8, pp. 2755-2790, 2007.

[8] G. Widmer and M. Kubat, "Learning in the presence of concept drift
and hidden contexts, " Mach. Learn., vol. 23, no. I, pp. 69-101, 1996.

[9] C. Alippi and M. Roveri, "lust-in-time adaptive classifiers-part I:
Detecting nonstationary changes, " IEEE Trans. on Neural Netw., vol. 19,
no. 7, pp. 1145-1153, 2008.

[10] --, "lust-in-time adaptive classifiers-part II: Designing the classifier, "
IEEE Trans. on Neural Netw., vol. 19, no. 12, pp. 2053-2064, 2008.

[11] C. Alippi, G. Boracchi, and M. Roveri, "lust in time classifiers:
managing the slow drift case, " in Int'l Joint Con! on Neural Netw.,
2009, pp. 114-120.

[12] C. Alippi and M. Roveri, "An effective just-in-time adaptive classifier
for gradual concept drifts, " in Int'l Joint Con! on Neural Netw., 2011,
pp. 1675-1682.

[13] I. Zliobaite, "Combining similarity in time and space for training set
formation under concept drift, " Intelligent Data Analysis, vol. 15, no. 4,
p. to appear, 2010.

[14] S. Grossberg, "Nonlinear neural networks: Principles, mechanisms, and
architectures, " Neural Netw., vol. I, no. I, pp. 17-61, 1988.

[15] F. H. Hamker, "Life-long learning cell structures continuously learning
without catastrophic forgetting, " Neural Netw., vol. 14, no. 5, pp. 551-
573, 2001.

[16] M. M. Masud, 1. Gao, L. Khan, 1. Han, and B. Thuraisingham,
"Classification and novel class detection in concept -drifting data streams
under time constraints, " IEEE Trans. on Know!. and Data Engr., vol. 23,
no. 6, pp. 859-874, 2011.

[17] A. Bifet, G. Holmes, B, Pfahringer, R. Kirkby, and R. Gavalda, "New
ensemble methods for evolving data streams, " in Know!. and Data Disc.,
2009.

[18] L. L. Minku, A. P. White, and X. Yao, "The impact of diversity on
online ensemble learning in the presence of concept drift, " IEEE Trans.
on Know!. and Data Engr., vol. 22, no. 5, pp. 731-742, 2010.

[19] L. L. Minku and X. Yao, "DDD: A new ensemble approach for dealing
with concept drift, " IEEE Trans. on Know!. and Data Engr., 2011.

[20] w. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for
large scale classification, " in ACM SIGKDD Int'l Conf. on Knowl. Disc.
& Data Mining, 2001, pp. 377-382.

[21] P. Zhang, X. Zhu, 1. Tan, and L. Guo, "Classifier and cluster ensembles
for mining concept drifting data streams, " in Int'l Conf. on Data Mining,
2010, pp. 1175-1180.

[22] G. Ditzler and R. Polikar, "Semi-supervised learning in nonstationary
environments, " in Int'l Joint Con! on Neural Netw., 2011, pp. 2471-
2478.

[23] Y. Freund and R. Shapire, "A short introduction to boosting, " Journal
of Japanese Soc. for Artif. Intell., vol. 14, no. 5, pp. 771-780, 1999.

[24] S. Ben-David, 1. Blitzer, K, Crammer, A. Kulesza, P. Pereira, and
1. Wortman Vaughan, "A theory of learning from different domains, "
Mach. Learn., vol. 79, pp. 151-175, 2010.

[25] M. Muhlbaier and R. Polikar, "Multiple classifiers based incremental
learning algorithm for learning nonstationary environments;' in Int'l
Con! on Mach. Learn. and Cybern., 2007, pp. 3618-3623.

[26] M. Harries, "Splice-2 comparative evaluation: Electricity pricing, " The
University of South Wales, Tech. Rep., 1999.

[27] United States Department of Commerce, "National oceanic and
atmospheric administration, " 2010. [Online]. Available: www.noaa.gov/

