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Abstract
A method which can be used to design lowpass nonrecursive linear-
phase digital differentiators is described. The method involves formu-
lating an error function based on the absolute mean-square difference
between the amplitude responses of the practical and ideal differen-
tiators as a quadratic function. The filter coefficients are obtained
by solving a system of linear equations. This method leads to a lower
mean-square error and is computationally more efficient than the eigen-
filter method and the method based on the Remez exchange algorithm.

1 Introduction

Digital differentiators are used to obtain samples of the derivatives of a
bandlimited continuous time signal from the samples of the continuous
time signal. In this paper, we focus on systems that yield the higher-
order derivatives (greater than one) of the signal since the first-order
case has been dealt with sufficiently. These systems have been used
for the calculation of geometric moments 1] and in biological signal
processing [2]. Higher-order differentiators can be realized as a non-
recursive digital filter with an amplitude response that approximates
the ideal frequency characteristic which varies as a power of frequency
with frequency.

Higher-order differentiators have been designed by extending the
approaches that are used to design first-order differentiators [3]-[4]. In
(3], the MecClellan-Parks method based on the Remez exchange algo-
rithm [5] has been extended to incorporate the parameters involved
in the design of higher-order differentiators. The eigenfilter method-
in {6] has been extended to the design of higher-order differentiators
in [4] by formulating an error function in terms of a quadratic form.
The error function involves the square of the difference between the
desired amplitude response and the actual amplitude response of the
designed nonrecursive filter. In this method, the desired amplitude re-
sponse is equal to the amplitude response of the designed filter at any
arbitrary reference frequency, as opposed to being equal to the ideal
amplitude characteristic. The filter coefficients are found by comput-
ing the eigenvector that corresponds to the smallest eigenvalue of a real
positive-definite symmetric matrix.

In this paper, the least-squares approach described in [7} is extended
to the design of higher-order differentiators. The method allows the
explicit inclusion of the ideal amplitude response in the error function
and hence, leads to a more meaningful formulation than the eigenfilter
method. Also, it does not necessitate the use of a reference frequency.
The filter coefficients are obtained by solving a system of linear equa-
tions, thereby leading to a lower computational complexity than the
eigenfilter design.

2 Higher-order Differentiators

A nonrecursive digital filter with N taps can be represented by its
impulse response h(n) for 0 < n < N — 1. For the case of a linear-
phase filter having a symmetric impulse response, we have h(n) =
h(N -1 —n). Consequently, H(e’*) = M(w) e~ (N-1)/2 where

(N-1)/2
Z a(n) cos nw N odd
Mw) = ¢ yi=° (1)
Y a(n)cos(n—1/2)w N even

If N is odd, a(0) = h{(N - 1)/2] and a(n) = 2h[(N - 1)/2—n]. f N
is even, a(n) = 2h(N/2 — n).
0-7803-0510-8/92803.00 ©1992IEEE

477

AT&T Bell Laboratories
Murray Hill, New Jersey, U.S.A.

For a linear-phase filter having an antisymmetric impulse response,
we have h(n) = —~h(N —~1—n). Therefore, H(e’) = jM(w) e~+(N-1)/2
where

(N-1)/2
> b(n)sinnw N odd
Mw)={ g (@)
Z b(n)sin(n ~ 1/2)w N even
n=1

If N is odd, b(n) = 2h[(N —1)/2—mn]. If N is even, b(n) = 2h(N/2-n).
An ideal kth-order differentiator has a frequency response

Hi(e®™) = D(w) e**/? (3)

where D(w) = (w/27)* for 0 < w < wp < 7. The upper passband edge
frequency is wp. For an even-order differentiator (k is even), it can be
seen that H(e’”) is a real-valued function. Therefore, a nonrecursive
filter with a symmetrical impulse response can be used to design even-
order differentiators provided the coefficients a(n) are determined such
that the amplitude response M(w) given in Eqn. (1) approximates
D(w). It should be noted that a full-band differentiator (w, = ) can
be designed only when N is odd. When N is even, it is required that
wp < 7.

For an odd-order differentiator (k is odd), it can be seen that
H(e’) is purely imaginary. We note that a nonrecursive filter with
an antisymmetrical impulse response can be used to design odd-order
differentiators provided the coefficients b(n) are determined such that
the amplitude response M(w) given in Eqn. (2) approximates D(w).
For this case, a full-band differentiator can be designed only when N
is even.

3 Error Function Minimization

The mean-square difference between D(w) and M(w) with respect to
the differentiator passband can be expressed as

1 fwr
Fose = 2 [ (D) - M) do )

By minimizing the error function Eme with respect to the filter co-
efficients, the required differentiator can be designed. For the case of
even-order differentiators, we have M(w) = a¥¢(w) where

(a(0) a(1) --- a((N -1)/2)F N odd
a= (5)
[a(1) a(2) --- a(N/2)]T N even
and
[T cosw cos(’l;—‘w)]T N odd

c(w) = (6)

fcosjw cosdw --- cos(’%‘—lu)]T N even

Equation (4) can be written as
Eone = % / “[D*(w) - 2D(w)aTc(w) + aTc(w)eT (w)a] dw  (7)
0

In minimizing Ep,., we set %‘(}‘5‘ = 0 to obtain a system of linear
equations Qa = d where

Q= /pr c(w)eT(w) dw (8)




and
d:/ﬂ D(w)e(w) dw

It can be noted from (8) that Q is a positive-definite (unless w, = 0)
real symmetric matrix and thus, a unique solution is guaranteed. Con-
sequently, the system of linear equations can be solved by a computa-
tionally efficient method, like the Cholesky decomposition that avoids
matrix inversion. The entries of Q and d can be computed by evalu-
ating the respective integrals in closed form.

Similarly, for odd &, M(w) = bTs(w) where

(9)

[b(1) b(2) --- B((N -1)/2)]7 N odd
b= (10)
[b(1) b(2) b(N/2)f N even
and
[sinw sin2w sin(%w)]T N odd
s(w) = (11)

[sin fw sin 3w sin(#w)]’r N even

The resulting system of equations is given by Qb = d where

Q= [7s(w)stw) do (12)

and

W
d:/ ” D(w)s(w) dw (13)
o
As in the case of even-order differentiators, Q is a positive-definite
real symmetric matrix. The entries of Q and d can be calculated by
evaluating the respective integrals in closed form.

4 Design Examples

Two design examples are provided to demonstrate the design of both
odd-order and even-order differentiators. Figure 1 shows the amplitude
response of a second-order full-band differentiator with 25 taps and the
variation of the error D{w) — M(w) with respect to w. In Fig. 2, we
demonstrate the design of a 27-tap third-order differentiator with a
passband edge wp = 0.887.

5 Performance Results

In this section, we compare our design method with the minimax tech-
nique [3] and the eigenfilter approach from three points of view, namely,
the number of floating point operations (flops), the passband mean-
square error Ep,., and the passband peak error Ep..k, where

Epear = max |D(w) - M(w)l (14)
A comparison of the three methods with respect to the number of
flops is shown in Table 1, with respect to0 En,c is shown in Table 2
and with respect to Ep..x is shown in Table 3 for the examples in the
previous section. It must be mentioned that the entries in Table 1 have
been normalized relative to the number of flops for our method. The
reference frequencies for all the designs using the eigenfilter method
have been chosen to be equal to half the corresponding passband edge
frequencies as in [4].

5.1 Error Measure

Our method formulates a better error measure than the eigenfilter
method in that we explicitly minimize the mean-square error between
the ideal and the practical amplitude responses. In contrast, the eigen-
filter method does not take the ideal response into account but rather
the frequency response of the practical filter at an arbitrary frequency.
In fact, the filter that is designed depends upon the reference frequency.
The performance comparisons show that our method leads to a lower
mean-square error than the eigenfilter method although the differences
are small.
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The error criteria for our method and the minimax method are
different in the sense that in the former we find the filter coefficients
that minimizes E,,, whereas the latter determines the filter coefficients
that minimizes E,..x. As a consequence, our method leads to a lower
Epyse while the minimax method guarantees a lower Epeak.

5.2 Computational Complexity

For our method,‘the filter parameters are obtained by a system of linear
equations involving a positive-definite matrix Q. It is well known that
a real symmetric positive-definite matrix can be decomposed as (8]
Q = LL7 where L is a real lower triangular matrix. Consequently, the
system of linear equations can be written as LLTa = d. By letting v =
L7a, we get d = Lv. Given L and d, we can obtain v by recursively
solving a set of linear equations. Let /;; be the element in the ith row
and jth column of L. It can be shown that

}

forn = 0,1, ---, Ng, where Ng is the dimension of the system of
equations. Since Q is positive-definite, the I, in the above equation
are nonzero. We first solve for v(0) and then recursively obtain v(n). A
total of Ng(Ng - 1)/2 multiplications, Ng divisions, and Ng(Ng—1)/2
additions are required to compute v. Similarly, we can find the vector
a for a given v and L by solving

-1

o(n) = 1":: {d(n) ~F bels)

=0

(15)

1 = _
a(n) = — s v(n) ~ Z Inja(7) (16)
Lan 3=0
The total time required to obtain the solution is
Ty = (Ta+ Tm)Ng(Ng — 1) + 2NgTy 17

where T,, Tpn, Ta, are, respectively, the time required for one real
addition, multiplication, and division.

In the eigenfilter approach, the error (for even-order differentiators)
is formulated as Enq = al Pa where

1 fvr T

P =~ [7(Re(wn) - c(w)][Re(wo) - e(w)]T do (18)
and R = (w/wo)f is the normalizing factor such that the actual fre-
quency response at the reference frequency wp is approximately equal
to the desired value [4]. A similar definition for P exists for odd-order
differentiators. It can be noted that P is a real symmetric positive-
definite matrix whose entries can be calculated by evaluating the above
integral in closed form. The coefficients of the differentiators are ob-
tained as the eigenvector that corresponds to the smallest eigenvalue
of P.

In order to compute the smallest eigenvalue and its corresponding
eigenvector, generally an iterative inverse power method is used [9]. At
the (k + 1)th iteration, a vector xx4; is computed from the previous
iterate xi as

P‘lxk

Ye+1/ || Yo ||

Yk+1
Xk+1

(19)
(20)

where (| yk+1 || denotes the L norm of ygyy. I || Xpq1 — xi || < € (e
is usually 10~5), then x4y, is a good approximation of the eigenvector
corresponding to the smallest eigenvalue. We can rewrite Eqn. (19) as
Xk = Py, Using the technique described above for solving a system
of linear equations, we can obtain .y, and subsequently xiq.

It can now be seen that the eigenfilter method requires solving a
system of linear equations several times before obtaining the eigen-
vector corresponding to the smallest eigenvalue. On the contrary,
our approach requires solving a system of linear equations only once.
Thus if T, is the time taken for the eigenfilter method, then from (17)
T. = MT,, where M is the number of iterations required in the eigenfil-
ter method. The value of M increases as the ratio A3/ );, where ), is the
smallest eigenvalue and A, is the next smallest eigenvalue, decreases.
If the ratio is too small, it may not even be possible to evaluate the



smallest eigenvalue and its corresponding eigenvector using the inverse
power method (the inverse power method may not converge).

From a computational point of view, our method is considerably
more efficient than the minimax method. The minimax method uses
the iterative Remez exchange algorithm which takes up the major com-
putational burden. It must be mentioned that in designing the differ-
entiators using the minimax method, the procedure forwarded in [3]
has been used. More efficient techniques to design nonrecursive filters
using the Remez exchange algorithm have been advanced in [10]. How-
ever, at this stage we have not extended the method advanced in [10]
to the design of higher-order differentiators.

6 Alternative Error Function

The error function Ep,. is based on the integration of the square of the
difference between D(w)and M(w). This integral can be approximated
as a Riemann sum to yield an alternative error function Egm

Fum = 13 F0)A(w8) (21)
k=1

where f(w) = (D(w) — M(w))?, A(wk) = Wk — wk-1 and we—1 < w} <
wy. Note that wp = 0 and w, = wp (the upper passband edge fre-
quency). Finding the filter coefficients that minimize E,um, again leads
to a system of equations. The difference between minimizing Esum
and Ep,e is that the entries of Q and d are now evaluated as Rie-
mann sums as opposed to integrals in closed form. The motivation of
attempting this approach is to see if a savings in computation results
with a corresponding loss in performance. Obviously, the loss in perfor-
mance diminishes as the number of points involved in the summation
is increased.

Filters were designed by minimizing Egqm with r = 21, wi = '%’1,
Afwy) = %2 and w}, = wi_y. Although the differences in the mean-
square error obtained by minimizing Eem and Ep,. were found to be
negligible, the number of flops required for minimizing Eyym increased
by a factor of 4.

7 Summary and Conclusions

In this paper, a method to design nonrecursive linear-phase higher-
order digital differentiators has been presented. The characteristics
of this method are that it (a) explicitly minimizes the absolute mean-
square error between the ideal and actual frequency responses, (b) offers
a closed form solution for the filter coefficients, and (c) is'implemented
in a noniterative and computationally simple manner. Design examples
are provided. The mean-square error achieved by our method is lower
than that achieved by the eigenfilter and the minimax methods. In
addition, our method is computationally more efficient than both the
eigenfilter and minimax methods.
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10.

Floating point operations (flops)
(Normalized relative to our method)

Examples .
Our Eigenfilter Minimax
method | method method
1 1 4.22 5.69
2 1 4.75 7.48

Table 1: Comparison of the three methods with respect to the number
of floating point operations.

Mean-square error Epy,e
Examples
Our Eigenfilter | Minimax
method method method
1 8.732e-07 | 8.799e-07 | 6.872e-06
2 1.817¢-03 | 1.818e-03 | 1.817e-03

Table 2: Comparison of the three methods with respect to Emse.

Peak error Epeak
Examples
Our Eigenfilter | Minimax
method method method
1 8.101e-03 | 8.105¢-03 | 3.724e-03
2 1.022e-03 | 1.010e-03 | 2.967e-04

Table 3: Comparison of the three methods with respect to Epcax-

p——
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Figure 1: (a) Amplitude response of a second-order differentiator with
N = 25. (b) Variation of the error function with respect to w.
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Figure 2: (a) Amplitude response of a third-order differentiator with
N = 27. (b) Variation of the error function with respect to w.
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