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The Stability of Pitch Filters in Spekech Coding

RAVI P. RAMACHANDRAN AND PETER KABAL

Abstract

The stability and performance of pitch filters in speech coding are studied. A new algorithm that
estimates the pitch period is coupled with the covariance formulation of determining the predictor
coefficients. Since this approach does nol guarantee the stability of the pitch synthesis filter, an
efficient stability test is formulated. From this, a stabilization technique that ensures a stable
pitch filter is imroduced. The eflect of the presence of unstable pitch filters on decoded speech is
investigated. The use of stable pitch filters in speech coding gencrates decoded speech of higher
perceptual quality.

1. Introduction

In Code-Excited Linear Prediction (CELP) [1{, two nonrecursive prediction filters are used to
process the incoming speech signal. One is the formant predictor that removes near-sampled based
redundancies. It is followed by the pitch predictor that removes distant-sampled based redundancies.
At the receiver, the corresponding inverse filters, the pitch syvnthesis and formant synthesis filters
reproduce the decoded speech. These filters are recursive and may be unstable. The autocorrelation
|2} and modified covariance {3] methods calculate the coeflicients of a stable formant synthesis filter.
This paper addresses the stability and performance issues of the piteh filter and examines the effect
of instability on decoded specch.

2. CELP Coder

In a CELP coder the residual is generated after passing the speech signal through a formant
predictor (F(z)) and pitch predictor (£2(z)). The predictors have transfer functions:
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The order p is typically between 8 and 16 and M is the estimated pitch period in samples. At
the receiver, a pitch synthesis filker Hp(z) = 1/{1 - P(z)) and formant synthesis filter Hp(z) =
t/{1 - F(z)) arc used.

The residual (after gain normalization) is compared to a set of waveforms in a codebook con-
structed of Gaussian random numbers with unit variance. To perform the comparison, each entry in
the codebook is first filiered by /1;.(z) and Hp{z) and subtracted from the original speech to form
a difference signal. This signal 1s passed through a weighting filter W (z} - (1 F{(z}}/(1 - F(z/a))
where 0 - o = 1. The error is formed by squaring and averaging the filtered difference signal. The
entry in the codebook that gives the smallest error represents the residual and its index is transmit-
ted. This is equivalent 1o a vector quantization scheme. The codeword representing the residual s
scaled by the gain factor and filtered by Hp(z) and Hp(z) to generate the decoded speech.

3. Covariance Formulation

In determining the coeflicients of F’(z), the mean-square value of the residual is minimized over
a frame size of N samples. This leads to a linear system of equations. In matrix form, this system
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of equations (@8 - a} for a 3 tap filter is:

SM LM 1) oM 1.M) oM L.Mi1)] ][4 (0, M - 1)
(M, M 1) ¢(M. M) (MM 1) B2 |~ #(0, M) (3)
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Before solving the equations, the pitch period M must be determined. Since the speech is sampled
at. 8 kHz, minimum and maximum values of M cqual to 20 and 120 are used to cover the range of
pitch periods for male and female speakers. Atal ‘3! estimates M by first calculating a correlation
array 7(M) where:

$(0, M)
V8(0,0)6(M, M)
The correlation array is searched for local maxima and parabolic interpolation is used on triplets
of correlation values centered at the local maxima. Local peaks {(not necessarily integer values) are
located at points at which the interpolated functions are a maximum. The pitch period M is the
nearest integer value of the largest local peak.

Now, a new algorithin that estimates M by minimizing an approximation to the mean-square
value of the residual is formulated. In a 3 tap filter, # -~ @ 'a and the resulting mean-square error
2 el0,0) - BT a. The value of M is chosen so as to maximize B” . Since a great deal of

(M) (4)

is €
computation is required to maximize ﬂTa, an approximation is made. After formant prediction
has been accomplished, the near-sample based redundancies have been removed to a large extent.
Therefore, the off-diagonal terms in the matrix @ are neglected. Then, ﬂTa = ¢(0,0)(r3(M ~ 1)
2(M) + r*(M 1 1)). The value of M that maximizes 72(M 1) 4 r(M) + (M 4 1) is chosen.
For 1 and 2 tap filters, the value of M that maximizes 72(M}) and 72(M) i r%(M | 1) respectively
i1s chosen. No parabolic interpolation is required and a consistently higher overall prediction gain
than Atal’s method 1s achieved.

4. Stability of Pitch Filters

If Hp{z) is a stable function, its denominator polynomial P(z) must have all its zeros within
the unit circle. This is not guaranteed by the covariance formulation. A general D(z) for a pitch
synthesis filter is of the form D(z) - z* B(z) where B(z) - l::"(,' b,z". Although a set of necessary
and sufficient conditions can be used |4}, a computationally simple test based on a sufficient condition
is formulated. The polynomial z”* - B(z) = 2"(1- z "B(z)} # O or 2z "B(z) # 1 on and outside
the unit circle z = €7, By the maximum modulus theorem [5). = ™ HB(z) has its maximum modulus
on the contour surrounding any region in which it is analytic. Since z” "B(z} is a polynomial in
271, it is analytic on and outside the unit circle. Therefore, a sufficient condition for stability is
that |z " B(z)] = 1 on and outside the unit circle. By substituting z - €79, the sufficient condition
becomes |B(e??)] < 1.

In the particular case of a 3 tap filter, 3(z)  A122 4 Baz { Ay and B(e?®) - 7 B'(¢7%) where:

B'(e?”)  pBa i By 1 Pa)cosB 4 (B Bs)sind (5)

The expression B'(e??) defines an cllipse with center f2 and major axis |#; 1 fa| if f; and Bz have
the same signs or |#; Hal il 4, and 3 have different signs. The two cases are iHustrated in Fig. 1.
For now, the case 2 - 0 1s considered. Later, the analysis is extended to o < Q.

The ellipse must lie entirely within the circle to ensure stability. If 4, and 83 have the same signs.
this happens if all points on the major axis are within the circle or equivalently || t {82 - (Fa] < 1.
If 81 and B3 have opposite signs, the substitutions a - [#; 4+ fziand b - |#; P3| are used to obtain
the conditions a + 8, -~ 1 and b° 4 #% - 1 that ensure that all points on the major and minor axes
are within the circle. The ellipse may still touch the circle at a point of tangency X. Let by, ., denote
the value of b for which tangency is achieved. By deriving expressions for the slopes of line OX and
the tangerit line to the ellipse at X and setting LheJenth of OX equal to unity, 1t can be shown that
bmax can be obtained by solving f(b* )} - 0 where:

max

S(6*) = b i (8] aF - 1)t d® (6)
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Fig. 1 lllustration of Stability Test. Ellipses for 3 Taps

Equation 6 is a quadratic in b2 whose roots are real and positive. The desired solution is the
larger of the roots. To check that b < b,y {ellipse is within the circle), it suflices to check that
b* < a® 4 afy or f(b*) = 0. Equation 6 need not be solved for b,,.x. If 2 = 0, the analysis is similar
and the conditions merely involve replacing f#y by [82{. The implementation of the stability test for
3 tap filters is given below.

Stability Test
1. Ifa>0b, then:
(a) 1B}t [B2] 4 |Ba| < 1
2. If o < b, then:
(a) a+ [f2] <1
(b) % + 83 <1
(¢) (i) ¥* < a* + a|Baj or
(i) f(6%) - b* + b5(A2 o* )i a® <0

The test for 3 tap filters subsumes the test for 1 and 2 tap filters. In the 2 tap case, the condition
P11 + 1821 < 1 is sufficient for stability. For a 1 tap filter, the condition |8;| < 1 is necessary and
sufficient. Also, the test for 2 and 3 tap filters is necessary and suflicient in the limit of large n.

5. Stabilization Procedure

In each frame of spcech (length is 80 samples), the predictor coeflicients are calculated (see
Eq. 3) and the stability test applied. If the filter is found to be unstable, each coefficient is scaled
by a common factor ¢. This results in a sub-optimum predictor with cocfficients g - ¢f = B + 6.
The energy of the prediction residual is €2 €2, 4 5" d6 where g2 ., 1s the energy achieved when
no scaling is applied. In order to simultaneously minimize § b (e l)zﬂT(Dﬂ and assure a stable
Hp(z), a bound on e, namely. 0 - ¢ -~ 1 is imposed. The value of M is assumed to be unaltered.

In a 1 tap filter, any value of # -+ 1 isresel to | and any valueof - lisreset to 1. Ina
2 tap filter, ¢~ 1/(if1] ¢ |B2]). In a 3 tap filter if @ - b then e - 1/(|A1 + [A2] t [Aal). HWa - b
and b2 < a? 4 a}f32!. condition 2.{(c) is alrcady satisfied. Scaling the coefficients does not change this
relationship. The value of ¢ is chosen to force the length of the minor axis of the scaled clipse to
be equal to 1. Then. ¢ = 1/{a 4 {#2]). Under these conditions. it can be shown that all points along
the major axis lie inside the circle (condition 2.(b) is satisfied). If ¥* > a® + a|f2], the value of ¢ is
chosen to set f{b%) 0. Then, the scaled ellipse is tangent to the circle. The value of ¢ is:

-

b2 a2 (7)

\/ bt + b255  b2a®

With this value of ¢, it can be shown that all points along the minor and major axes are within the
caircle (conditions 2.(a) and {b) are satisfied). :
Theoretically. marginal stability has been assured. Scaling the value of § t0 0.990r ~0.99in a 1
tap filter assures complete stability. For 2 and 3 tap filters, calculating ¢ as required and subtracting
0.001 from it assures complete stability by avoiding a point of tangency. Experimental results
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show that the average loss in prediction gain associated with stabilization s only 0.03. 0.26 and
0.21dB for 1, 2 and 3 tap filters respectively. These results were compiled by using different speech
waveforms.

6. Effect of Instability on Decoded Speech

To examine the effect of unstable pitch filters on decoded speech. a CELP coder was simulated
using a 10th order formant predictor (modified covariance method) and a 3 rap pitch predictor.
Forty sample blocks of the residual were compared to a codebook of 2'? 1024 waveforms. The
parameter ¢ 0.8 was used in implementing W (z). Decoded waveforms are shown below when the
sentence “cats and dogs each hate the other” was processed. Frames having unstable pitch filters
are marked by a non-zero indicator function.
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Fig. 2 Original and Decoded Signals {1) Speech Data, (2) Decoded Signal for
Covariance Formulation, (3) Decoded Signal for Stabilization Technique and (4)

Frames Having Unstable Filters

I a sequence of consecutive frames of high input energy have unstable filters or if the value
of Y. 18,1 is high. degradations in the output speech are perceptible. Frames 77 to 88 consist of
high-energy voiced speech and have unstable filters. The quantization noise continuves to build up.
the energy of the output signal keeps rising and this noise is perceptible. Even if an unstable filter
having a high value of ¥, |f,{ occurs in a frame of low input energy. an impulse-type distortion that
is heard as a pop or click is present. This phenomenon occurs during frames 149 and 150 and frames
196 to 198. In frames 196 to 198, >~ |8;| equals 2.77, 4.02 and 2.23 respectively. When the filters
are stabilized, the undesirable pops, clicks and enhanced background noise are absent. Listening
tests show that waveform (3) sounds better than (2).

7. Conclusion
Decoded speech generated by a CELP coder improves in quality when stable pitch filters are
used. This is accomplished by a computationally simple stabilization technique derived from an
efficient stability test.
References

1. M.R. Schroeder and B.S. Atal. “Code-Excited Linear Prediction (CELP): High-quality speech
at very low bit rates”, Proc. Int. Conf. Acoust.. Speech, Signal Processing. Tampa, Florida, pp.
25.1.1 25.1.4. March 1985.

2. L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals, Prentice-Hall, 1978.

3. B.S. Atal and M.R. Schroeder. “Predictive coding of speech and subjective error criteria”, IEEE
Trans. Acoust.. Speech. Signal Processing. vol. ASSP-27, pp. 247 254. June 1979,

4. E.1 Jury, Theory and Application of the z-Transforin Method. John Wiley and Sons, 1964.

R.A. Silverman, Introductory Complex Analysis. Dover Publications. 1967.

3]



