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ABSTRACT

A method is described which can be used to design
two-dimensional nonrecursive linear-phase filters. The ap-
proach is based on formulating the absolute mean-square
error between the amplitude responses of the practical and
ideal digital filters as a quadratic function. The coefficients
of the filters are obtained by solving a set of linear equations.
This method leads to a lower mean-square error and is com-
putationally more efficient than the eigenfilter method. The
method is extended to the design of filters with time-domain
constraints.

1. INTRODUCTION

The use of two-dimensional (2-D) nonrecursive filters is mo-
tivated by their inherent stability and their rendering of lin-
ear phase by the imposition of coefficient symmetry. This
coefficient symmetry that achieves linear phase is important
for image processing applications and for simplifying design
and implementational complexity [1]. Additional coefficient
symmetry can be imposed to further alleviate the design
and computational effort [2]. Design approaches that are
extensions of the approaches used for one-dimensional (1-D)
filters include the use of windows and the frequency sam-
pling technique [2]. The frequency transformation method
starts with a 1-D linear phase filter designed by a 1-D tech-
nique and transforms it into a 2-D linear phase filter [2].
The transformation function is the Fourier transform of a
2-D zero-phase sequence. A well known example was in-
troduced by McClellan [3]. Although designs based on the
Chebyshev approximation problem exist ?2], the method-
ology is not a simple extension of the Remez exchange al-
gorithm. The eigenfilter approach proposed in [4] for the
design of 1-D filters has recently been extended to the de-
sign of 2-D filters in [5]. In this method, an error function
based on the difference between a desired response and the
amplitude response of the practical filter is formulated. The
desired response is equal to a scaled version of the ideal re-
sponse where the scaling factor depends on the amplitude
response of the designed filter at an arbitrary 2-D frequency.
This is done to set up the error function in a quadratic form
in order that the filter coefficients are found by computing
the eigenvector corresponding to the smallest eigenvalue of
a real, symmetric and positive-definite matrix.

In this paper, the least-squares approach for the design
of 1-D nonrecursive linear-phase filters described in [6]-[8]gis
extended to the design of 2-D nonrecursive linear-phase fil-
ters. The procedure involves formulating the error between
the practical and ideal responses as a quadratic function.
The explicit inclusion of the ideal amplitude response in
the error function leads to a more meaningful formulation
than the eigenfilter method and does not necessitate the
use of a reference frequency. The coefficients of the filter
are obtained by solving a system of linear equations. By
way of some design examples, our method is compared with
the eigenfilter approach in terms of several performance

measures and it is shown that our method is superior to
the eigenfilter approach. Furthermore, we have extended
our method to the design of 2-D minimum-energy and 2-D
Nyquist filters.

2. QUADRANTALLY-SYMMETRIC FILTERS
A 2-D nonrecursive filter with N; by N, taps can be repre-
sented by the transfer function

Ny~1 Na-1

H(z1,22) = Z E h(ni,m2) 27" 27" (1)

n;=0 ny=0
where h(ni,n2) is the impulse response of the filter. By

incorporating the linear-phase symmetry constraints, the
frequency response of a 2-D filter is given by

H (e’ ™) = M(u.u,wz)e—’(m;—l)”’e_J(m’__l)w2 (2)

where M(w1,w?) is the amplitude response. For the case
when the filter has quadrantal symmetry, the following con-
dition holds

h(ni,n2) = h(N1 =1 —mny,n2) = h(ny, N2 — 1—-n2) (3)

for0 < ny < Ny—1land 0 < n; < N—1. When N
and N; are both odd, the amplitude response is given by

e
Z Z a(n1,n2) cos(niw;)cos(nzwz)

n1=0 ny=0

M(w;,w;) =

The coefficients a(n1,n2) are related to the filter coefficients
h(ni1,n2). On the other hand, when N; and N are both

even,

Ny
3
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M(wi,w2) = Z Z b(n1,n2) cos(njw)cos(njws)
n;=0

na=0

where n} = n; — 0.5 and nj = ny — 0.5. Again, the co-
efficients b}nl,nz) are related to h(ni,n2). Other cases of
symmetry for N; odd and N; even and N; even and N5 odd
can be obtained in a similar manner.
The ideal linear-phase frequency response can be written
as
Hl(e]“’l,elw)) = D(wl,wz)c_JQ‘w‘e_]Q’w’ (4)

By comparing (2) and (4), we note that a 2-D nonrecursive
filter can be designed whose amplitude response approxi-
mates any arbitrary desired characteristic D(wi,w2).



3. ERROR FUNCTION MINIMIZATION

The mean-square error between D(w1,w?) and M(w1,w2)
can be expressed as

Epn,e = a//P[D(un,m)—M(wl,wg)]2 dw, dw»
+ﬂ//SM2(wl,W2) dwl dLu'Q (5)

where P is the passband and S is the stopband in the
(wi,w2) plane. As can be noted from Eq. 35), D(wy,w?)
is zero in the stopband. The quantities o and § reflect the
relative emphasis given to the passband and stopband, re-
spectively. By minimizing the error function with respect
to the filter coefficients, the required filter can be designed.

For the case when N; and N are odd, let the amplitude

response be given by M(wi,wz) = a7 c(w:,w2) where
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The mean-square error given by (5) can be rewritten as

Eﬂue = a// [D2(wlyw2) - 2D(w1, w?)aTc(wlyw2)
P

+ aTc(wl,wg)cT(wl,wg)a] dwl dw;

+ﬂ// aTc(wl,wz)cT(wl,wz)a dwi dwz
s

In minimizing Emse, we set —6—%3‘-1 = 0 to obtain a system
of linear equations (a¢Q + fR)a = ad where

a= [/ el wa)e (o 00) don don (0
R = / / lonen)ewnun) do du (D)
d = //PD(WI,W)C(W!,W) dwy dwy;  (8)

A similar development exists when N; and N, are both even
such that a system of linear equations results. It can be
noted from the above equations that Q and R are positive-
definite, real and symmetric matrices. Consequently, the
system of linear equations can be solved by a computation-
ally efficient method, like the Cholesky decomposition, that
avoids matrix inversion [9].

4. DESIGN EXAMPLES

In this section, we provide three design examples in which
the entries of Q, R and d are obtained either in closed form
or by numerical integration. In the first two examples, these
entries are obtained in closed form while in the last example,
the entries are obtained by numerical integration. For the
sake of comparison, the examples chosen here are the same
as those presented in [5]. For all the designs, a = 8 =1
and N = N 1 = Nz.

Example 1 (Rectangular lowpass filter)

The desired amplitude response for this filter is given by

1 P: 0 S w1 S Wp1
0 S w2 S Wp2
D(wy,w2) =
0 S: Wa < w <
waz S w2 < 7

For this design wp1 = wpz = 0.47, wa1 = waz = 0.67 and
N = 27. Figure 1 shows the magnitude response of the
designed filter.

Example 2 (Fan filter)

For this filter the desired amplitude response is given by

1 P: 0w <
w S w <7
D(w,w2) = o s
I W

<
050)2

w <7
T — Wa

Here, N has been chosen to be equal to 23 and w, = 0.167.
%“'he magnitude response of the designed filter is shown in
ig. 2.

Example 3 (Minimum energy filter)

A minimum energy filter is one which yields the smallest
stopband energy subject to a constraint that is imposed to
avoid a zero solution vector. Since our error function does
not accommodate constraints, we transform the problem to
that of an unconstrained minimization. The idea is to make
the amplitude response at zero frequency close to unity and
minimize the stopband energy. The modified error function
is given by

Epee=a[l - M(O,O)]2 + ,3// M2(w1,w2) dw; dwz
(9)

The filter coeflicients are again obtained by solving a sys-
tem of equations. In this example, a minimum-energy filter
is designed for which the stopband extends outward of a
circular region of radius equal to 0.3x. Figure 3 shows the
magnitude response of the designed filter where N = 15.



5. PERFORMANCE RESULTS

In this section, we compare our design method with the
eigenfilter approach from two points of view, namely, the
number of floating point operations (flops), and the mean-
square error Ems.. The reference frequencies for all the
designs using the eigenfilter method have been chosen as in
5].

5.1. Computational Complexity

For our method, the filter parameters are obtained by a sys-
tem of linear equations involving a positive-definite matrix
F = aQ+AR and a right hand side vector g = ad. It can be
seen that F is a real, symmetric, and positive-definite ma-
trix. Therefore, F can be decomposed as F = LLT where
L is a real lower triangular matrix [9]. Consequently, the
system of linear equations can be written as LLTa = g. By
letting v = LTa, we get g = Lv. Given L and g, we can
obtain v by recursively solving a set of linear equations. Let
l;; be the element in the ith row and jth column of L. It
can be shown that

for n 0,1, ---, Nt — 1 where N, is the dimension of
the system. Since F is positive-definite, the l,.,, in the above
equation are nonzero. We first solve for v(0) and then recur-
sively obtain v(n). A total of N.(N,— 1)/2 multiplications,
N, divisions, and N¢(N; — 1)/2 additions are required to
compute v. Similarly, we can recursively obtain the vector
a for a given v and L. The total time required to obtain

the solution is
To = Tchol + Teqt (11)
where Tchot is the time required to decompose F and

cht = (Ta + Tm)Nt(Nt - 1) +2N: Ty

n-1

{H"Y—E:huﬂﬂ

}=0

1
v(n) = -

(10)

(12)

Here Ta, Tm, Tua, are, respectively, the time required for
one real addition, multiplication, and division.

In the eigenfilter approach, the total mean-square error
is formulated as Em.. = aTPa. It can be noted that P is
a real, symmetric, and positive-definite matrix. The coef-
ficients of the filters are obtained as the eigenvector corre-
sponding to the smallest eigenvalue of P. In order to com-
pute the smallest eigenvalue and its corresponding eigen-
vector, generally an iterative inverse power method is used
[4]. At the (k + 1)th iteration, a vector Xx41 is computed

from the previous iterate xx as
Yepr = P lx; (13)
Xk41 = Yk+1/||Yk+1 Il (14)
where || yiy, || denotes the Lz norm of y, ;. If ||

Xk41 — Xk ||< € (typically € is about 107°), then Xi41 is a
good approximation of the eigenvector corresponding to the
smallest eigenvalue. We can rewrite (13) as xx = Py,,.
Using the technique described above for solving a system
of linear equations, we can obtain y,,; and subsequently
Xk+1-

It can now be seen that the eigenfilter method requires
solving a system of linear equations several times before ob-
taining the eigenvector corresponding to the smallest eigen-
value. On the contrary, our approach requires solving a
system of linear equations only once. If M is the number
of iterations required in the eigenfilter method, then the to-
tal time taken for obtaining the filter coefficients using the
eigenfilter method is

Te = Tenot + M(Teqt + Tnd) (15)
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where Thq is the time taken to obtain Xg41 from y,,, using
Eq. (14). The value of M increases as the ratio A2 /A;, where
A1 is the smallest eigenvalue and A; is the next smallest
eigenvalue, decreases. If the ratio is too small, it may not
even be possible to evaluate the smallest eigenvalue and its
corresponding eigenvector using the inverse power method
(the inverse power method may not converge).

The other aspect that influences the computational com-
plexity is in finding the entries of Q, R and d for our ap-
proach and those of P for the eigenfilter approach. The ex-
pressions for Q and R are independent of D(w;,w2). How-
ever, the use of either a closed-from expression or numerical
integration in finding the entries of Q and R is purely dic-
tated by the passband and stopband regions. On the other
hand, the expression for d is influenced by both D{(w;,ws)
and the passband region. Even for a simple passband re-
gion (like a rectangular shape), the nature of D(w;,ws)
may mandate numerical integration for determination of
the entries. For the eigenfilter approach, the matrix P is
influenced by D(wi,w2), the passband region and the stop-
band region. For the designs in which the entries of Q,
R and d for our method and P for the eigenfilter method
are evaluated in closed form, the saving in flops is signifi-
cantly high. In the case of design example 1, the eigenfilter
method requires 4.38 times the number of flops taken by
our method. In the case of design example 2, the eigenfilter
method requires 2 times the number of flops taken by our
method. This is due to the fact that more functions have
to be evaluated in the eigenfilter method as compared to
our method. Moreover, the eigenfilter method is iterative
while our method is not. When the entries of Q, R and d
for our method and P for the eigenfilter method are evalu-
ated using numerical integration, the saving in flops is not
so significant. The computational complexity for the design
of minimum-energy filters is almost the same for both our
approach and the eigenfilter method. The small saving in
flops is due to the eigenfilter method being iterative.

5.2. Error Measure

Our method formulates a better error measure than the
eigenfilter method in that we explicitly minimize the mean-
square error between the ideal and the practical amplitude
responses. In contrast, the eigenfilter method does not take
the ideal response into account but rather the frequency
response of the practical filter at an arbitrary reference fre-
quency. In fact, the filter that is designed depends upon the
reference frequency. The performance comparisons confirm
that our method leads to a lower mean-square error than
the eigenfilter method although the differences are generally
small. The most glaring difference is for the rectangular
lowpass filter in that for our method, Eyp, e = 1.6€ — 05 and
for the eigenfilter approach, Emse = 2.1e — 05.

6. TWO-DIMENSIONAL NYQUIST FILTERS

A 1-D zero-phase Nyquist filter with an impulse response
h(n) has an odd number of taps, is lowpass, and has time-
domain constraints in the form of equally spaced zero cross-
ings about n = 0 [4][8]. For the case of an Ny by N
2-D zero-phase Nyquist filter with an impulse response
k(n1,n2), N1 and N are both odd and the time-domain
constraints are of the form h(ti11n1+212n2, t21n1+122n2) = 0
under the conditions that (n1,n2) # (0,0) and the matrix

112 ]
122

is nonsingular and has only integer entries [10]. The fre-
quency domain requirement is that the Nyquist filter be
lowpass with D(wi,w2) = 1 in a passband region P and
have a stopband region S. The time-domain constraints de-
fined above are consistent with a zero-phase characteristic.

t1y
i21

T = [ (16)



However, to achieve quadrantal symmetry, additional con-
ditions on T must be specified. One sufficient condition for
a Nyquist filter to have quadrantal symmetry is that T be
diagonal. For the design, as in the 1-D case [8], the imposed
zero-valued impulse response coefficients do not appear in
the minimization of Fmns.. As a consequence, the dimension
of the system of equations to be solved is reduced.
Example 4 (Two-dimensional Nyquist filter)

In this example. we design a Nyquist filter with parameters
Ny =N =23, 411 =3, t22 =4 and 12 = 23 = 0. The
passband region is given by 0 < wy < 7/6 and 0 € wz <
n/2. The stopband region is given by /8 < w; < 7 and
37/8 < w2 < 7. Figure 4 shows the magnitude response of
the filter.

7. CONCLUSIONS

In this paper, a method to design 2-D nonrecursive linear-
phase filters has been presented. In this method, we ex-
plicitly minimize the absolute mean-square error between
the ideal and actual frequency responses. This leads to a
closed form solution for the filter coefficients in terms of a
system of linear equations. The filter coefficients are found
in a noniterative and computationally simple manner. It
has been shown that the filters designed using our method
has lower mean-square error as compared to that designed
using the eigenfilter method. Moreover, the computational
complexity in our method is significantly lower than in the
eigenfilter method. Finally, our method has been extended
to the design of filters with time-domain constraints.
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Figure 1: Magnitude response of a 27 x 27 rectangular low-
pass filter with wp; = wp2 = 0.47 and wa1 = waz = 0.67.
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Figure 2: Magnitude response of a 23 x 23 fan filter with
wq = 0.167.

Figure 3: Magnitude response of a 15 x 15 minimum energy
filter for which the stopband extends outward of a circular
region of radius equal to 0.3x.

Figure 4: Magnitude response of a 23 x 23 Nyquist filter.



