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Abstract 
The  use of  Nyquist  f i l ters  in  data  transmission  systems  is  important  in 
avoiding  intersymbol  interference.  Moreover, the Nyquist  f i l ters  should be 
factorable  into  lowpass  transmitter/receiver  f i l ter  pairs.  Here,  the  design 
problem is formulated so as t o  generate  zero-phase FIR lowpass  Nyquist 
f i l ters   that   can  be  sp l i t   in to   min imum  and  maximum  phase  par ts .   Two 
factorable  mtnimax  design  methods  are  given.  These  methods use the 
McClel lan-Parks  algori thm as a  first  step to  control   the  stopband  behaviour.  
The  t ime  domain  constraints,   imposed  by  solv ing  a  l inear  system  of   equa- 
tions,  determine  the  passband  response.  The  flnal  filter  exhibits  equiripple 
stopband  behaviour  The  advantages  of  these  methods  are  that  the mini- 
mum  and   max lmum phase parts  are  obtalned  without  direct  factorization 
and  that  arbitrary  frequency  weighting  can be easily  incorporated to   a l low 
for  a  nonequiripple  behaviour.  The  new  design  approach  is  compared  with 
other  methods  Final ly,  a  practical  design  that  conforms  to  a  CCITT  voice 
band  modem  specification  is  shown 

1. Introduction 
lntersymbol  interference  occurs  when  a  received  data  symbol  is  influ- 

enced  by  a  combination  of  several  transmitted  data  symbols.  lntersymbol 
interference is avoided  through  the use of   Nyquist   f i l ters.   Nyquist   f i l ters 
have  an  impulse  response  with  regular  zero  crossings.  Furthermore,  the 
filters  for  bandwidth  efflcient  data  transmission  systems  are  based  on  low- 
pass prototypes.  The  design  problem  incorporates  both  t ime  and  frequency 
domain  constraints. 

This  paper  two  design  methods t o  generate  zero-phase  lowpass  FIR 
Nyquist   f i l ters  that   can  be  spl i t   into  minimum  and  maximum  phase  parts.  
The  McClel lan-Parks  algori thm is  used  as a  first  step to   cont ro l   the  s top-  
band  response.  The  subsequent  step  incorporates  the  time  domain  con- 
straints  and  automatically  generates  the  passband  response. A few  itera- 
t ions  of  the  above  steps  produces  a  factorable  Nyquist  f i l ter  with  Chebyshev 
stopband  response  Furthermore,  the  polynomial  factorization  problem  for 
the  determinatlon of the  minimum  phase  part is considerably eased in   t ha t  
a  partial  factorization  of  the  transfer  function  of  the  Nyquist  f i l ter is ob- 
tained  as  a  byproduct  of  the  design  procedure.  We  refer  to  the  proposed 
approaches as factorable  minimax  design  methods.  The  filters are funda- 
mentally  equlripple.  Nonequiripple  filters  can  be  obtained  by  applying  an 
additional  frequency  weighting  factor. 

Nyquist   f l l ters  wi th Chebyshev stopband  behaviour  have  been  deslgned 
in (11 using  a  multistage  structure.  The  focus  In [l] is  on  a  computationally 
efficient  multistage  Implementation.  However,  the  resulting  fllters are no t  
necessarily  factorable  Other  methods of deslgning  Nyqulst  fllters  Include 
the use o f  linear  programming  techniques  [2][3],  the  eigenfllter  approach 
[4][5] and  the use of  the  McClellan-Parks algorithm [6] as an  intermediate 
step  [1][7][8][9].  The  methods  in  [3].[5]  and [SI al low  for   the  spl i t t ing  of  
the  f i l ter   into  i ts   minimum  and  maximum  phase  parts.  

2. Factorable  Nyquist  Filters 
Zero-phase  FIR  Nyquist  filters H ( z )  have  the  following  impulse re- 

sponse  characteristic: 

h ( i N ) =  N 
for 2 = 0 { 1 f o r i f 0  . 

( 1 )  

For a  lowpass  design,  the  minimum  bandwidth  solution  is  an  ideal  low- 
pass fi l ter  bandlimited to r / N .  For  practical  filters, we allow  an excess 
bandwidth PA/N to  br ing  the  overal l   bandwidth  to (1 + P ) r / N .  T h e  
parameter 4 is the  roll-off  factor o f  \ H ( e J " ) l  Furthermore,  bandwidth 
efficient  systems  impose ,9 5 1'. Th is  sets  the  upper  edge  of  the pass- 
band  to   be up = [ 1 - P ) z / N  and  the lower edge of   the  stopband  to  be 

' Note  that for h' > 2 ,  P 5 1 1s not B rrqulremcnt for the  dcslgn 

21NRS-TClecornrnunications 
Universite  du  Quebec 
Verdun,  Quebec H3E 1H6 

w, = (1 +p)n/,Y. The  ideal  frequency  characterist ic  is 

The  factorable  minimax  design  methods  generate  f i l ters  that  approximate 
this  ideal  magnitude  characteristic.  In  addition,  exact  zero  crossings  in 
the  impulse  response  are  achieved  and  double  zeros  on  the  unit  circle  are 
imposed  to  assure fac to r iza t ion   in to   m in imum  and  max imum phase  parts. 

3. Minimax  Factorable  Design  Procedures 
The  Nyquist  f i l ter H ( z )  must  have  an odd number  of   coeff ic ients  in 

order t o  be   fac to rab le   in to   m in imum  and  max imum phase  parts. As i n  
[5],  we  factor H ( z )  as H ( L )  = H o ( z ) H : ( r )  where H f ( z )  contains  all  the 
double zeros o f   H (z )   on   t he   un i t   c i r c le   and  H o ( L )  contains  the  other  zeros 
of H ( z ) .  The double  zeros of H : ( L )  on  the   un i t   c i rc le   imp ly   tha t  it has  an 
odd  number  of   coeff ic ients  and  that  it is a  zero-phase  function.  The  zeros 
o f  H O ( z )  must  occur  in  mirror  image  pairs  reflected  about  the  unit  circle 
Hence, H o ( t )  also  has  an  odd  number of   coeff ic ients  and IS a zero-phase 
funct ion.  

Let  the  lengths o f  H o ( L )  and H ; ( L )  t o   b e  210 + 1 and 21) + 1 
respectively  The  number o f  coefficients of   the  overal l   Nyquist   f i l ter  H ( z )  
is M = 2 ( l o  + 1 1 )  + 1'. T h e  inverse  z-transforms o f  H ( z ) ,  H o ( z )  and 
H : ( r )  are defined t o  be h ( n ) .  ho(n) and f ( n ) ,  respectively. 

3.1 

1. 

2 .  

3. 

4 .  

5 .  

F i r s t   M e t h o d  
The  deslgn  procedure  for  the  f irst  method  is  as  follows: 
Init ialization:  Fix l o ,  11, N ,  w p  and w , .  Set H o ( L )  = 1. The  weight ing 
is given as W ( e J " ) .  
Design H l ( r )  using  the  McClel lan-Parks  algori thm  such  that it has 
zeros  only  on  the  unit   circle  in  the  stopband  region [w., A] 

Impose  the  t ime  domain  constraints  by  solving  for  the  coeff icients of 
H o ( r )  through  a  l inear  system  of  equations. 
Form  the  Nyquist  f i l ter H ( L ) .  If the  design  warrants  improvement,  go 
back t o  step 2 .  
Split H ( z )  into  i ts  minimum  and  maximum  phase  parts. 

S t e p  2: F r e q u e n c y   D o m a i n   S p e c i f i c a t i o n s  
The  McClel lan-Parks  algori thm IS used to get  the  Coefficients of H 1 ( z ) .  

The  specifications are that  the  frequency  response  must  be  one  at Y = 0 
and  must  approxlmate  zero  in  the  stopband  region [w,, 71. The weight lng 
functlon  applies t o  H : ( z )  Init ially,  the  weighting  function  is W ( e J " ) .  For 
the  design of ffi(z), tabulated  values o f   t h e  square roo t   o f   the   we igh t lng  
function  are  inputs  to  the  algori thm.  In  the  stopband,  the  frequency 
response o f  H l ( z )  exhibits  a  ripple-l ike  behavlour  with  local  minima  and 
maxima  occurrlng  at  the  extremal  frequencies. If l1 is  even, H l [ r )  has  an 
odd  number  of  coeff icients ( I 1  + 1). Two  of   the  extremal  f requencies  are 
0 and A [lo]. However,  the  total  number  of  zeros is a   mul t ip le   o f   two,  
al l   occurring  in  complex  conjugate  pairs  (no  zero  at L = -1). A t  w = A ,  

either  a  local  maximum or a  local  minimum  occurs. If I 1  is odd, H l ( r )  
has  an  even  number of  coefficlents.  In  this  case,  a  zero  occurs  at z = -1. 
However, A is not  an  extrema1  frequency.  The  other  zeros  occur  in  complex 
conjugate  palrs  bringing  the  total  number  of  zeros  to 11. 
S t e p  3: T i m e   D o m a i n   C o n s t r a i n t s  

Given H l [ t ) .  we fo rm H : ( L )  and  solve  for  the  coefficients  of I fo ( . )  
such  that  H ( z )  has the  Nyqulst  property.  Since h(n )  has  samples  for 
n = - ( lo  + 1 1 )  to IO + 1 1 ,  the  number  of  zero-valued  samples  that  occur 
as n goes  f rom 1 t o  IO + I 1  is [ ( lo  + f t ) / N j .  The  same  holds  true as n 

T h c c a s e l ~ , t l ,  = kNforanylntegerkrenderrsNyqulstf i l tcrwlthh(-f . - f~)  = 
h(f,, + 1 ,  I = 0 thereby reducmg the effective length by two .  
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goes from -1  t o  - ( l o  + I , ) .  Since  the  sample  fot n 0 I S  also  Lnown 
the  number  of  known  coefficients  of H ( z )  1st 

The  coefficients o f  H ( ; )  are  found by performtng  the  convolutton 
ho(n) * f ( n ) ,  By  expanding  the  convolutlon  sum,  one  can  unlquely  de- 
termlne H o ( z )  such  that  the  t ime  domain  constralnts  are  satlsfied [SI if the 
number  of  unknown  coefficients o f  H o ( z )  equals  the  number  of  known  co- 
efficients o f  H ( r ) .  This  results  In  a  system o f  llneat  equations of dlmenslon 
210 + 1. By  fur ther  exploi t tng  the  t lme  domain  symmetry  of  each f i l ter,  the 
problem is reduced  to  that   of   a  system  of   d imension lo 1. The  system of 
equations  can  be expressed as Fh = c where hT = [ho(O) " .  ho( lo ) ] ,  
cT = [1/N 0 . ' .  01 and 

. . .  1 

[ f ( N I o )  f(Nl0-1) + f ( N l o + l )  " '  f ( N 1 0 - l o )  + f ( N l o + l o ) J  
(4 )  

The  constraint   that  L = 210 + 1 is  equivalent t o  l o  = L(l0 + l l ) / X ]  
which  in  turn  translates  to  constraints  on lo and I1 given  by 

l o ( N  - 1) 5 11 < l o ( N  - 1) + N . ( 5 )  

This  leads t o  closed  form expressions for lo and lI i n   t e rms   o f  N and M ,  

This  method  of  sat isfying  the  Nyquist  property  automatical ly  takes 
care o f   t he  passband  response o f  H ( z ) .  Note  that  H o ( r )  is  a  hlghpass 
function  that  primarily  controls  the  passband  characteristic  and  hence  has 
no zeros on  the  unlt  circle. 
S t e p  4: Convergence  

The  coeff icients  of H ( z )  are  found  f rom H o ( z )  and H : ( z )  Steps  2 
and 3 are  iterated if the  design  warrants  improvement. For Step 2 ,  the 
weighting  function is updated  to  be W ( e J W ) \ H o ( e J w ) l  where lHo(eJ") l  is 
calculated  from  the  coeff icients  of H o ( t )  formed  in  Step 3 of  the  previous 
i terat ion.  The  appl icat ion  of  this  weighting  factor  signif icantly  Inf luences 
the  stopband  behaviour  through  the  design  of H l ( z ) .  In  the  weightlng 
function,  the  factor Ho(eJ") l  leads t o  a  stopband  behaviour of H : ( z )  t ha t  
compensates  for  the  highpass  response o f  H o ( z ) .  The  stopband  behavlour 
is  either  equiripple  or  nonequiripple  depending  on  the  other  factor W(e9') 
in  the  weighting  function.  The  i terat ions  are  terminated  when  the  extremal 
frequencies  obtalned by designing H l ( r )  do  not  change  by  more  than  a 
given  threshold. 
S t e p  5: Final F i l t e r  

the  min imum phase  part  of H ( z )  be H - ( z )  = H ; ( z ) H , ( z )  where H ; ( t )  
This  step factors H ( z )  i n to  min imum  and maximum  phase  parts.  Let 

is the  minimum  phase  part  of H o ( z )  The  factor Hl(r) is known  as  a 
byproduct  of  the  design  procedure.  Only H o ( z )  needs to   be  factored  in  
order t o  derive  its  minimum  phase  part. 

3.2 S e c o n d   M e t h o d  
The  difference  between  the  second  method  and  the  previous  approach 

lies in  Step 2 in  which  a  constrained  form of the  McClellan-Parks  algorithm 
is used to  direct ly  compute  the  coeff icients  of Hi'(.) rather  than  to  f i rst 
design H ~ ( z ) .  The  specifications  are  that  the  frequency response must 
be one a t  w = 0 and  must  approximate  zero  in  the  stopband  region 
[w , ,n ] .  The Initial  weighting  functton is W ( e l W ) .  Tabulated  values  of  the 
weightlng  function are  supplied  as inputs.  Since  double zeros on  the  unit 
circle  are  required, we constraln  the  frequency response t o  be  nonnegative 
in  the  stopband  region. We implement  the  procedure  in [ll] to  ob ta in   a  
minimax  approximation  to  a  desired  response  that  satisfies  certain  upper 
and lower constraints. Foc our  speciflc  applicatton.  a  lower  constraint of 
zero  is  imposed  in  the  stopband  reglon [w.! T I .  

In  the  stopband,  the  frequency response o f  H : ( z )  exhibits  a  ripple- 
l ike  behaviour  with  local  minima  and  maxima  occurring  at  the  extremal 
frequencies. The  local minima  correspond  to  the  frequencies  at  whlch 

double zeros of H : ( z )  on  the unit  circle.  Given  that H : ( t )  has 211 + 1 
the  response touches zero. It is  these  frequencies  which  determine  the 

coeff icients.  a  total  of I1 + I extrema1  frequencies  result [ lo ] .  T w o   o f   t h e  
extremal  frequencies are 0 and T regardless of   the  value  of  1 1 .  If 11 is odd, 
the  extremum  at  T is  a local m in imum thereby  produclng  a  double  zero  at 
2 = - 1 .  The  other zeros  occur  In  groups of  four  in  the  stopband  region 
bringing  the  total  number of zeros t o  211. If I1 IS even,  the  extremum  at T 

' Thlr formula 1s a correckd version of thc formula glvcn in 161 

1s a lol.al nlaxltl h j r n  1'10 zero  at .. 1 )  The  total   number  of  zeros is  a 
multlple  of  four  and , x ( u r  In  groups o f  four  tn the  stopband  region. 

Steps 1 a n d  4 are Identical to  the  f i rst  approach  In  spl i t t lng H ( z )  
Into I t s  mtnlrnum  and  maximum phase parts, we take  advantage  of  the 
fact  that  the  frequenctes  corresponding  to  the  double zeros o f  H : ( z )  are 
available as a  byproduct of the  modifled  McClellan-Parks  algorlthm  Given 
these  frequenctes  and  hence,  the  locations  of  the  zeros  on  the  unlt  clrcle, 
H , ( r )  can be formed  without  direct ly  factorlng H ; ( z ) .  A s  before,  only 
H O ( z )  must  be  factored  to  form H - ( r )  = H i ( z ) H 1 ( z ) .  

The  next  sectlon discusses the  merits  of  factorlng  only Bo(;) as op- 
posed t o  H ( r )  In determlning  the  minimum  phase  part.  Also, observatlons 
concernlng  the  relatlve  orders  of H a ( r )  and H ( - )  are given. 

4. T h e  Factorization Problem 
Polynomial  factorization  can  be  an  ill-conditioned  problem  [I21  There 

is  an  advantage to substantially  lowering  the  order  of  the  polynomial  to  be 
factored. A general  zero  plot  of H ( r )  includes  stopband  zeros,  passband 
zeros and  extra  real zeros [13].  The  double  stopband zeros on  the  unit  
circle  contribute  to  the  stopband  ripples  and  the  passband zeros tha t  occur 
in  mirror-image  pairs  contribute  to  the  passband  response.  The  extra  real 
zeros adjust  the  band edges depending  on  the  specification. If H ( z )  were to 
be  factored,  polynomial  deflation  would  be necessary  as  each  zero  is  found. 
Note  that  f inding  the  double zeros  can  be  an  ill-conditioned  problem 1121. 
Furthermore,  polynomial  deflation has the  danger  of  making  the zeros o f  
the  quotient  polynomial  diverge  from  those of the  original  polynomial  [12]. 
Our  approach  avoids  polynomlal  deflation  in  that H o ( z )  i s  not  determined 
by  dividlng H ( r )  by H : ( z )  but  rather, IS  determined  by  solving  a  linear 
system o f  equations.  Hence,  errors  that  would  normally  occur  in  locating 
the  unit  circle zeros  are absent  in  our  approach  and  do  not  affect  the zeros 
of H o ( z ) .  Furthermore,  the  factorizatlon  of H,( r )  does  not  involve  multiple 
zeros  since H o ( z )  has only the simple  passband  and  extra  zeros  of H ( r ) .  

Since  only  the zeros o f  H o ( : )  have  to  be  determined, the extent   to  
which  the  factorization  problem is  eased depends  on  the  ratlo ll/lo, The 
rat lo l1 / l0  is both  a  measure of the  proportion  of  unit  circle zeros t o   t h e  
other zeros o f  H ( z )  and  o f   the degrees o f  H ( z )  and H o ( z ) .  The  higher  the 
value o f  I l l l o ,  the  lower  the  relative  orders  of H o ( r )  and H ( z ) .  It can  be 
shown  that 11 is  greater than IO by a  factor  of  at  least N - 1.  Therefore, 
the inherent  advantage  in  terms  of  polynomial  factorization increases  as N 
increases.  However,  even  for  the  lowest  value, N = 2,  the  degree o f  H ( z )  
is  at  least  twice  the degree o f  H o ( z ) .  

A typical  deslgned  Nyquist response h(n) is depicted  In  Fig. 1. T h e  
t ime response  conslsts of  a  main  lobe  between n = - N  and n = N and  a 
series o f  sidelobes  each  occurring  between  the  zero  crossings. T h e   m i n i m u m  
value  of I l l l o ,  namely, N - 1 ,  results  when  the  end  points  of the impulse 
response  are  zero-valued. We discard  this  artificial case  because the  values 
o f  lo and M can be reduced  by 1 and  2  respectively  thereby  giving  a  new 
value o f  l ~ / l o .  As the  number  of  coefficients  is  increased  along  a  lobe  (from 
n = k N  t o  n = ( k  + l ) N  - I ) ,  the  value  of lo is  constant  and 11 continues 
t o  increase.  Therefore,  one  can  maximize I l l l o  within  a  particular  lobe  by 
increasing  the  number of taps  The  largest  disparity  in  the  relative  orders 
o f  H o ( L )  and H ( r )  results  by  choosing  the  filter  lengths t o  be o f   the   fo rm 
M = 2 k N  - 1. These  filter  lengths  are  also  useful  since we get an integral 
number   o f  sidelobes. 

Given  that  the  filter  lengths are constrained t o  be o f   the   fo rm M = 
2 k N  - 1 ,  the  rat io Elllo is 

I1 k ( N  - 1) - -- ~ 

10 - k - 1 ( 7 )  

This  rat io is not  only  a  maximum  for k = 2 bu t  also  a  unique  maximum  for 
a  general M .  As k increases, a  tradeoff  results  in  that  a  higher  stopband 
attenuation  due  to  a  longer  filter is obtained  at  the  expense  of  both  a  lower 
11/10 and  a  higher l o .  The  subsequent  examples  show  that  a  value  of k = 5 
results  in  about an 80 dB stopband  attenuation  for  a  roll-off  factor  of 0.52. 
Smaller roll-off factors  require  a  larger  number of taps  (larger  value o f  k )  
and hence, a  lower  value o f  1 1 / 1 0  and  a  higher  value  of 10 for  an 80 dB 
stopband  attenuation. 

5. Discussion o f  the Design Techniques 
Gwen  that  two  factorable  minimax  design  methods  are  proposed,  the 

questions  regardlng  their  differences  and  how  they  compare  with  other 
approaches  are  now  answered  Design  examples  are  also  given. 

5.1 F a c t o r a b l e   M i n i m a x   D e s i g n   M e t h o d s  
Compar i son  of t h e  Two P r o p o s e d   M e t h o d s  

The  two  methods  in  this  paper  can  be used t o  design  factorable  Nyquist 
filters  wlth  Chebyshev  stopband  behaviour.  An  equiripple  stopband  is  ob- 
tained when W ( e J - )  = 1. A nonequiripple  design  is  achieved  by  specifying 
a  nonconstant W ( P , " ) .  The  dlfference  between  the  two  design  methods 
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glvrn  In  thls  paper IS  that  the  flrst  commences  wlth an rlnronhtralned  de 
slgn o f  Hi( ; )  while  the  second  starts  wlth a constralned  dcstgn  of H:(:) 
Although  the  two  methods  should  g~vc  the  same  Nyqulst  f l l ter  numen- 
cal  dlfferences  do  arise.  The  coefficlents of H : ( z )  obtalned by the  two 
methods differ slightly.  Even  though  these  small  differences  lead  to  more 

overall  Nyquist  filters formed by the  two  methods show only  small  dlf- 
pronounced  differences i n  the coefficients of H o ( z ) ,  the  coelf lclcnts  of  the 

ferences.  Slight  differences  in  the  frequency  response  occur  and  manlfest 
themselves  mostly  in  the  stopband  region. For an  equlrlpple  deslgn,  the 
heights  of  the  stopband  rlpples as a  result of using  the  second  method 
dlffer  slightly as compared  to  the  f lrst  method  In  which  the  equirlpple  char- 
acteristic is more  closely  approached 

Examples  using  the  f irst  of our methods  are  presented  to  demonstrate 
both  equiripple  and  nonequiripple  designs.  The  design  computatlons were 
done  uslng  double  precision  floating  point  arithmetlc.  Four  iteratlons were 
necessary t o  resolve  the  coefficients. 
E x a m p l e  1 

We  generate  an  equiripple  deslgn  with  parameters N = 6 ,  10 = 4 ,  
l1 = 25, up = 0 . 0 8 ~  and w ,  = 0.25411. This  results  in a f l l ter   wl th  59 
coefficients  having a roll-off  factor B = 0.52  whose  magnitude response  is 
shown  in  Fig.  2 .  The  passband  response  is  flat t o   w i th in  0 003 d B .   T h e  
filter  length IS  of   the  form M = 2 k N  - 1 w i th  k = 5. 

E x a m p l e  2 

w p  = 0 . 1 2 ~  and u, = 0.38~. The  weighting  is 
The  parameters used in  this  example  are N = 4 ,  lo = 4 ,  11 = 15,  

for w = 0 

This  gives a nonequiripple  Nyquist  f i l ter  with  39  coefficients  and  a  roll-off 
factor D = 0.52. The  f i l ter   length  is   of   the  form M = 2 k N  - 1 w i th  
k = 5 .  Figure 3 shows  the  magnitude response o f  the  f i l ter.  The  passband 
response  is f lat  to within 0.002 dB. 
G r o u p   D e l a y  

An  Important  quest ion  concerns  the  delay  d istort ion  of  the minimum 
phase  part.  The  group delay o f   t he   m in lmum phase part is only  important 
in  the  passband  and  is  primarily  influenced  by  the  passband zeros which  are 
within  the  unit   circle. For a given  number of   taps  and a given N ,  the  group 
delay  tends t o  be  more  constant as the  roll-off  factor  increases. Also, for 
a  given  roll-off  factor  and  a  given N, a larger  number o f   t aps  produces  a 
group  delay  with  a  greater  deviation.  The  minimum  phase  f i l ters  generated 
in  Examples 1 and 2 tha t  achieve  about a 40  dB  stopband  attenuation  also 
have a relatively  small  passband  group  delay  variation  (approximately  0.15 
zero  crosslng  intervals) 

5.2 O t h e r   A p p r o a c h e s  
L i n e a r   P r o g r a m m i n g   a n d   E i g e n f i l t e r   F o r m u l a t i o n s  

In (31. a l inear  programming  approach  that  is also based on  a  minimax 
criterion  is used t o  design  a  factorable  Nyquist  filter.  Moreover,  arbitrary 
weighting  can  be easily  applied (see [2]). Our approach  gives  similar  re- 
sults to  the  l inear  programming  formulation.  The  eigenfilter  approach 151, 
based on  a  least-squares  design, also simplifies  the  factorization  problem 
and  meets  the  t ime  domain  constralnts by solvlng a l inear  system  of q u a -  
t ions  The  incorporation  of  an arbitrary wetghting  factor  into  the  elgenfilter 
formulatlon  Involves  the use of  numerical  Integration  techniques. O u r  ap- 
proach  naturally  generates  an  equiripple  behaviour  whereas  the  eigenfilter 
method  naturally  renders  nonequiripple  filters 
D i r e c t   U s e  of t h e   M c C l e l l a n - P a r k s   A l g o r i t h m  

Factorable  Nyquist  filters  can  also  be  designed by invoking  the  con- 
strained  form  of  the  McClellan-Parks  algorithm 1111 to   get  a nonnegative 
response that  approximates a raised  coslne  characteristic.  Another  ap- 
proach is t o  destgn  a  llnear  phase  filter to  approximate  the  square  root  of a 
raised  cosine  response  using  the  McClellan-Parks  algorithm (no  constraints 
required)  and  convolve It wi th  i tsel f   to  produce  a  Nyquist   f i l ter .   The  ba- 
sic drawback  of  these  two  approaches IS t ha t  exact  zero  crossings  in  the 
impulse  response  are  not  guaranteed as compared t o  other  design  meth- 
ods.  The  direct  approaches used to design  approximatlons t o  raised  cosine 
Nyquist  filters  can  be used for  modem  design.  The  CCITT  recommendation 
V.22  [I41  includes  the  specification  of a pair of transmitter/receiver  filters 
which  should  approximate  the  square  root  of  a raised  cosine  response. T h e  
specified  roll-off  factor  is  0.75.  In  addition,  upper  and  lower  limits  in  the 
frequency  response  and  an  upper  limit  in  the  the  group  delay  varlation  are 
specified  over  certain  frequency  ranges. 

We  deslgn  Nyquist  filters  with a rol l-off   factor  of  0.75  and  wlth N = 4 
using  the  first  factorable  minimax  method  and  the  direct  approaches  that 
use the  McClellan-Parks  algorithm,  The  approachesare  described  In  slightly 
more  detail a s  follows. 

D m g n  a  filter  that  approxlmates  a  ralsed  coslne  response by lnvoklng 
the  constralned  form of the  McClel lan-Parks  algori thm [ I 1 1  such tha t  
the  response IS nonnega tw   and   i t s   m ln lmum  and   max lmum phase 
parts  have a frequency  response  that  satlsfies  the  upper  and  lower 
bounds  speclfled by V 22 
Deslgn  a  llnear  phase  filter  that  approximates a square  root  rased 
cosine  characterlstic  by  lnvoklng  the  modlfled  form of   the  McCle l lan-  
Parks  algorlthm  such  that  Its  frequency  response  satisftes  the  upper 
and  lower  bounds  speclfied  by  V.22 
Use the  f i rst   factorable  minimax  method  to  design a Nyquist  f i l ter 
such tha t   I t s   m in lmum  and  max imum phase  parts  satisfy  the  V.22 
speclfications of  the  frequency  resoonse. 

In  a l l  cases, the  smallest  number  of  taps  that  satisfy  the  constraint M = 
2 k N  - 1 IS used. Th is  leads to  15  tap  Nyquist   f i l ters  for   the  three  methods. 
Note  that  the  factorable  minimax  method  does  not  guarantee  a  f i l ter  that 
satlsfies  any  prescribed  specifications of  the  frequency  response.  However, 
f l l ters  that  satisfy  the  V.22  specificatlons  can  be  deslgned by choosing 
the  number  of  taps,  carrying  out  the  design  and  f inal ly  veri fying  that  the 
constraints  are  met.  We  f ind  that  the  constraints  are  met  with 15 taps. 
The  weighting, W ( e J Y )  = 1, is used in  the  factorable  minimax  method. 

In  comparing  the  performance  of  the  three  methods,  we  consider  the 
stopband  at tenuat lon  of   the  Nyquist   f i l ter ,  the group  delay  of  the  factorized 
fi l ter  in  the  region  considered  in  the  V.22  specifications  and  quantitative 
measures of the  intersymbol  interference. The measures of   the  intersymbol 
interference  are  the  peak  distortion D p  and  the  RMS  distort ion D R M ~  
defined by 

The  stopband  attenuations  produced  for  methods 1, 2 and  3  are  about 
45, 42  and 50 d B  respectively.  The  allowable  variation  in  group  delay as 
specified  by  V.22 is 0 18 zero  crossing  intervals  Method 1 generates a 
min imum phase  filter  whose  group  delay  variation  is  slightly  under  the 
prescribed 0 18 zero  crossing  intervals.  Method  2  generates a f i l ter   wi th 
no  group  delay  variat ion.  Only  Method  3  does  not  meet  the  group  delay 
requirement  in  that  the  f i l ter It produces  has a variat ion  of  0.24  zero  crossing 
intervals l .   In  terms  of   peak  and  RMS  distort ion,   Method 3 assures exact 
zero  crossings  and  hence,  produces  no  such  distortion.  Method 1 produces 
peak  and  RMS  distortlons  of  0.0004  and  0.0003,  respectively.  Method 
2  leads to much  higher  peak  and  RMS  distort ions  of 0.186 and  0.132, 
respectively.  This  coupled  with  the  lower  stopband  attenuation  achieved 
by  the  second  method  leads us t o  choose  Method 1 over  Method 2. Method  
3  gives a higher  stopband  attenuation  than  Method 1 and  produces  exact 
zero  crossings  in  the  impulse  response.  This  enhanced  stopband  attenuation 
comes  at  the  expense  of a larger  group  delay  variation. 

6. Summary  and  Conclusions 
This  paper  describes  two  factorable  minimax  methods t o  design  zero- 

phase FIR lowpass  factorable  Nyquist  f i l ters.  The  main  advantages  of  the 
design  techniques  are that  the  polynomial  factorization  complexity  in  f inding 
the  minimum  phase  part  is  considerably eased and  that  arbitrary  frequency 
weighting  can  be  applied  without  additional  computational  overhead.  The 
new  methods  can  design  both  equirlpple  and  nonequiripple  filters. 
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Fig. 1 Typical  Nyquist  response h(n )  (shown  for N = 5 ,  M = 39  and p = 0.2) 
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Fig. 2 Magnttude  response of the  Nyquist  f i l ter.  Example I 

Fig. 3 Magnitude response of the  Nyquist  f i l ter:  Example 2 
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