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Abstract

The use of Nyquist filters in data transmission systems is important in
avoiding intersymbol interference. Moreover, the Nyquist filters should be
factorable into lowpass transmitter/receiver filter pairs. Here, the design
problem is formulated so as to generate zero-phase FIR lowpass Nyquist
filters that can be split into minimum and maximum phase parts. Two
factorable minimax design methods are given. These methods use the
McClellan-Parks algorithm as a first step to control the stopband behaviour.
The time domain constraints, imposed by solving a linear system of equa-
tions, determine the passband response. The final filter exhibits equiripple
stopband behaviour. The advantages of these methods are that the mini-
mum and maximum phase parts are obtained without direct factorization
and that arbitrary frequency weighting can be easily incorporated to allow
for a nonequiripple behaviour. The new design approach is compared with
other methods. Finally, a practical design that conforms to a CCITT voice
band modem specification is shown.

1. Introduction

Intersymbol interference occurs when a received data symbol is influ-
enced by a combination of several transmitted data symbols. Intersymbol
interference is avoided through the use of Nyquist filters. Nyquist filters
have an impulse response with regular zero crossings. Furthermore, the
filters for bandwidth efficient data transmission systems are based on low-
pass prototypes. The design problem incorporates both time and frequency
domain constraints.

This paper two design methods to generate zero-phase lowpass FIR
Nyquist filters that can be split into minimum and maximum phase parts.
The McClellan-Parks algorithm is used as a first step to control the stop-
band response. The subsequent step incorporates the time domain con-
straints and automatically generates the passband response. A few itera-
tions of the above steps produces a factorable Nyquist filter with Chebyshev
stopband response. Furthermore, the polynomial factorization problem for
the determination of the minimum phase part is considerably eased in that
a partial factorization of the transfer function of the Nyquist filter is ob-
tained as a byproduct of the design procedure. We refer to the proposed
approaches as factorable minimax design methods. The filters are funda-
mentally equiripple. Nonequiripple filters can be obtained by applying an
additional frequency weighting factor.

Nyquist filters with Chebyshev stopband behaviour have been designed
in {1] using a multistage structure. The focus in [1] is on a computationally
efficient multistage implementation. However, the resulting filters are not
necessarily factorable. Other methods of designing Nyquist filters include
the use of linear programming techniques [2]{3], the eigenfilter approach
[4]{5] and the use of the McClellan-Parks algorithm [6] as an intermediate
step [1}{7]{8][9]. The methods in [3] [5] and [8] allow for the spllmng of
the filter into its minimum and maximum phase parts.

2. Factorable Nyquist Filters

Zero-phase FIR Nyquist filters H(z) have the following impulse re-
sponse characteristic:

hiN)={ N fori =0 (1)

0 fori #£0

For a lowpass design, the minimum bandwidth solution is an ideal low-

pass filter bandlimited to x/N. For practical filters, we allow an excess

bandwidth B7/N to bring the overall bandwidth to (1 + B)x/N. The

parameter 3 is the roll-off factor of |H(e’*)|. Furthermore, bandwidth

efficient systems impose 8 < 1'. This sets the upper edge of the pass-

band to be w, = (1 ~ B)x/N and the lower edge of the stopband to be

' Note that for N > 2, § < 1 is not a requirement for the design
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= (1+ B)7/N. The ideal frequency characteristic is

1 for 0< |w|<w, Passband
Jwy| — S S wp
\H(e™)| = {0 for w, <|w|<® Stopband . ‘(2)

The factorable minimax design methods generate filters that approximate
this ideal magnitude characteristic. In addition, exact zero crossings in
the impulse response are achieved and double zeros on the unit circle are
imposed to assure factorization into minimum and maximum phase parts.

3. Minimax Factorable Design Procedures

The Nyquist filter H(z) must have an odd number of coefficients in
order to be factorable into minimum and maximum phase parts. As in
[5], we factor H(z) as H(z) = Ho(z)H{(z) where HZ(z) contains all the
double zeros of H(z) on the unit circle and Ho(2) contains the other zeros
of H(z). The double zeros of H?(z) on the unit circle imply that it has an
odd number of coefficients and that it is a zero-phase function. The zeros
of Ho(z) must occur in mirror image pairs reflected about the unit circle,
Hence, Ho(2) also has an odd number of coefficients and is a zero-phase
function.

Let the lengths of Ho(z) and H2(2) to be 2o + 1 and 2, + 1
respectively. The number of coefficients of the overall Nyquist filter H(z)
is M = 2(lp + 1) + 1. The inverse z-transforms of H(z), Ho(z) and
H2(z) are defined to be h(n), ho(n) and f(n), respectively.

3.1 First Method

The design procedure for the first method is as follows:

1. Initialization: Fixlp, {3, N, w, and w,. Set Ho(z) = 1. The weighting
is given as W(e?¥).
2. Design Hi(z) using the McClellan-Parks algorithm such that it has

zeros only on the unit circle in the stopband region [w,, 7].

3. Impose the time domain constraints by solving for the coefficients of

Ho(z) through a linear system of equations.

4. Form the Nyquist filter H(z). If the design warrants improvement, go

back to step 2.

5. Split H(2) into its minimum and maximum phase parts.
Step 2: Frequency Domain Specifications

The McClellan-Parks algorithm is used to get the coefficients of Hy(z).
The specifications are that the frequency response must be one at w = 0
and must approximate zero in the stopband region [w,, 7]. The weighting
function applies to HZ(z). Initially, the weighting function is W(e’*). For
the design of Hy(z), tabulated values of the square root of the weighting
function are inputs to the algorithm. In the stopband, the frequency
response of Hi(z) exhibits a ripple-like behaviour with local minima and
maxima occurring at the extremal frequencies. If I, is even, H (z) has an
odd number of coefficients (I} + 1). Two of the extremal frequencies are
0 and = [10]. However, the total number of zeros is a multiple of two,

all occurring in complex conjugate pairs (no zero at z = —1). At w = m,
either a local maximum or a local minimum occurs. If l; is odd, H,(z)
has an even number of coeflicients. In this case, a zero occurs at z = —1.

However, = is not an extremal frequency. The other zeros occur in complex
cofijugate pairs bringing the total number of zeros to I;.
Step 3: Time Domain Constraints

Given Hi(z), we form HZ(z) and solve for the coefficients of Ho(z)
such that H(z) has the Nyquist property. Since h(n) has samples for
n = —{lg+ L) tolp + {1, the number of zero-valued samples that occur
as n goes from 1 to lo + Iy is [(lo +11)/N]|. The same holds true as n

' The caselo+!; = kN for any integer k renders a Nyquist filter with A(~1s—1;) =
h{ly + !1) = 0 thereby reducing the effective length by two.
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goes from -1 to -(lg +1;). Since the sample for n 0 15 also known

the number of known coefficients of H{z) 1s!
Io + I
Sl

The coefficients of H(z) are found by performing the convolution
ho(n) = f(n). By expanding the convolution sum, one can uniquely de-
termine Ho(z) such that the time domain constraints are satisfied [5] if the
number of unknown coefficients of Hg(2) equals the number of known co-
efficients of H(z). This results in a system of linear equations of dimension
2lg + 1. By further exploiting the time domain symmetry of each filter, the
problem is reduced to that of a system of dimension lo + 1. The system of
equations can be expressed as Fh = ¢ where h7 = [ho(0) ho(lo)].
T =[1/N 0 0] and

£(0) 2f(1)
FINY  F(N-1)+ f(N+1)

+1 (3)

2f(lo)

fIN=lo) + f(N+o)
F = : :
F(Nl)  F(Nlo=1) + f(Nlg+1) F(Nlo—lo) + f(N10+10()4)

The constraint that L = 2lg + 1 is equivalent to lo = |(lo + 11)/N]
which in turn translates to constraints on Iy and [; given by

Wb(N=-1)<hL <b(N-1)+N. (5)

This leads to closed form expressions for lp and I, in terms of N and M,
M-1 M1 M-1

= = — . 6

lo l TN } and I 3 t TN “ (6)

This method of satisfying the Nyquist property automatically takes
care of the passband response of H(z). Note that Ho(z) is a highpass
function that primarily controls the passband characteristic and hence has
no zeros on the unit circle.

Step 4: Convergence

The coefficients of H(z) are found from Ho(z) and Hi(z). Steps 2
and 3 are iterated if the design warrants improvement. For Step 2, the
weighting function is updated to be W (e?“)|Ho(e?¥)| where |Ho(e?*)] is
calculated from the coefficients of Ho{z) formed in Step 3 of the previous
iteration. The application of this weighting factor significantly influences
the stopband behaviour through the design of Hi(z). In the weighting
function, the factor Hy(e?*)| leads to a stopband behaviour of H?(z) that
compensates for the highpass response of Ho(z). The stopband behaviour
is either equiripple or nonequiripple depending on the other factor W(e’*)
in the weighting function. The iterations are terminated when the extremal
frequencies obtained by designing Hi(z) do not change by more than a
given threshold.

Step 5: Final Fiiter

This step factors H(z) into minimum and maximum phase parts. Let
the minimum phase part of H(z) be H~(z) = Hy (z)H,(z) where HJ (2)
is the minimum phase part of Ho(z). The factor Hy(z) is known as a
byproduct of the design procedure. Only Hq(z) needs to be factored in
order to derive its minimum phase part.

3.2 Second Method

The difference between the second method and the previous approach
lies in Step 2 in which a constrained form of the McClellan-Parks algorithm
is used to directly compute the coefficients of H(z) rather than to first
design Hy(z). The specifications are that the frequency response must
be one at w = 0 and must approximate zero in the stopband region
[ws, 7). The initial weighting function is W(e?*). Tabulated values of the
weighting function are supplied as inputs. Since double zeros on the unit
circle are required, we constrain the frequency response to be nonnegative
in the stopband region. We implement the procedure in [11] to obtain a
minimax approximation to a desired response that satisfies certain upper
and lower constraints, For our specific application, a lower constraint of
zero is imposed in the stopband region {w,, 7).

In the stopband, the frequency response of H7(z) exhibits a ripple-
like behaviour with local minima and maxima occurring at the extremal
frequencies. The local minima correspond to the frequencies at which
the response touches zero. It is these frequencies which determine the
double zeros of H2(z) on the unit circle. Given that Hi(z) has 24 + 1
coefficients, a total of Iy + 1 extremal frequencies result {10]. Two of the
extremal frequencies are 0 and = regardless of the value of Iy, If Iy is odd,
the extremum at 7 is a local minimum thereby producing a double zero at
2 = ~1. The other zeros occur in groups of four in the stopband region
bringing the total number of zeros to 2I;. If I} is even, the extremum at =

' This formula is a corrected version of the formula given in [5].
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15 a local maxnrum (a0 zero at . 1), The total number of zeros is a
multiple of four and ueccur in groups of four in the stopband region.

Steps 3 and 4 are identical to the first approach. n splitting H(z)
into its mimmum and maximum phase parts, we take advantage of the
fact that the frequencies corresponding to the double zeros of HZ(z) are
available as a byproduct of the modified McClellan-Parks algorithm. Given
these frequencies and hence, the locations of the zeros on the unit circle,
Hi(z) can be formed without directly factoring HZ(z). As before, only
Hq(z) must be factored to form H™(z) = Hg (2)H,(z).

The next section discusses the merits of factoring only Ho(z) as op-
posed to H(z) in determining the minimum phase part. Also, observations
concerning the relative orders of Ho(z) and H(z) are given.

4. The Factorization Problem

Polynomial factorization can be an ill-conditioned probiem [12}. There
is an advantage to substantially lowering the order of the polynomial to be
factored. A general zero plot of H(z) includes stopband zeros, passband
zeros and extra real zeros [13]. The double stopband zeros on the unit
circle contribute to the stopband ripples and the passband zeros that occur
in mirror-image pairs contribute to the passband response. The extra real
zeros adjust the band edges depending on the specification. |f H(z) were to
be factored, polynomial deflation would be necessary as each zero is found.
Note that finding the double zeros can be an ill-conditioned problem {12}.
Furthermore, polynomial deflation has the danger of making the zeros of
the quotient polynomial diverge from those of the original polynomial [12].
Our approach avoids polynomial deflation in that Ho(z) is not determined
by dividing H(z) by HZ(z) but rather, is determined by solving a linear
system of equations. Hence, errors that would normally occur in locating
the unit circle zeros are absent in our approach and do not affect the zeros
of Ho(z). Furthermore, the factorization of Hy(z) does not involve multiple
zeros since Ho(z) has only the simple passband and extra zeros of H(z).

Since only the zeros of Ho(z) have to be determined, the extent to
which the factorization problem is eased depends on the ratio I3 /Iy, The
ratio !, /lo is both a measure of the proportion of unit circle zeros to the
other zetos of H(z) and of the degrees of H(z) and Hg(z). The higher the
value of I, /ly, the lower the relative orders of Ho(z) and H(z). It can be
shown that Iy is greater than lg by a factor of at least N ~ 1, Therefore,
the inherent advantage in terms of polynomial factorization increases as N
increases. However, even for the lowest value, N = 2, the degree of H(z)
is at east twice the degree of Ho(z).

A typical designed Nyquist response h(n) is depicted in Fig. 1. The
time response consists of a main lobe between n = ~N and n = N and a
series of sidelobes each occurring between the zero crossings. The minimum
value of Iy /lg, namely, N — 1, results when the end points of the impulse
response are zero-valued. We discard this artificial case because the values
of lg and M can be reduced by 1 and 2 respectively thereby giving a new
value of Iy /lo. As the number of coefficients is increased along a lobe (from
n=kN ton = (k+1)N — 1), the value of Iy is constant and I; continues
to increase. Therefore, one can maximize Iy /lo within a particular lobe by
increasing the number of taps. The largest disparity in the relative orders
of Ho(z) and H(z) results by choosing the filter lengths to be of the form
M = 2kN — 1. These filter lengths are also useful since we get an integral
number of sidelobes.

Given that the filter lengths are constrained to be of the form M =
2kN — 1, the ratio I; /1 is

L KN 1)
I~ k-1 ° (7)

This ratio is not only a maximum for k = 2 but also a unique maximum for
a general M. As k increases, a tradeoff results in that a higher stopband
attenuation due to a longer filter is obtained at the expense of both a lower
1, /lo and a higher l5. The subsequent examples show that a value of k = 5
results in about an B0 dB stopband attenuation for a roll-off factor of 0.52.
Smaller roll-off factors require a larger number of taps (larger value of k)
and hence, a lower value of I;/lp and a higher value of Iy for an 80 dB
stopband attenuation.

5. Discussion of the Design Techniques

Given that two factorable minimax design methods are proposed, the
questions regarding their differences and how they compare with other
approaches are now answered. Design examples are also given.
5.1 Factorable Minimax Design Methods
Compatison of the Two Proposed Methods

The two methods in this paper can be used to design factorable Nyquist
filters with Chebyshev stopband behaviour. An equiripple stopband is ob-
tained when W (e ) = 1. A nonequiripple design is achieved by specifying
a nonconstant W(e’~). The difference between the two desigh methods



given in this paper is that the first commences with ar unconstrained de
sign of Hy(z) while the second starts with a constrained design of HE:)
Although the two methods should give the same Nyquist filter numen:-
cal differences do arise. The coefficients of H{(z) obtained by the two
methods differ slightly. Even though these small differences lead to more
pronounced differences in the coefficients of Ho{z), the coefficients of the
overall Nyquist filters formed by the two methods show only small dif-
ferences. Slight differences in the frequency response occur and manifest
themselves mostly in the stopband region. For an equiripple design, the
heights of the stopband ripples as a result of using the second method
differ slightly as compared to the first method in which the equiripple char-
acteristic is more closely approached.

Examples using the first of cur methods are presented to demonstrate
both equiripple and nonequiripple designs. The design computations were
done using double precision floating point arithmetic. Four iterations were
necessary to resolve the coefficients.

Example 1

We generate an equiripple design with parameters N = 6, lp = 4,
l; =25, w, = 0.087 and w, = 0.2547. This results in a filter with 59
coefficients having a roll-off factor 3 = 0.52 whose magnitude response is
shown in Fig. 2. The passband response is flat to within 0.003 dB. The
filter length is of the form M = 2kN — 1 with k = 5.

Example 2

The parameters used in this example are N = 4, o = 4, I; = 15,

wp = 0.127 and w, = 0.387. The weighting is

1 forw=20
Wiel) = 8)
(e7) ;E(w_w,)+1 forw, <w<m (
ks

This gives a nonequiripple Nyquist filter with 39 coefficients and a roll-off
factor 8 = 0.52. The filter length is of the form M = 2kN — 1 with
k = 5. Figure 3 shows the magnitude response of the filter. The passband
response is flat to within 0.002 dB.

Group Delay

An important question concerns the delay distortion of the minimum
phase part. The group delay of the minimum phase part is only important
in the passband and is primarily influenced by the passband zeros which are
within the unit circle. For a given number of taps and a given N, the group
delay tends to be more constant as the roll-off factor increases. Also, for
a given roll-off factor and a given N, a larger number of taps produces a
group delay with a greater deviation. The minimum phase filters generated
in Examples 1 and 2 that achieve about a 40 dB stopband attenuation also
have a relatively small passband group delay variation (approximately 6.15
zero crossing intervals).

5.2 Other Approaches
Linear Programming and Eigenfilter Formulations

In [3). a linear programming approach that is also based on a minimax
criterion is used to design a factorable Nyquist filter. Moreover, arbitrary
weighting can be easily applied (see [2]). Our approach gives similar re-
sults to the linear programming formulation. The eigenfilter approach [5],
based on a least-squares design, also simplifies the factorization problem
and meets the time domain constraints by solving a linear system of equa-
tions. The incorporation of an arbitrary weighting factor into the eigenfilter
formulation involves the use of numerical integration techniques. Our ap-
proach naturally generates an equiripple behaviour whereas the eigenfilter
method naturally renders nonequiripple filters.

Direct Use of the McClellan-Parks Algorithm

Factorable Nyquist filters can also be designed by invoking the con-
strained form of the McClellan-Parks algorithm [11] to get a nonnegative
response that approximates a raised cosine characteristic. Another ap-
proach is to design a linear phase filter to approximate the square root of a
raised cosine response using the McClellan-Parks algorithm (no constraints
required) and convolve it with itself to produce a Nyquist filter. The ba-
sic drawback of these two approaches is that exact zero crossings in the
impulse response are not guaranteed as compared to other design meth-
ods. The direct approaches used to design approximations to raised cosine
Nyquist filters can be used for modem design. The CCITT recommendation
V.22 [14) includes the specification of a pair of transmitter/receiver filters
which should approximate the square root of a raised cosine response. The
specified roll-off factor is 0.75. In addition, upper and fower limits in the
frequency response and an upper limit in the the group delay variation are
specified over certain frequency ranges.

We design Nyquist filters with a roll-off factor of 0.76 and with N = 4
using the first factorable minimax method and the direct approaches that
use the McClellan-Parks algorithm. The approaches are described in slightly
more detail as follows:

1 Design a filter that approximates a raised cosine response by invoking
the constrained form of the McClellan-Parks algorithm [11]) such that
the response 1s nonnegative and its minimum and maximum phase
parts have a frequency response that satisfies the upper and lower
bounds specified by V.22

2. Design a hnear phase filter that approximates a square root raised
cosine characteristic by invoking the modified form of the McClellan-
Parks algorithm such that its frequency response satisfies the upper
and lower bounds specified by V.22.

3. Use the first factorable minimax method to design a Nyquist filter
such that its minimum and maximum phase parts satisfy the V.22
specifications of the frequency response.

In all cases, the smallest number of taps that satisfy the constraint M =
2kN —1is used. This leads to 15 tap Nyquist filters for the three methods.
Note that the factorable minimax method does not guarantee a filter that
satisfies any prescribed specifications of the frequency response. However,
filters that satisfy the V.22 specifications can be designed by choosing
the number of taps, carrying out the design and finally verifying that the
constraints are met. We find that the constraints are met with 15 taps.
The weighting, W(e’*) = 1, is used in the factorable minimax method.

In comparing the performance of the three methods, we consider the
stopband attenuation of the Nyquist fiiter, the group delay of the factorized
filter in the region considered in the V.22 specifications and quantitative
measures of the intersymbol interference. The measures of the intersymbol
interference are the peak distortion Dp and the RMS distortion Drms

defined by
Y |a(nA))| Y_ R*(nN)
_ L;O _ n;O
Dp = \}h(o)[ and DRMS = \J —hhz(o) . (9)

The stopband attenuations produced for methods 1, 2 and 3 are about
45, 42 and 50 dB respectively. The allowable variation in group delay as
specified by V.22 is 0.18 zero crossing intervals. Method 1 generates a
minimum phase filter whose group delay variation is slightly under the
prescribed 0.18 zero crossing intervals. Method 2 generates a filter with
no group delay variation. Only Method 3 does not meet the group delay
requirement in that the filter it produces has a variation of 0.24 zero crossing
intervals!. In terms of peak and RMS distortion, Method 3 assures exact
zero crossings and hence, produces no such distortion. Method 1 produces
peak and RMS distortions of 0.0004 and 0.0003, respectively. Method
2 leads to much higher peak and RMS distortions of 0.186 and 0.132,
respectively. This coupled with the lower stopband attenuation achieved
by the second method leads us to choose Method 1 over Method 2. Method
3 gives a higher stopband attenuation than Method 1 and produces exact
zero crossings in the impulse response. This enhanced stopband attenuation
comes at the expense of a larger group delay variation,

6. Summary and Conclusions
This paper describes two factorable minimax methods to design zero-
phase FIR lowpass factorable Nyquist filters. The main advantages of the
design techniques are that the polynomial factorization complexity in finding
the minimum phase part is considerably eased and that arbitrary frequency
weighting can be applied without additional computational overhead. The
new methods can design both equiripple and nonequiripple fiiters.
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Fig. 1 Typical Nyquist response h(n) (shown for N = 5, M = 39 and 3 = 0.2)
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Fig. 2 Magnitude response of the Nyquist filter: Example 1
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Fig. 3 Magnitude response of the Nyquist filter: Example 2
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